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Currently available methods for model selection used in phylogenetic analysis are based on an initial fixed-tree topology.
Once a model is picked based on this topology, a rigorous search of the tree space is run under that model to find the
maximum-likelihood estimate of the tree (topology and branch lengths) and the maximum-likelihood estimates of the
model parameters. In this paper, we propose two extensions to the decision-theoretic (DT) approach that relax the fixed-
topology restriction. We also relax the fixed-topology restriction for the Bayesian information criterion (BIC) and the
Akaike information criterion (AIC) methods. We compare the performance of the different methods (the relaxed,
restricted, and the likelihood-ratio test [LRT]) using simulated data. This comparison is done by evaluating the relative
complexity of the models resulting from each method and by comparing the performance of the chosen models in
estimating the true tree. We also compare the methods relative to one another by measuring the closeness of the estimated
trees corresponding to the different chosen models under these methods. We show that varying the topology does not
have a major impact on model choice. We also show that the outcome of the two proposed extensions is identical and is
comparable to that of the BIC, Extended-BIC, and DT. Hence, using the simpler methods in choosing a model for
analyzing the data is more computationally feasible, with results comparable to the more computationally intensive
methods. Another outcome of this study is that earlier conclusions about the DT approach are reinforced. That is, LRT,
Extended-AIC, and AIC result in more complicated models that do not contribute to the performance of the phylogenetic
inference, yet cause a significant increase in the time required for data analysis.

Introduction

Because molecular phylogenetics has come to be
dominated by estimation methods that model explicitly
the process of nucleotide substitution, greater attention is
now being paid to the manner in which models are selected.
Because of the computational intensity of model-based
methods, one desirable property of a model-selection
method is the ability to choose a model before performing
an extensive phylogenetic analysis (Minin et al. 2003).
Currently, the hierarchical likelihood-ratio test (LRT) ap-
proach and the Akaike information criterion (AIC), im-
plemented in ModelTest (Posada and Carandall 1998), and
the decision-theoretic (DT) approach and the Bayesian
information criterion (BIC), implemented in DT-ModSel,
follow this philosophy. Under these methods, the model is
chosen based on an initial fixed-tree topology that is
generated using a fast, approximate tree-building approach
such as neighbor-joining or parsimony (e.g., Frati et al.
1997; Huelsenbeck and Crandall 1997; Sullivan, Markert,
and Kilpatrick 1997). A rigorous search of the tree space is
then run under this chosen model to find the maximum-
likelihood estimate of the tree (topology and branch lengths)
and the maximum-likelihood estimates of the model
parameters. Posada and Crandall (2001) argue, based on
their simulations, that, unless the initial tree is introduced at
random, the initial topology will not have a major impact on
model selection using LRT or AIC. This is true because there
is negligible variation in parameter estimates across
topologies that maintain well-supported nodes (Sullivan,

Holsinger, and Simon 1996), and the order of models in
terms of likelihood score rarely varies across trees that are
close to optimal (e.g., Sullivan, Markert, and Kilpatrick
1997). However the extension of this conclusion to the
decision theory method introduced by Minin et al. (2003),
and implemented in DT-ModSel, is not clear, because that
approach uses the Euclidian distance between branch-length
vectors estimated under alternative models in erecting the
risk function (see below).

In this paper, we address the issue of using an initial
topology generated using neighbor-joining and holding
it constant across models in model selection using DT-
ModSel. We do this by developing two extensions to the
DT approach that relax the fixed topology restriction. The
aim of these extensions is to maintain a parsimonious
selection in choosing the simplest models yielding the best
performance, while accounting for variability across topo-
logies into the selection criterion. As before (Minin et al.
2003), performance is measured by the loss of accuracy in
branch lengths estimated under the alternative available
models. These extensions violate the condition that a model
be selected before extensive analyses by requiring a
rigorous search of the tree space to find the optimal trees
under each of the known models. We also relax the fixed
initial-tree topology restriction for the BIC and the AIC
methods.

Our purpose is to evaluate the impact of relaxing the
reliance on the initial tree on model selection. To do so, we
thoroughly evaluate the performance of the proposed
extensions by comparing them to the other available
methods, such as LRT, AIC, DT, and BIC. Model com-
plexity and distance from the true tree are two main criteria
used for this comparison. We, also, contrast the relative
performance of the different methods to one another by
measuring the distance between the resulting trees under
each of them. These methods are then implemented on an
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actual data set to compare the resulting selected models
and the feasibility of using the extended methods in terms
of the time expense.

