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Mutation bias is one of the forces that may constrain the variation at microsatellite loci. Here, we study the dynamics 
of population statistics and the genetic distance between two populations under multiple stepwise mutations with 
linear bias and random drift. Expressions are derived for these statistics as functions of time, as well as at mutation- 
drift equilibrium. Applying these expressions to published data on humans and chimpanzees, the regression coef- 
ficient of mutation bias on allele size was estimated to be at least between -0.0064 and -0.013. The assumption 
of mutational bias produces larger estimates of divergence times than are obtained in its absence; in particular, the 
time of split between African and non-African human populations is estimated to be between 183,000 and 222,000 
years, assuming one-step mutations and no selection. With multistep mutations, the divergence time is estimated to 
be lower. 

Introduction 

Short, tandemly repeated DNA sequences, microsa- 
tellites, occur widely throughout the genomes of higher 
organisms (Kashi et al. 1990). Although their abundance 
in plants is one fifth that in animals, the within-locus 
variation in plants is still high (Lagercrantz, Ellegren, 
and Anderson 1993). For evolutionary studies, micro- 
satellite loci have several advantages over other genetic 
markers (allozymes, RFLP, RAPDs): they occur in all 
chromosomal regions; are extremely polymorphic, with 
up to several dozen alleles at each locus, and are easily 
scored using PCR. Thus, microsatellites are potentially 
very useful for the analysis of population structure, as 
well as the evolutionary history of closely related taxa, 
and have been used for the taxonomy of humans and 
higher primates (Bowcock et al. 1994; Deka et al. 1995; 
Goldstein et al. 1995b; Slatkin 1995; and others). 

Analysis of microsatellite frequencies may be carried 
out with the statistical tools usually used for other mark- 
ers (Nei 1987; Weir 1990). However, since each micro- 
satellite allele may be characterized quantitatively by its 
size, i.e., the number of repeats of the DNA motif, we 
may also apply the techniques of quantitative genetics. 
Measures of population subdivision related to F statis- 
tics (Slatkin 1995; Michalakis and Excoffier 1996; 
Rousset 1996), distances between populations using the 
squared difference between the mean population values 
and variances (Goldstein et al. 1995a, 1995b), and high- 
er order statistics (Zhivotovsky and Feldman 1995; 
Goldstein et al. 1996) have all been used for the study 
of microsatellite polymorphisms. 

In most studies, the evolutionary dynamics under ran- 
dom drift and mutation have been investigated assuming 
no constraints on allele size. Although there is still very 
little known about the precise relationship between allele 
size and the rate of mutation, it seems reasonable that 
there are constraints that restrict microsatellite variation 
to bounded intervals (Bowcock et al. 1994; Goldstein et 
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al. 1995a; Nauta and Weissing 1996; Feldman et al. 
1997). One such constraint may be mutational bias such 
that alleles of large size mutate preferentially to alleles 
of smaller size, and vice versa for alleles of small size. 
Another possible constraint is selection acting against 
multiple repeats beyond some size threshold. In this pa- 
per we consider constraints in the context of mutation 
bias. 

Garza, Slatkin, and Freimer (1995) proposed a model 
with a bias that increases in proportion with the devia- 
tion from some intermediate size. They used coales- 
cence theory to obtain expressions for the ultimate with- 
in-population variance and the ultimate distance be- 
tween two populations at mutation-drift equilibrium, 
and, using human population data, it was concluded that 
mutation bias is rather small, possibly even less than the 
mutation rate. However, in their application of the Om- 
stein-Uhlenbeck process, a factor l.r,, the mutation rate, 
appears to have been omitted from the formula for the 
mean of the derived normal distribution. It therefore re- 
mains to resolve whether mutation bias has a significant 
effect on evolutionary statistics. The dynamics of with- 
in- and between-population statistics in the presence of 
mutation bias also remain to be explicated. Feldman et 
al. (1997) analyzed a one-step mutation model with no 
bias, but with hard boundaries at two extremal alleles, 
i.e., those with the lowest (a single copy) and highest 
(R copies) repeat numbers. With this model, the within- 
population variance and the expected genetic distance 
between two populations as a function of time since they 
originally bifurcated were computed. In these two stud- 
ies, only statistics of second order were calculated. 
However, statistics of higher order, such as the variance 
of within-population variances and the variance of the 
genetic distances, have been shown to be useful for es- 
timation purposes (Zhivotovsky and Feldman 1995). In 
addition, how population statistics change over time can 
be important if the history of populations under study 
is not long enough for the attainment of equilibrium 
(Zhivotovsky et al. 1994; Goldstein et al. 1996). 