The Extended Decision-Theoretic Approach

Minin et al. (2003) introduced a DT approach for
selecting models for phylogentic estimation. The method
weights the choice of a model (Mi) by its performance
in estimating the branch lengths of a phylogenetic tree,
in addition to its fit. Assuming that one of the available
models is correct, using another model to estimate the
branch lengths will result in error (loss) that can be
measured by the difference between the branch lengths
estimated under each of these models. The DT method
chooses the model that has the minimum expected loss
(posterior risk), which is calculated for each model Mi by
multiplying the loss resulting from choosing model Mi,
when another model, Mj, is ‘‘true,’’ by the posterior
probability of the ‘‘true’’ model, Mj, and then summing
over all j models. We use ‘‘true’’ here in a loose sense
to mean the model that provides the best approximation
of reality (Burnham and Anderson 2002). Equation (1)
represents the expected loss (posterior risk) of model Mi:

Ri ¼
Xm
j¼1

kB̂i � B̂jkPðMj j DÞ ð1Þ

Ri is the risk; kB̂i 2 B̂jk is the loss function: the Euclidian
distance between the estimated branch-length vector B̂i
using model Mi and the estimated branch-length vector B̂j
using model Mj. Each of these branch-length vectors has
a length of 2N–3 corresponding to the number of estimated
branches in an unrooted tree (N is the number of taxa).
P(Mj jD) is the posterior probability of model Mj given the
data. The posterior probabilities of the different models are
used as a weighting measure to give the more likely
models (i.e., those with better fit) higher weights than
those that are less likely.

Applying Bayes’ theorem and assuming flat priors on
the models (P(Mi) ¼ 1/m), the posterior probability of the
model given the data becomes

PðMi j DÞ ¼
PðD j MiÞPm
j¼1 PðD j MjÞ

ð2Þ

Implementing the approximation by Raftery (1995):

ln½PðD j MiÞ�’ ln½PðD j Mi; ĥi; B̂iÞ�

� di þ 2N � 3

2
ln½n� ¼ �BICi

2
ð3Þ

where ĥi is the vector of the maximum-likelihood estimates
of the parameter vector, ui¼ (h1, h2, . . ., hdi ), of model Mi,
and di is the number of parameters associated with that
model. Equation (3) corrects a typographical error in the
BIC equation presented in Minin et al. (2003); the branch
lengths are parameters that are also estimated. These
parameters contribute to the BIC, although their contribu-
tion results in a constant shift that does not affect the
choice based on the BIC and that cancel out when
calculating the posterior distribution of the models in the

DT approach (as can be seen from equations (4) and (5)
below). Substituting equation (3) in equation (2) we have

PðMi j DÞ’
e�BICi=2

Pm
j¼1 e

�BICj=2
¼ 1Pm

j¼1 e
ðBICi�BICjÞ=2

¼ 1
Pm

j¼1 e
2 ln½PðD jMj ;ĥj ;B̂jÞ��ln½PðD jMj ; ĥj ; B̂iÞ�f gþln½n�ðdi�djÞð Þ=2

ð4Þ

Substituting equation (4) in equation (1) results in Minin
et al.’s (2003) risk function (adjusted for computational
purposes):

Ri ¼
Xm
k¼1

kB̂i � B̂kkPm
j¼1 e

ðBICk�BICjÞ=2

¼
Xm
k¼1

kB̂i � B̂kkPm
j¼1 e

2 ln½PðD jMj ;ĥk ;B̂jÞ��ln½PðD jMk ;ĥk ;B̂kÞ�f gþln½n�ðdk�djÞð Þ=2

ð5Þ

In calculating this risk function, the method assumes
a fixed topology. We relax this assumption by including
the topology si in the parameter vector ui¼ (h1, . . ., hdi , si).
The added topology represents one more (complex)
parameter to be estimated. The approximation presented
in equation (3) changes to

ln½PðD j MiÞ�’ ln PðD j Mi; ĥi; B̂iÞ
h i

� di þ 2N � 2

2
ln½n� ¼ �BICi

2
ð6Þ

Substituting equation (6) in equation (2) results in equation (7):

PðMi j DÞ

’
1

Pm
j¼1 e

2 ln½PðD jMj ;ĥj ;B̂jÞ��ln½PðD jMi ;ĥi ;B̂iÞ�f gþln½n�ðdi�djÞð Þ=2
ð7Þ

Note that the difference between equations (4) and (7) is
the likelihood function; the added parameter will not affect
the posterior probabilities.

The loss function is also changed to accommodate the
addition of the topology to the parameter vector. We have
evaluated two functions for this purpose. The first function
fixes the tree tied to the ‘‘true’’ model and uses it to
calculate the branch-length vectors for model Mi (that we
want to find the risk for) and the ‘‘true’’ model, Mj. The
Euclidean distance between these two vectors is the loss
and is presented in equation (8):

ðkB̂i � B̂jk j ŝiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2N�3

i¼1

ðB̂il � B̂jlÞ2 j ŝj
� �

vuut ð8Þ

The risk function associated with this loss function is

Ri ¼
Xm
k¼1

ðkB̂i � B̂kk j ŝkÞPm
j¼1 e

ðBICk�BICjÞ=2
ð9Þ

The second function does not fix the tree when
calculating the loss. Hence, each of the models uses its
own optimal tree and branch-length vector to evaluate the
loss. The loss function in this case is
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kB̂i � B̂jk

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
l2Cij

ðB̂il � B̂jlÞ2 þ
X
l =2Cij

ðB̂ilÞ2 þ
X
l =2Cij

ðB̂jlÞ2

vuut ð10Þ

where Cij is the set of branch lengths that belong to both of
the optimum topologies resulting under models Mi and Mj.
The risk function can be written as in equation (5).

The extensions of the BIC and the AIC approaches
are straightforward and are presented in equations (11) and
(12):

BICi ¼ �2 ln½PðD j Mi; ĥiÞ� þ ðdi þ 2N � 2Þ ln½n� ð11Þ

AICi ¼ �2 ln½PðD j Mi; ĥiÞ� þ 2ðdi þ 2N � 2Þ ð12Þ
with ĥi ¼ (ĥ1, . . ., ĥdi , ŝi); that is, including the topology.
Again, the only significant change in the BIC and AIC is
caused by the change in the approximate likelihood; the
change in the number of parameters will result in a constant
shift, affecting all models and, hence, canceling out.

Methods
Choosing the Best Model Using the New Extensions

In our original description of the DT approach (Minin
et al. 2003), we explored conditions under which differ-
ent model-selection methods chose different models. In
general, we found that different approaches select different
models when the evolutionary process is complex (i.e.,
simple models are very poor) and when divergences are
relatively deep. Therefore, here, we revisit this condition
where different approaches to model selection result in
different choices (i.e., where model-selection approach
makes a difference). Thus, we utilized simulated data
associated with the fourth data set used by Minin et al.
(2003). This is a rodent cyt b data set that includes
22 species of sigmodontine rodents (T. Rinehardt et al.,
personal communication) downloaded from GenBank (ac-
cession numbers AY041185 to AY041206), and it repre-
sents a very difficult phylogenetic problem. The substitution
process appears to be quite complex in this data set, and it
appears that the phylogeny has very short internal branches,
with long, but varying terminal branches. As described in
Minin et al. (2003), GTR1I1� was used to obtain the
optimum ML tree. The data were then parsed into three
different data sets, each associated with one of the codon
positions. The parameters of the GTR1I1� model and the
branch lengths of the tree were estimated again utilizing
these three data sets and using the tree topology introduced
in the previous step. Hence, the resulting three trees had the
same topology but different branch lengths. Simulated data
were generated using Seq-Gen version 1.2.5 (Rambaut and
Grassly 1997) based on these three combinations of model
and tree. Each run of the simulation gave rise to three data
sets, each corresponding to one codon position. These data
sets were combined to form one data set. One thousand
combined data sets resulted from this simulation. Accord-
ingly, replicate data sets were simulated with a more
complex model (30 parameters in the substitution model)
than any of those commonly used in phylogentic inference
(where the maximum number of parameters is 10).

Implementing the above extensions to the DT ap-
proach (loss equations (8) and (10)) involved finding an
optimal tree (topology and branch lengths) under each of
the 56 substitution models examined by current automated
model-selection approaches (e.g., Posada and Crandall
2001) for each replicate data set. To accommodate this, we
conducted simultaneous optimizations to search tree space
under each of these 56 models as follows. First, for each
model, we introduced an initial tree using neighbor-joining
with LogDet distances (Lake 1994; Felsenstein 2004).
Based on these initial trees and the relevant models, we
conducted a heuristic search using a maximum-likelihood
criterion and a tree bisection-reconnection (TBR) search
strategy. This search resulted in 56 optimal trees and 56
likelihood scores, each associated with one of the models
evaluated. To accommodate the loss function of equation
(8) we fixed the best topologies ensuing under each of the
models and evaluated the score and the branch lengths of
these optimal topologies under each of the other models.
This caused us to consider 56 trees per model. So, for each
data set, we had 56356 (3,136) trees and scores. These
3,136,000 searches were conducted using PAUP* (Swof-
ford 2001), on a 64-node Beowulf cluster supported by
University of Idaho’s Initiative in Bioinformatics and
Evolutionary Studies (IBEST).

The posterior probabilities of the models, P(Mj jD)’s
(equation (2)), were calculated using the scores of the
optimal trees under each model for each data set as shown in
equation (7). Calculating the risk for the first extension
involved traversing a matrix of distances. Each row of this
matrix represents the loss associated with a certain model,
whereas each column is associated with a fixed tree.
Accordingly, summing the rows of such a matrix, after
multiplying each cell by the posterior probability of a model
corresponding to a tree, provides the desired posterior risk.

For the second loss function, the process was some-
what less complicated. A matrix was also formed that
contained distances between the branch-length vectors;
this matrix is symmetric. Summing the rows or the
columns after multiplication by the posterior probability
will result in the same risk, and this second extension
requires less computational effort to accommodate.

The last step was to apply the introduced extensions to
the actual data under study. The purpose was to measure the
feasibility of implementing such extensions evaluated by the
time required for implementation and the resulting chosen
model. To do so, we used PAUP* to conduct a heuristic
search under the likelihood criterion utilizing a newer
Beowulf cluster also supported by IBEST composed of
200 nodes with 2.4 GHz CPUs. The initial trees were built by
stepwise addition, with 10 random addition sequences, to
make the search less susceptible to local optima. Branch
swapping was then done using TBR as above.

Comparing the Different Methods

We compared our new extensions to the DT approach
of Minin et al. (2003), as well as to the results of the LRT
and the AIC implemented in ModelTest (each based on
a single topology). We also compared our results to the
results of the BIC, Extended-AIC, and Extended-BIC
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implemented in our own software. Further, taking advan-
tage of having estimated optimal trees under each of the
models for each of the simulated data, we compared the
results of each of these methods to one another.