In this paper, we consider linear mutation bias and 
derive expressions for population statistics from which 
estimators for the strength of bias (the regression coef- 
ficient of the mutation bias on allele size) and for the 
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divergence time since two populations split are sug- 
gested. Then, using published data, we show that our 
estimate of the strength of mutation bias is much higher 
than the mutation rate. We also show that the estimated 
divergence time between populations may depend great- 
ly on the strength of mutational bias. Expressions are 
derived for the expected population mean, variance, 
skewness, and kurtosis in repeat number, as well for the 
expected distance between two populations produced as 
a bifurcation from an ancestral population and the vari- 
ance of this distance. 

The Model 
Mutation Scheme 

Consider a randomly mating population with nonov- 
erlapping generations, a constant effective number of 
gametes N, and an autosomal microsatellite locus with 
multiple alleles. We shall use i to refer to alleles with i 
repeats. Each allele may mutate to alleles of different 
sizes, with k, the total mutation rate, assumed to be the 
same for all alleles. For an arbitrary allele i, define the 
bias, bi, as the difference between the mean size t of the 
alleles to which the allele i mutates and the size of this 
allele: 

We show in the appendix that the expected value of 
the mean repeat number r(7) in the population is an ex- 
ponential function of time (in T generations): 

e[r(~)] = r, + (r. - r,)&T. (2) 

The second term approaches zero with increasing time, 
and the ultimate expected number of repeats approaches 
the focal value r,, near which the mutation bias is close 
to zero. The rate of approach to the equilibrium does 
not depend on population size, so the expectation of the 
mean value of repeat numbers is close to its theoretical 
value if the population has been evolving for a suffi- 
ciently long time. 

The dependence of the population variance on time is 
more complicated and is also derived in the appendix. 
Its value at mutation-drift equilibrium is 

p= 2a;Np 
(2 + B)( 1 - 2BNp)’ (3) 

We use approximations that hold for large population 
size (unpublished data) so that in the case of no bias, ? 
becomes cr$t_~N instead of the exact value, u$(N - 1) 
(see Zhivotovsky and Feldman 1995). This is unimpor- 
tant unless the population size is very small. 

(1) Variance of Means bi g i - is 

This bias is positive if the average size of alleles among 
the mutants exceeds the parental allele size; otherwise 
it is negative. Denote by a; the variance in repeat num- 
ber among the mutants of an allele assumed to be in- 
dependent of parental alleles (Slatkin 1995). 

In the absence of any mutation bias, the allele distri- 
bution in the population may wander indefinitely under 
genetic drift (Moran 1975). If mutation bias is the only 
force that constraints the number of repeats, then alleles 
of large size should mutate more often to alleles with a 
smaller number of repeats, and vice versa, in which case 
alleles of some intermediate size might be nearly free 
of mutation bias. Here, we assume that the bias increases 
in absolute value with deviation from an intermediate 
level, r,,,, as a linear function of allele size; bi = B(i - 
r,) with B < 0, a mutation scheme introduced by Garza, 
Slatkin, and Freimer (1995). We call r,,, the focal value 
of the bias. In other words, B is a (negative) regression 
coefficient of mutation bias on the size of parental al- 
leles, and its absolute value can be considered as the 
strength of mutation bias. The results used here are de- 
rived in the appendix using differential equations for the 
dynamics of the population moments of repeat numbers 
under mutation and genetic drift under the assumption 
that the population size is sufficiently large (unpublished 
data). 

Mean and Variance 

The expected number of repeats in a population is the 
average of the means of repeat numbers taken among 
all possible evolutionary trajectories (realizations). Any 
single realization may deviate far from the expected val- 
ue due to random drift. We can calculate the variance 
of means among realizations, Var(r), as a measure of 
this deviation. It is shown in the appendix that, at mu- 
tation-drift equilibrium, 

G(r) = 
P 

2(-@NP 
(4) 

(recall that -B is positive). Likewise, the within-popu- 
lation variance of repeat numbers in a single realization 
deviates from its expected value, p The variance of var- 
iances among realizations is provided in the appendix. 