Two criteria were adopted for these comparisons.
First, the chosen models under each of the methods were
contrasted with one another. In particular, we calculated the
percentage of times we obtained the same model for each
of the replicates under each of the methods. The standard
error was calculated based on each of these percent matches
to give a measure of the simulation error and to highlight
the significance in the differences in these methods. We
used the distribution of the difference in the number of
parameters between the mismatched models to measure the
difference in the complexity between them. To test the
significance of these differences, we define a ‘‘P value’’ to
be a measure of the probability of having a parameter
difference of zero or more in the mismatched models. In
other words, we use the distribution of the differences of the
parameters, conditional on having a mismatch for any
replicate to find the probability of choosing models with
similar or higher complexity when comparing any two of
the methods understudy. A very small or very large P value
indicates that zero is in the tail of the distribution of the
differences; hence, there would be a small probability that
the complexity of the chosen models is similar. We estimate
this probability using the distribution of the differences of
the mismatched model parameters.

The second criterion was aimed at comparing the
optimal trees under the chosen models using each method.
We used symmetric difference distances (Felsenstein
2004; Robinson and Foulds 1981) to compare differences
in topology and square root of the squared distance
(Felsenstein 2004; Kuhner and Felsenstein 1994) to
compare topology and branch lengths. Absolute distances
were measured from the true tree to evaluate the ability of
the different methods to choose a model that can retrieve
the true tree or trees close to the truth. Relative distances
were measured between the pairs of optimal trees chosen
under any two methods to evaluate the closeness of the
performance of the different methods. The standard error
was calculated based on the percent matches associated
with these measures, as well, to quantify the simulation
error. We also calculated a measure of the bias of branch-
length estimation. This is a signed difference between the
branch-length vector of an optimal tree under a model and
the branch-length vector of the true tree. The aim of this
measure was to assess whether the resulting trees tend to
underestimate or overestimate the true branch lengths.

Results
Comparing the Two Extensions

The results from the two extended DT approaches
introduced in equations (8) and (10) were identical. This is
a direct consequence of the similarity between the optimal
tree topologies associated with the most-probable models.
Poor models have a very small probability and, hence,
are in essence dropped from consideration (very small
probability compared with the distance weighting it and
very small probability compared with the other more

probable models). Assuming 1026 is a small probability
with no significant contribution, then, on average, only
about 5.3 models contributed to the calculation of the risk
and, therefore, to selecting the best model per data set. The
main competing models are listed in table 1, along with the
number of times they were considered (out of 1,000
simulations). It is clear that the most probable models are
the complex ones.

According to the above, we refer to these two
extensions as the Extended-DT method without distinc-
tion. Because the time needed to perform a comparison
using the first method is drastically more than that using
the second method, we focus on the second extension.

Model Comparison

In general, it is expected that the Extended-DT
approach would choose more complex models, on
average, than would DT of Minin et al. (2003). This is
because of the improvement in fitness resulting from
factoring the topology in the optimization process. It is
also expected that the LRT approach (LRT-ModelTest)
and the AIC (simple and extended) would pick more
complex models than would DT, BIC, Extended-DT, or
Extended-BIC. This is because of the complexity of the
process we used in generating the data, with 30 parameters
in the generating model; AIC penalizes overparameteriza-
tion less than BIC and DT by a factor of ln(n)/2 (;3.3 in
the case of this data set), where n is the sample size
(number of nucleotides).

Extended-DT Versus Other Methods

Extended-DT and DT chose the same models almost
88% of the time (table 2). Comparing the mismatched
models, figure 1a indicates that DT chose slightly simpler
models on average (measured by the difference in the
number of parameters in a model), in accordance with our
expectations. The distribution of the differences of these
models is somewhat symmetric around the mean; hence,
there is no reason to believe that these differences are not
random. Table 2 illustrates that there is also no reason to
believe that the expected difference is not equal to zero,
with the estimate of the probability of occurrence of zero
or more in the difference of the mismatched models

Table 1
Models with Posterior Probabilities Greater Than 1026 That
Had Main Impact on Model Choice Using the Extended-DT
and the Number of Times They Were Considered in 1,000
Simulations

Model Number of Times Considered

HKY1I1� 853
TrN1I1� 948
K81uf1I1� 804
TIM1I1� 915
TVM1I1� 738
GTR1� 24
GTR1I1� 989
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(P value) being 0.5785. All newly selected models agreed
on the importance of the rate heterogeneity. The disparity
between the chosen models for any data set was related,
for the most part, to the transition/transversion rates. These
rates were either consolidated or expanded, which ex-
plains the clustering of the distribution of the differences
on the odd numbers within the range [–4, 4] in the figure.
Table 3 lists a detailed comparison of the mismatched
models. The main contributors to the mismatches were the
changes from HKY1I1� to TrN1I1� and visa versa.
HKY1I1� assumes one transition rate, whereas TrN
1I1� assumes a different rate for purines than for
pyrimidines. Also contributing were the switches between
TrN1I1� and GTR1I1�. These changes were caused

by the collapse or expansion of the transversion rates
(GTR1I1� assumes four trasversion rates, whereas
TrN1I1� assumes one).

Table 2 illustrates the similarity of the results between
Extended-DT and Extended-BIC, with almost 96% match
and 0.6087 P value. This emphasizes the importance of the
posterior probabilities in model choice using decision
theory. The posterior probabilities of many of the models
were extremely small, with not enough weighting by the
loss function to be considered in the analysis. That and the
fact that the models being considered had small branch-
length differences reduced the impact of the loss function
on model choice. Figure 1b shows that, on average,
Extended-BIC tended to choose slightly more complicated
models than did Extended-DT when a mismatch occurred.

BIC’s performance was comparable to that of the DT
in its similarity to the Extended-DT method with 87.4%
match. Figure 1c indicates that, unlike DT, BIC tended to
choose slightly more complicated models than the
Extended-DT, although there is no reason to believe that
the two methods are different (P value 0.5238 [table 2]).

LRT-ModelTest, Extended-AIC, and AIC all had
similar results when compared with the Extended-DT.
LRT-ModelTest choice matched that of Extended-DT only
37.6% of the time and chose significantly more compli-
cated models than Extended-DT (with P value¼ 0 [fig. 1d
and table 2]). The percentages of matches of models
chosen using Extended-AIC and AIC to that chosen using
Extended-DT were 45.8% and 46.1%, respectively (table

Table 2
Match Proportions Between Models Chosen Using
Extended-DT and Those Chosen Using the Other Methods

Match Proportiona P value

Extended-DT DT 87.9% (1.03%) 0.5785
Extended-BIC 95.4% (0.66%) 0.6087
Extended-AIC 45.8% (3.2%) 0.0037
LRT-ModelTest 37.6% (1.58%) 0.0000
BIC 87.4% (1.05%) 0.5238
AIC 46.1% (1.58%) 0.0111

NOTE.—Included is the proportion of the mismatched models, chosen by

Extended-DT and by the other models, that had differences in the number of

parameters greater than zero (P value)
a Number in parenthesis is equal to the standard error of the simulation.

FIG. 1.—Distribution of the differences between model parameters of models chosen using Extended-DT as compared with models chosen using
the other methods. These differences exclude the matched models. The vertical lines mark the mean of the distribution.
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2). Models chosen via these methods also tended to be
significantly more complex than those chosen by the
Extended-DT method, with P values of 0.0037 and 0.0111
for Extended-AIC and AIC, respectively (fig. 1e and f and
table 2).

The simulation error associated with each of the
match percentages emphasizes the similarity between the
DT and the BIC and the AIC and Extended-AIC in their
performance as compared with the Extended-DT. It also
highlights the significance in the differences between these
methods and the LRT and the Extended-BIC as compared
with the Extended-DT (table 2).

Comparing All Other Methods

DT, BIC, and Extended-BIC did perform in a similar
manner, with 95.6% match between models chosen using
DT and models chosen using BIC, 88.2% match between
models chosen using DT and models chosen using
Extended-BIC, and 90.4% match between models chosen
using BIC and models chosen using Extended-BIC (table
4). Our results suggest that there are no significant differ-
ences between DT and BIC. Between DT and Extended-
BIC and between BIC and Extended-BIC with p values of
0.3171, 0.7881, and 0.5, respectively (table 4). These
results highlight the close performance between DT and
BIC, demonstrating again that under these conditions,
model selection under DT is driven to a great extent by the
posterior probability of the model. It is clear from figure 2a

and b that when a mismatch occurs, DT tends to choose
slightly simpler models, on average, than those chosen by
the Extended-BIC and the BIC methods.

LRT-ModelTest, AIC, and Extended-AIC performed
in a comparatively similar manner as well, with a 76.3%
agreement between the resulting models from AIC and
LRT, 76.9% match between Extended-AIC and LRT, and
92.4% match between models resulting from Extended-
AIC and AIC. There was not much difference in per-
formance between AIC and the Extended-AIC. On the
other hand, the difference between the models resulting
from LRT-ModelTest compared with those from Ex-
tended-AIC and AIC when a mismatch occurred was quite
significant, with the zero having small probability of
being within the distribution (P value ¼ 0.9958, when
compared with AIC, and P value¼0, when compared with
Extended-AIC). In addition, figure 2h and i demonstrates
that when a mismatch occurs, AIC and Extended-AIC
chose, on average, much simpler models than did LRT.

Figure 2c–e shows that DT selected much simpler
models than did AIC, Extended-AIC, and, especially,
LRT-ModelTest. Comparisons between BIC, and Ex-
tended-BIC to AIC, Extended-AIC, and LRT also show
that BIC and Extended-BIC chose much simpler models
than did the others, in concordance with the closeness of
these two methods to the DT. This is seen in the remaining
portions of the graph and in the percent matches and P
values listed in table 4.