Genetic Distance 

Consider two independently evolving populations that 
have the same set of parameters (N, p,, B). Goldstein et 
al. (1995b) defined a distance (8~)~ between two pop- 
ulations, A and B, as the squared difference of their 
mean values, rA and r,. At generation 7 since the pop- 
ulations diverged, 

(%)2(T) ’ b-A@) - bd~)12- (5) 

The ultimate value (G)2 to which the expectation of 
(8~)~(7) converges under mutation bias is 

Let r and V, respectively, be the mean and variance 
of repeat numbers calculated over all alleles weighted (%32 = & (6) 
by their frequencies in the population. At mutation-drift 
equilibrium, the expected values of the statistics will be (see appendix). 
marked with a “hat”; for example, P denotes the equi- With the standard assumption that both populations, 
librium mean repeat number and V the equilibrium vari- as well as the ancestral population, are in mutation-drift 
ante. equilibrium, 
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Table 1 
Regression Coefficients of Mutation Bias on Allele Size 

MUTATION RELATIVE VARIATION IN r, (lOOQ%) 
VARIANCE 

af 0 20 50 90 

1.0 ...... -0.0064 -0.0077 -0.0110 -0.0256 
1.5 ...... -0.0096 -0.0116 -0.0165 -0.0385 
2.0 ...... -0.0128 -0.0154 -0.0220 -0.05 13 
4.0 ...... -0.0257 -0.0308 -0.0440 -0.1026 

NoTE.--The regression coefficient is calculated 
observed between-locus variance of the mean repeat 
chimpanzee data (see text). 

as a function of the mutation variance, o$n, and the 
numbers due to variation in focal values, 1 OOQ, based 

the expected distance between the daughter populations 
since their split is an exponential function of time, 

(G)2(1 - ePBI*T). (7) 

The variance of the distance is given in the appendix. 

Results 
Estimator of Mutation Bias 

Using equations (3) and (4) and neglecting B2, we 
suggest the following estimator b of B based on popu- 
lation data with multiple microsatellite loci: 

b=- %tl 
2[Var@) + v’l* (8) 

Here, f is an estimate of the mean repeat number at a 
particular locus, Va.r(f) is the variance of the mean es- 
timates among the loci, and v is the estimate of within- 
locus variances of repeat numbers averaged over loci. 

Using equations (3) and (4), various estimators of mu- 
tation bias are possible. The estimator (8) is derived un- 
der the following assumptions: 

(i) The within-population statistics of repeat numbers 
have already achieved mutation-drift equilibrium. 

(ii) Mutation processes at all loci used in the estimate 
are the same. In particular, the expected values of the 
means, r,, and the regression coefficient B are the same. 

(iii) The means at all the loci evolve independently 
of each other. 

(iv) B is small. 

The validity of these assumptions is discussed later. 
Note, however, that if (ii) is violated, the between-locus 
variance, Var(F), consists of two components: evolution- 
arar variation in the mean repeat number among loci, 
Var(r), and variation in the focal values r,, Var(r,). 
Therefore, b actually estimates 

o: - 
2[Gi(r) + Var(r,) + Q]’ 

(9) 

which is less than B in absolute value. Thus, b gives a 
lower estimate of the numerical value of B when there 
is variation among loci due to differences in their biases. 

The absolute value of b is an increasing function of 
ok and a decreasing function of Var(r,). Therefore, we 
suggest 

percent of 
on human 

the 
and 

b. = - 
1 

2[Var(F) + V] (10) 

as a lower bound (in absolute value) for the estimate of 
B when variation occurs among loci in the extent of 
mutational bias, Var(r,J, and when there is unknown 
variance in the size of new mutations, ai. 

Using the estimator bo, we may calculate the lower 
bound for the strength of mutational bias based on data 
for the eight microsatellite loci in humans and chimpan- 
zees reported by Garza, Slatkin, and Freimer (1995, ta- 
ble 1). The within-locus variance averaged over the loci 
and the species was 13.02 and the between-locus vari- 
ance (unbiased estimate) in the mean values averaged 
over the species (with equal weights) was 64.82. Thus, 
the lower estimate, b. turns out to be -0.0064. 
Therefore, the strength of mutation bias is at least 10 
times the average mutation rate at autosomal loci, esti- 
mated by Weber and Wong ( 1993) to be 5.6 X 10e4. 

Actually, the lower estimate given by equation (10) 
would be improved if we knew a; and Var(r,J. Let Q 
be the fraction of the observed between-locus variance 
d=to variation in focal values, r,,,, i.e. Q = Var(r,J 
[Var(r) + Var(r,J]; recall that in applications, the de- 
nominator is estimated as Var(F). Then the following 
statistic, bl, would give an improved estimate of B: 

bl = - dl 
2[(1 - Q)Var(r) + v] ’ (11) 

Using loci with dinucleotide repeats in humans, Di 
Rienzo et al. (1994) have estimated a$ to be between 4 
and 20. Such large values of the mutation variance are 
possible only if large changes in the number of repeats 
occur among new mutations. For example, if 90% of 
new mutations are one step and 10% are two steps, then 
a; is about 1.3. However, with 90% for one-step mu- 
tations and 2% each for two- to six-step mutations, a$ 
would become 2.7. Di Rienzo et al. (1994) have shown 
that multistep mutations significantly influence the di- 
vergence rate and within-population variation. Zhivotov- 
sky and Feldman (1995) have shown that higher order 
statistics are even more affected by ai. The same is true 
for the estimate of mutation bias. 

Table 1 gives the estimates of B for the above-men- 
tioned data from Garza, Slatkin, and Freimer (1995) us- 
ing different values of the mutation variance and the 
relative variation in the focal value. Clearly, the esti- 
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mated bias becomes stronger as the variation ai among 
new mutations and/or the variation in focal values rm 
increases (see eq. 9). 

Estimator of Divergence Time 

From equation (7), we suggest the following estima- 
tor, T, of the divergence time since the populations bi- 
furcated: 

(12) 

where (8~)~ is the esimated distance between the two 
populations. We ma use this esimator unless the ex- 
pected distance (Sk )2 exceeds the observed distance 
(8~)~. Using equations (6) and (3) and replacing Q with 
its estimate, v, we have 

T=L BP + B) 
2m 1 a; + B(2 + B)v ’ 

Since T is a decreasing function of ai, the estimator 

TO = w + B) 1 

2BF 1 1 + B(2 + B)v ’ (14) 
obtained by substituting ok = 1 from the one-step mu- 
tation model, gives an upper bound of the divergence 
time. Note that both the true (eq. 13) and upper (eq. 14) 
estimates increase with increasing bias strength as mea- 
sured by the numerical value of B. 

Using the upper bound of divergence time given by 
equation (14), the strength of mutational bias is actually 
larger than the lower estimate, 0.0064. Indeed, from the 
same data of Garza, Slatkin, and Freimer (1995, table 
l), we calculate the distance, (8p,)2, between humans 
and chimpanzees as the squared difference of their 
means averaged over the loci, which turns out to be 
50.15. Using the above estimate of the within-locus vari- 
ance, v (13.02), a mutation rate at autosomal microsa- 
tellite loci of 5.6 X 10e4 (Weber and Wong 1993), and 
a generation time of 20 years (used in Garza, Slatkin, 
and Freimer 1995), and taking the lower bound for B 
(-0.0064), we obtain the upper estimate TO of the di- 
vergence time between chimpanzees and humans as 1.35 
X lo6 years, which is about three or four times lower 
than most estimates of their separation time. However, 
as seen from table 1, the value 0.0064 underestimates 
bias, and larger numerical values of B could be closer 
to the truth. For example, if B is -0.01, then TO =r 2 X 
106, while if B is -0.013, then TO = 5.1 X 106, which 
is much closer to the commonly accepted time of di- 
vergence between humans and chimpanzees (see, e.g., 
Horai et al. 1995). 