It is clear from evaluating the simulation error in table
4 that the behavior of AIC and Extended-AIC is quite
comparable to one another when contrasted to the other
methods of model selection; the match proportions are
always within 2 standard errors from one another. The BIC
and the Extended-BIC on the other hand compare
differently with the DT and Extended-DT, while compar-
ing in a similar manner with the LRT and the AIC (the
proportion of matches of the BIC and the Extended-BIC
are not significantly different when compared with the

Table 3
Frequencies of Change Between the Different Models
Chosen Using DT and Extended-DT on the Same Simulated
Data Sets and the Parameter Differences Between these
Models

Count

Difference in
Number of
Parameters

DT Extended-DT

Model
Number of
Parameters Model

Number of
Parameters

1 24 GTR1I1� 10 HKY1I1� 6
1 23 GTR1I1� 10 K81uf1I1� 7
1 23 GTR1I1� 10 TIM1� 7

12 23 GTR1I1� 10 TrN1I1� 7
1 23 TVM1I1� 9 HKY1I1� 6
1 22 GTR1I1� 10 TIM1I1� 8
1 22 TVM1I1� 9 TrN1I1� 7
1 21 GTR1I1� 10 TVM1I1� 9
4 21 K81uf1I1� 7 HKY1I1� 6
1 21 TIM1I1� 8 K81uf1I1� 7
5 21 TIM1I1� 8 TrN1I1� 7

22 21 TrN1I1� 7 HKY1I1� 6
4 0 TrN1I1� 7 K81uf1I1� 7
3 1 HKY1I1� 6 K81uf1I1� 7

27 1 HKY1I1� 6 TrN1I1� 7
1 1 TIM1I1� 8 TVM1I1� 6
4 1 TrN1I1� 7 TIM1I1� 6
3 1 TVM1I1� 9 GTR1I1� 10
3 2 HKY1I1� 6 TIM1I1� 8
1 2 TIM1I1� 8 GTR1I1� 10
3 3 HKY1I1� 6 TVM1I1� 9

15 3 TrN1I1� 7 GTR1I1� 10
6 4 HKY1I1� 6 GTR1I1� 10

NOTE.—This table is based on the 121 mismatched model choices between the

two methods.

Table 4
Match Proportions Between Models Chosen Using DT,
LRT-ModelTest, BIC, Extended-BIC, AIC, and
Extended-AIC

Method 1 Method 2 % Matcha (P value)

DT LRT-ModelTest 36.8% (1.15%) 0.0000
DT BIC 95.9% (0.63%) 0.3171
DT AIC 45.6% (1.58%) 0.0000
DT Extended-BIC 88.2% (1.02%) 0.7881
DT Extended-AIC 43.3% (1.57%) 0.0529
LRT-ModelTest Extended-BIC 38.2% (1.54%) 0.0000
LRT-ModelTest Extended-AIC 76.9% (1.33%) 0.0000
LRT-ModelTest BIC 38.7% (1.54%) 1.0000
LRT-ModelTest AIC 76.3% (1.34%) 0.9958
BIC Extended-BIC 90.4% (0.93%) 0.5000
BIC Extended-AIC 45.2% (1.57%) 0.0164
BIC AIC 47.7% (1.58%) 0.0000
Extended-BIC Extended-AIC 46.8% (1.58%) 0.0376
Extended-BIC AIC 46.8% (1.58%) 0.0094
Extended-AIC AIC 92.4% (0.84%) 0.5921

NOTE.—Models are compared to one another and to the proportion of the

mismatched models, chosen by these different models, that had differences in their

number of parameters greater than zero (P value).
a Number in parenthesis is equal to the standard error of the simulation.
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LRT and the AIC). The performance of the Extended-BIC
compared with Extended-DT (table 2) is similar to that of
BIC when compared with DT (table 4), and visa versa,
further highlighting the similarity of these methods. DT
showed no significant difference when compared with AIC

and Extended-AIC. LRT showed a consistent behavior
when compared with DT, BIC, and Extended-BIC (table
4); the percent matches where all within 2 standard errors
from one another. LRT also showed similarity in behavior
when compared with AIC and Extended-AIC (table 4).

FIG. 2.—Distribution of the differences between model parameters of models chosen using each of the methods (other than Extended-DT) as
compared with one another. These differences exclude the matched models and the Extended-DT. The vertical lines mark the mean of the distribution.
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Comparing Topologies and Branch Lengths

The above analysis does not describe the comparative
performance of the different methods in recovering the
closest tree to the truth (i.e., phylogenetic accuracy).
Accuracy is measured by the distance between the true and
estimated branch-length vectors and by the ability to
recover the true topology under the selected model. To
evaluate such performance, we used the symmetric dif-
ference distance and the square root of the squared dis-
tance (Sqrt-Distance) from the true tree. We also measured
the symmetric relative distances between topologies
resulting from the different methods to assess the agreement
between these methods.

Phylogenetic Accuracy

All methods were comparable in finding the true
topology, with a slight tilt toward DT and AIC (7.6% exact
match for both [table 5]); DT chose much simpler models
than did AIC. On average, only 7.4% of the time the true
topology was recovered, as can be seen from the
symmetric distances. The simulation standard error
indicates that there are no significant differences between
the proportions of times that the true tree was recovered;
each one of these match proportions is within 2 standard
errors from the others. Fifty percent of the estimated trees
were six or fewer steps away from the true tree, a result
that could not have occurred by chance alone (Penny,
Foulds, and Hendy, 1982). Extended-AIC chose slightly
closer trees to the truth than all other methods, with a mean
distance of 7.167 followed by Extended-DT (mean
distance of 7.232). AIC (mean distance of 7.29), LRT-
ModelTest (mean distance of 7.291) and Extended-BIC
(mean distance of 7.295) were very close. DT and BIC
came last with mean distances of 7.48 and 7.508,
respectively. The standard deviation was smallest for
Extended-AIC (5.31) followed by Extended-DT and LRT.
It was largest for DT and BIC (5.55 and 5.53, re-
spectively). Given these measures, none of these differ-
ences are noteworthy; in effect, the distance from the true
tree is about the same for all. Again, we have to emphasize
here that Extended-DT, DT, Extended-BIC, and BIC chose
much simpler models than did LRT-ModelTest, Extended-
AIC, and AIC. Despite the fact that the DT and BIC
methods chose simpler models, phylogenies estimated

using those models are as accurate as those estimated by
the more complex models chosen with the alternative
model-selection methods.