Therefore, our calculations again suggest that muta- 
tional bias may be an important factor in evolution at 
microsatellite loci. Our results show that the linear bias 
could be in the range of B values from -0.0064 to 
-0.013 for humans. Of course, this argument assumes 
that selection is weaker than mutation bias, which seems 
reasonable in this case, since these data represent only 

Table 2 
Estimates of Divergence Time Between African and Non- 
African Human Populations 

REGRESSION 
OF MUTATION 

BIAS ON 
MUTATION VARIANCE, ai 

ALLELE SIZE, B 1.0 1.5 2.0 4.0 

-0.0064 . . . . . . 183 115 84 40 
-0.0100 . . . . . . 202 122 88 41 

-0.0200 . . . . . . 288 149 100 44 

-0.0500 . . . . * . . 444 178 53 

NOTL-T estimates of divergence time are given in thousands of years as 
a function of B and the variance in repeat number among new mutations, of, 
(see text); * indicates that the expected equilibrium distance is smaller than the 
observed distance. 

dinucleotide repeats, on which selection is generally as- 
sumed to be most weak. 

We apply our findings to estimate the divergence time 
between African and non-African human populations. 
Goldstein et al. (1995b) have estimated the distance be- 
tween African and non-African modern human popula- 
tions to be 6.47. Considering, as they did, a generation 
time for humans of 27 years, a one-step mutation pro- 
cess, within-population variance at the microsatellite 
loci studied of 10.1 (Bowcock et al. 1994), and B = 
-0.0064, the time of split between African and non- 
African populations is estimated to be 183,000 years. 
That our estimate is larger than that of Goldstein et al. 
(1995b), 156,000 years, is due to our use of the model 
with biased mutations; the earlier model had no muta- 
tional constraints. 

Both estimates of divergence time are based on the 
assumption that B = -0.0064 and there is one-step mu- 
tation. However, as follows from the above discussion, 
greater numerical values of B and ai might be more 
realistic. For example, with B = -0.013, which turned 
out to fit the genetic distance between humans and chim- 
panzees better than B = -0.0064 (see above), and hold- 
ing the other parameters the same, the divergence time 
between African and non-African human populations 
would be even greater, about 222,000 years. The effect 
of mutation variation, ai, on T is opposite that of the 
strength of mutation bias: the larger the numerical value 
of B, the lower the estimated divergence time. Table 2 
records estimates from equation (13) of the time of split 
between these populations for different values of u$ and 
B. The estimates are clearly sensitive to both strength 
of bias and mutation variance. 

Discussion 

We have attempted to develop an analytical approach 
to the analysis of population dynamics of microsatellite 
variability under random drift and mutation with con- 
straints on the number of repeats caused by mutation 
bias. The bias we study is defined as the difference be- 
tween the mean repeat number among mutants of a par- 
ticular “parental” allele and the size of this allele. In 
general, bias is a function of the allele size, and, in order 
for the allele size to be constrained, the bias should be 
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positive for alleles with a small number of repeats and 
negative for alleles with a large repeat number. In other 
words, the slope of the bias function, i.e., the regression 
coefficient, B, of the bias on the allele size, must be 
negative. 

The most important indication of this study is that 
mutation bias could have an important effect on both 
within-population variability and phylogenetic proper- 
ties inferred from microsatellite data. We have suggested 
the lower estimator, bO, of B (see eq. 10). Using data for 
humans and chimpanzees, B is estimated to be between 
-0.0064 and -0.013. This estimator is suggested under 
assumptions (i)-(iv). Assumption (ii) was discussed 
above, while among the other assumptions, the most 
questionable is that the within-population variation has 
achieved mutation-drift equilibrium. If a population has 
maintained a constant size during its history, we may 
assume that there was enough time to attain the equilib- 
rium. However, if the population size has changed over 
time, the within-population variance, V, may be far from 
its equilibrium value. Fortunately, the ultimate value of 
Ku-(r) is almost independent of population size (see eq. 
23). Moreover, as follows from equation (4), in which 
the product 2BNk is expected to be smaller than one, 
the value of Var(r) may be much greater than V. Indeed, 
in the above human and chimpanzee data, we found the 
between- and within-locus variances to be 64.82 and 
13.02, respectively. Thus, we expect that the estimators 
should depend little on population size. Zhivotovsky and 
Feldman (1995) have shown that assumption (iii) holds 
for the case of no bias and thus should be valid for 
sufficiently small B. Assumption (iv), that B is small 
enough to neglect B2, seems validated. Therefore, b 
seems to be a reliable estimator of the strength of mu- 
tational bias and bO a lower bound of it, unless selection 
is important. 

Mutation bias can significantly increase the estimated 
divergence time compared to estimates obtained assum- 
ing no bias. Using the same data as Goldstein et al. 
(199%), whose estimate of the split time between Af- 
rican and non-African human populations was 156,000 
years (assuming one-step mutations), and taking the bias 
regression coefficient, B, to be between -0.0064 and 
-0.013, our estimate lies between 183,000 and 222,000 
years. As follows from equation (13), multiple-step mu- 
tations give smaller estimates of the divergence time 
which might be more appropriate. 

Mutation bias may be difficult to assess in mutation 
experiments, since it is not expected to be numerically 
large. Obviously, in order to detect mutation bias, pa- 
rental alleles of large (or small) size relative to the ex- 
pected mean repeat number (i.e., to the focal value T,J 
are more useful than those close to r,. However, as table 
3 shows, even for such extreme allele sizes, the devia- 
tion of the statistics from their expectations may be dif- 
ficult to detect, unless the sample size of mutations is 
sufficiently large or mutation bias is much stronger than 
the lower estimate used in table 3. 

In conclusion, it should be noted that selection could 
also restrict variation at microsatellite loci, at least in 
the case of trinucleotides. For example, large numbers 

Table 3 
Mean Sizes and Proportions among Mutations Arising 
from Alleles of Large Size 

SIZE OF PARENTAL ALLELE 

STATISTIC 5 15 25 

Mean mutation size . . . . . . . . . . 4.97 14.90 24.84 
Proportion of - 1 mutations . . . 0.516 0.548 0.580 
Proportion of + 1 mutations . . . 0.484 0.452 0.420 

NOTE.-Allele sizes are given in deviations from the focal value (the ex- 
pected mean repeat number), r,,, (see text); the mean values and the proportions 
among mutations arising from a parental allele are derived assuming the one- 
step mutation model with B = -0.0064. Assuming no mutational bias, the null 
hypothesis for the first statistic is that the expected mean size of new mutations 
is equal to the size of the parental allele; that for the second statistic is that the 
proportion between mutations with size reduced and increased by 1 is 0.5:0.5, 
respectively. 

of CAG repeats in gene IT15 are related to Huntington’s 
chorea (Huntington’s Disease Collaborative Research 
Group 1993) and would be therefore be selected against. 
It would be interesting to compare results obtained un- 
der the model of selection with those that assume con- 
strained mutation. 
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APPENDIX 

Additional Notation 

Introduce the skewness, s,, and kurtosis, km, in repeat 
numbers among mutations arising from the allele i as 
the corresponding central moments. Also note that in- 
stead of the actual number of repeats, i, it is possible to 
use i’ = i - r,. This transformation has no effect on 
the subsequent results, and in order to make the algebra 
simpler, we set r, to zero, giving a bias function bi = 
-pi, where, for convenience, we set p = -B. 

Let E denote the expectation taken over replicates 
with respect to the initial generation. As usual in random 
drift models, the discrete time measured in generations, 
7, can be replaced by continuous time scaled by the 
population size; t = T/N. Hereafter, we assume that the 
mutation rate, p,, is the same for all alleles, and the sym- 
bol v is used to denote Np,. 

We shall study the mean, r, the variance, V, the skew- 
ness, S, and the kurtosis, K, in repeat number observed 
in the population. All of these have been analyzed for 
the model without bias or range constraints (Zhivotov- 
sky and Feldman 1995). These population statistics can 
be expressed via the noncentral moments in repeat num- 
bers of up to fourth order, which, in turn, satisfy a linear 
system of differential equations 

;M(t) = -AM(t) + b, 

derived under standard assumptions usually used for dif- 
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fusion approximations (Karlin and Taylor 1981): N is 
large enough that terms of order l/N2 may be neglected, 
and the mutation rates are 0( l/N) (unpublished data); 
here, M(t) is the column vector of the noncentral mo- 
ments at time t, A is a matrix whose elements are func- 
tions of p, v, ai, k,, etc. (triangular in this case), and 
b is a column vector of constants. In particular, 

$m = -PvW(O, (15) 

$4*(t) = (-2pv + pg42(t) + vu;, (16) 

and 

-$fllO = &(O - (1 + 2vp)M,,(t). (17) 

The population statistics are expressed in terms of 
these moments: 

+-] = M1, c(V) = M2 - Wl, (18) 

Var{ r} = Ml1 -Mf, (19) 

%%{A] = %,I1 + MB,11 - 2%,,&,,. (20) 

Results 
The Mean 

It follows directly from equation (15) that the ex- 
pected value of the mean repeat number r(t) = I& Q+(t) 
at time t > 0 is 

&{r(t} = roe- w + p(1 - e-W) , (21) 

where P is the value of E{ r} at mutation-drift equilib- 
rium. From equations (18) and (15), i = r, = 0. 