Extended-DT and DT achieved a minimum median
Sqrt-Distance of 6.501 and 6.502, respectively (table 6).
This is quite expected as Sqrt-Distance is used to penalize
model selection in Extended-DT and a similar measure is
used in DT. This is also clear in comparing the means;
although DT did slightly better than Extended-DT with
mean distance of 6.461 and 6.462, respectively. Extended-
BIC and BIC were close third and fourth, with median
distances of 6.504 and 6.506. The means show that
Extended-BIC did as well as Extended-DT, on average, in
estimating the branch lengths with a mean distance of
6.462. The other methods did not do as well. The worst
performer was LRT-ModelTest (median distance 6.686
and mean 6.583), followed by AIC (median 6.661 and
mean 6.559). Table 6 introduces the Sqrt-Distance, their
medians, means, standard deviations, and the percent
match. The standard deviations for the distances are quite
comparable; with the minimum attained for DT and LRT
and the maximum for Extended-AIC. Figures 3 and 4
show the distribution of the absolute branch-length dif-
ferences (symmetric and squared, respectively).

Figure 5 shows the signed distribution of the estimate
of the branch lengths. It is quite clear from the figure that
the estimated branch-length vectors always significantly
underestimate the true branch length (The zero does not
belong to the distribution and is far away in the lower tail).

Taken together, the results of topological accuracy
and accuracy of branch lengths suggest that the in-
significant differences in accuracy at recovering nodes (as
measured by the symmetric difference distance) dealt with
very short internal branches. Conversely, the improved
branch-length accuracy of Extended-DT and DT relative to
other model selection methods results from better es-
timates of the lengths of the longer branches. This suggests
that nodal support values estimated under the simpler
models chosen by the two decision-theory approaches
might be more reliable. This will require extensive sim-
ulations to assess.

Relative Symmetric Distance

The relative symmetric distance from one tree
(chosen by certain method) to another (chosen by another

Table 5
Comparing the Topologies Resulting Under Models
Chosen Using the Different Methods to the True Topology

Method % Exact Matcha Median Mean Standard Deviation

Extended-DT 7.2% (0.82%) 6 7.232 5.36
Extended-BIC 7.3% (0.82%) 6 7.295 5.41
Extended-AIC 7.5% (0.83%) 6 7.167 5.31
DT 7.6% (0.84%) 6 7.480 5.55
LRT-ModelTest 7.3% (0.82%) 6 7.291 5.36
BIC 7.4% (0.83%) 6 7.508 5.53
AIC 7.6% (0.84%) 6 7.290 5.43

NOTE.—Comparisons are made via the proportions of the exact match and the

median, mean, and standard deviation of symmetric distances
a Number in parenthesis is equal to the standard error of the simulation.

Table 6
Comparing the Branch Lengths Resulting Under Models
Chosen Using the Different Methods to the True Topology

Method % Exact Match Median Mean Standard Deviation

Extended-DT 0.0% 6.501 6.462 0.393
Extended-BIC 0.0% 6.504 6.462 0.395
Extended-AIC 0.0% 6.658 6.552 0.405
DT 0.0% 6.502 6.461 0.392
LRT-ModelTest 0.0% 6.686 6.583 0.392
BIC 0.0% 6.506 6.466 0.395
AIC 0.0% 6.661 6.559 0.399

NOTE.—Comparisons are made via the proportions of the exact match and the

median, mean, and standard deviation of the square root of the squared distances
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method) gives an indication about the variation in the
performance of these methods in retrieving the same
topology under different models. Table 7 indicates that
Extended-DT and Extended-BIC have high correspon-
dence in choosing the topology (97.3% match). This
correspondence stands also in respect to DT and BIC with
97.8% topology match. Extended-AIC and AIC matched
95.1% of the time, Extended-BIC and BIC matched 92.5%
of the time, and Extended-DT and DT matched 91.2% of
the time, indicating that the extensions of these methods
did not result in much difference in inferred topology. This

suggests that using the simpler methods is sufficient to
select well-performing models. Also of interest is that
Extended-DT and BIC and Extended-BIC and DT did
have a high matching rate in terms of the resulting
topologies. This, again, highlights the impact that the
posterior probabilities play in choosing the model and the
fact that the performance between the extended and simple
methods do not result in much difference. The standard
errors associated with these mismatch proportions indicate
that the simulation error is small, lending more evidence to
the above introduced results.

FIG. 3.—Distribution of the symmetric distances measured from the optimal tree resulting under the chosen model using each of the methods to the
true tree. Vertical line represents the location of the mean.