Within-Population Variance 

Solve equations ( 15) and ( 17), and neglect terms in 
p with power 2 and higher to obtain 

c{ V(t)] Z Q + (V, - @-(‘+2pv)r 

where V, is the variance of repeat numbers at time 0, 
and v is the expected variance in the population at mu- 
tation-drift equilibrium (eq. 3). 

Variance of Means 

Since the expectation of the within-population vari- 
ance V(t) is known (eq. 22), an expression for the be- 
tween-realization variance of means can be obtained by 
integrating this linear scalar equation, given initial mean 
val. and variance. 

Var{ r}, the variance of the means among replicates 
at mutation-drift equilibrium is obtained from equation 
(19) to be equation (4). Using equation (3), 

dl 
S{r) = p(2 - P)(l + 2pvj 

(23) 

Higher Order Statistics 
For higher order statistics, the corresponding differ- 

ential equations cannot actually be solved directly. We 
have used two approaches to obtain approximate solu- 
tions of the complete system. First, note that its solution 
may be writen using an exponential matrix, 

M(t) = e-*‘MO + (I - e-At)ti, 

where I is the identity matrix, MO is the vector of mo- 
ments at time t = 0, and M is the vector of moments 
at mutation-drift equilibrium. The equilibrium values 
are expressed in terms of the inverse of matrix A as 

M = A-lb. 

To find a . solution as function of t, 
exponent in the previous expression 

expand the matrix 

eeAr = I - At + -&A2t2 - $A3t3 + . . . . (24) 
. 

As a first approach, we substitute this expansion into the 
equation for M and then calculate the solution for the 
early generations of the process. The precision will de- 
pend on the number of terms retained in the expansion. 

A second approach is to represent a particular solution 
using the matrix of fundamental solutions based on the 
eigenvalues and eigenvectors of the matrix A (e.g., 
Franklin 1968). This allows us to find a particular so- 
lution for arbitrary time. We have calculated the fun- 
damental matrix, but some of the expressions are too 
cumbersome to be simplified, so these are omitted. 
Muthematica (Wolfram 199 1) has been used to calculate 
the solutions for each of these approaches. 

Variance of Variances 
Now we consider the between-replicate variance of 

within-population variances, V, denoted as Var{ V}. Us- 
ing the first approach above, approximate solutions for 
the early generations can be found. If ro, Vo, and K. 
denote, respectively, the mean, variance, and kurtosis in 
a population at the initial time t = 0, then the variance 
of variances in the population at time t is 

Var1 V(t) ] 

= t(K, - v;> 

+ t2[kv - (7 + ~@.J)K, 

+ 4a2vVo(l - 3p) + (11 + 8pv)V; 

- 4ps,vr() + 0@2)]/2 + cqt”). 

An approximation for this variance of variances at 
mutation-drift equilibrium is given by 

Gr { V} 

U$V 44a2 v3 
2a;v2 - - + - 

7k,v2 
- 

2 srn + 9 

+ NP2), 
where P is given by equation (3). 

(25) 
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Skewness and Kurtosis 

The following are approximate solutions for the 
skewness and kurtosis in the early generations, with er- 
ror of order t2: 

SW 

= s, + t[s,v - 3&)(1 + pv) - 3pva2ro + 0@2)] 

+ W2), 

K(t) 

= K0 + t[k,v - 4&,(1 + pv) + 6V; 

+ 6a;v(l - 2p)(V, - 4@s,vr0 + o(p2)] 

+ W2), 

Their ultimate values at mutation-drift equilibrium are: 

s = Y(l - pv) + 0@2), 

+ 0(P2). 
If there is no bias (i.e., p = 0), then these expressions, 
as well as equation (25), coincide with those derived 
previously (Zhivotovsky and Feldman 1995, eq. 8). 

Genetic Distance 
Consider two independently evolving populations that 

have the same set of parameters (N, p,, j3, etc.) and that 
were derived from an initial population whose repeat 
numbers had mean r. and variance Vo. The symbol A is 
used in the appendix, instead of (8~)~, for simplicity. 
Solving equations (15) and (17) directly, substituting the 
solution into equation (20), averaging over ancestral 
populations assuming mutation-drift equilibrium, and 
using the equilibrium expected values of r,, V. and r$, 
namely 0, V, and &, 1 = A/2, respectively, we obtain the 
expectation given by equation (7), with the expected dis- 
tance converging to the limit given in equation (6). 

In the early generations of the independent divergence 
of two populations, the variance of the distance between 
them increases as twice the square of the distance. This 
corresponds to the result that the distance follows a x2 
distribution, claimed for the case of no bias by Zhivo- 
tovsky and Feldman (1995, result 3), who considered 
the case where the within-population variance was V at 
the time of bifurcation (t = 0) and made the tacit as- 
sumption that the variance did not change over time. 
This assumption is not strictly correct and is 
approximately valid only if t is not large (i.e., early in 
the divergence process). In fact, the variance changes 
with time under random drift and this causes the vari- 
ance of the distance to deviate from the x2 prediction 
when the terms of order t3 become large. Indeed, aver- 
aging over ancestral populations assumed to be at equi- 
librium, we obtain 

0 
3 

var{A(~)} = 2(~{A(7)})~ + 2(3R - 7p) ; 

74 
+q. ( ) 

where R and v = %r( V) + p follow from the pre- 
vious sections. 

As time increases, the variance of the distance ap- 
proaches its mutation-drift equilibrium: 

G(A) _zbr[l +$+ P2(J+v(l;z)+~)], 

where z = (k/u:) - 3 is the normalized kurtosis of the 
mutation distribution. If p = 0, that is, there is no mu- 
tation bias, the ultimate variance of the distance again 
becomes twice the squared distance, as for a x2 distri- 
bution. 

The variance of the distance for arbitrary time t = 
T/N can be calculated from the variance of variances 
averaged over ancestral populations assumed to be at 
mutation-drift equilibrium: 

Var{A(t)] 

= fi(1 - e -2Pvr) + f2(l - e-(i+4Pv-W2P) 

+ f3(l - pI3r(4-3~+pz)) 

+ f4(1 - e-f(3+4PV)) + f5(l - e-2W(2-l3)) 

+ f6(1 - e- 7J(l+%v)) + f7( 1 - e_Wvt) 

+ fs(l - ePPvr(4PB)) + fs(l - e-r(1+4Bv)), 

with the following approximations for the f coefficients: 

fl = 4a;/P2 + 4u;(l - 4v)lp + 30;(1 - 4v + 16~~) 

+ P2u$(3 - 12v + 32v2 - 192v”)/3, 

f2 = 8v(3u; - k + 5u;v)/3 

+ p4v2(- 11 la; + 32k - 256u$v)/9, 

f3 = 2( -3~; + k)lf3 + (3~; - k)( -3 + 8v) 

+ f3( -3~; + k)(5 - 24v + 64v2)/2, 

f4 = -(8u;v2)/3 + P4v2(-3utf, + 2k + 48u;v)/9, 

.fs = -uf)z/p2 + (a; - k + 8u;v)l(2P) 

+ (6~; -3k - 8u;v + 8kv - 64u;v2)/4 

+ P(llu$ - 5k - 48u;v + 24kv + 128~:~~ 

- 64kv2 + 512u;v”)/8, 

f6 = -v(k + 8utZ,v)/3 

+ @~(-9u: + 12u$v + 14kv + 184u;v2)/9, 

f7 = 3u;/p2 + (k - 12ufl,v)lP 

+ (-27~; + 18k + 96u;v - 72kv + 464u;v2)/12 

+ p(-810; + 45k + 396~;~ - 216kv 

- 2,160ufl,v2 + 976kv2 - 4,416u;v3)/36, 
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.fs = -4a;/p + 2(a ; - k + 8a;v)lP 

+ (lSa$ - 9k - 48a;v + 32kv - 160u$v2)/3 

+ P(99u; - 45k - 432~;~ + 216kv + 1,824~;~~ 

- 832kv2 + 3,200u;v3)/18, 

.f9 = 4v(-6u; + k)/3 

+ P4v(-9u4 + 96~:~ - 18kv + 8u;v2)/9. 
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