FIG. 4.—Distribution of the square root of the squared distance measured from the optimal tree resulting under the chosen model using each of the
methods to the true tree. Vertical line represents the location of the mean.
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The closest match occurs between the Extended-DT
and the Extended-BIC, with mean difference of 0.151
(table 7). This results in the tight distribution of these
differences with standard deviation of 1.16, minimum as
compared with all other differences. On the other hand, the
highest difference is between the Extended-DT and the
LRT-ModelTest with mean of 2.541, resulting from
a spread distribution with standard deviation of 4.75
(highest among all other differences). The match between
these two models is also at a minimum (63.3%). Figure 6
introduces the distribution of the relative symmetric
distances. Only mismatched model symmetric distances
were plotted. Results of the relative-squared distances are
similar to the above and, hence, are not shown.

Time

Finding the optimal trees under each of the models
before selecting the best model can be computationally
prohibitive, especially as the number of taxa involved
increases. Searches for the optimal tree under each of the
models took about 5 hours per simulated data set for the
second extension of Minin et al. (2003). It took about 22
hours per data set to setup the files before choosing
a model using the first extension. These simulations were
distributed across the University of Idaho’s Beowulf
cluster, which contained 64 nodes with 0.9 to 1.2 GHz
CPUs. Processing the 1,000 data sets took about 30 days,
including cluster down time. For the real data set, a more
rigorous search process took 189 days of CPU time for
a sequential search under all available models, following
the strategy stated in the methods section, on machines
with CPU speed of 2.4 GHz. This is equivalent to about
378 days if run on a 1.2-GHz processor. Not having to go
through such an extensive search reduces the decision-
making time frame to about an hour of initial-tree and

score calculations and a few minutes for choosing the
model. As shown in the previous section, the resulting
model choices were not significantly changed by allowing
topology to change during the model-selection process,
hence, it is more computationally feasible to maintain the
strategy of fixing the tree.

The chosen model for the real data using the new
extension was HKY1I1�, identical to that chosen by DT,
BIC, and the Extended-BIC. The model chosen by LRT-
ModelTest was GTR1I1�, and that chosen by Extended-
AIC and AIC was TVM1I1�.

Discussion and Conclusions

In these analyses, we focused on a single condition,
derived from a real data set. The performance of
phylogenetic methods differs across different true tree
shapes (e.g., Sullivan and Swofford 2001) and different
true substitution processes (e.g., Gaut and Lewis 1995).
Similarly, there are some conditions under which model
selection is robust to this approach (Minin et al. 2003),
specifically when divergences levels are low or when the
substitution process is relatively simple (i.e., several
choose the same simple model). However, it is precisely
with the difficult-to-estimate tree shapes (i.e., trees with
long terminal branches and short internal branches) that
model choice becomes particularly critical (Sullivan and
Swofford 2003). Therefore, we focused on simulating such
conditions and chose a data set that appears to exhibit the

FIG. 6.—Distribution of the symmetric distance measured between
the optimal trees resulting under the chosen model using each of the
methods understudy. These graphs exclude comparisons of the trees
resulting from the matched models.

!

FIG. 5.—Distribution of the signed difference measured from the optimal tree resulting under the chosen model using each of the methods to the
true tree. Vertical line represents the location of the mean.
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problematic features of short internal branches, long
terminal branches that vary in length, and a very complex
substitution process. Our conclusions are, therefore,
restricted to these difficult-to-estimate scenarios.

The two extensions of the DT approach resulted in
identical choices of evolutionary models for each of the
simulated data sets and for the real data. This is a direct
outcome of having only a small number of models with
sufficiently high posterior probabilities to have an impact
on model choice. Searches under these most probable
models yielded trees with similar branch-length vectors
and similar topologies. Hence, fixing the tree in the more
extensive extension (equation (8)) did not change the loss
function enough to make a difference. This lack of dif-
ference will result in a computational time save of 17 hours,
which is quite significant, compared with the simulated
data searches (22 hours), yet not so significant, compared
with the search associated with the actual data (378 days).

Extended-DT and DT had an 88% match in model
choice. The remaining mismatches did not have a signif-
icant pattern. The differences in these mismatches,
measured by the difference in their number of parameters,
were not significant. Moreover, the symmetric difference
distance between the resulting trees when applying the
different models were much alike, with 91.2% match
in topology and about 88% match in Sqrt-Distance.
Accordingly, we do not have sufficient evidence to
indicate that these two methods are different. This is also
reflected in the identical model choice for the actual data.
Based on this, we conclude that adding the topology to the
decision criterion will not make any significant difference
in selecting a model for data analysis. However, it will add
to the computational expense in a way that might make the
process of selecting a model computationally prohibitive
and quite infeasible.

A surprising result was the closeness of the outcomes
of the BIC and DT (extended and simple). This comes
back to the fact that only a few models are considered in
the choice process because of the small probability of the
other models in the set examined. It is clear from table 1
that there is a strong bias toward complex models. This is
quite reasonable, as the data were simulated under a more
complex model than any of the models we evaluated.
Models that did not compensate for rate heterogeneity
among sites had very low posterior probabilities (0 in the
case when the invariable sites and the rate heterogeneities
were not accounted for). This closeness in the results does
not undermine the DT approach introduced in Minin et al.
(2003); the strength of the DT approach is the flexibility in
choosing the loss function that highlights the biological
process that one wants to study. Both BIC and the DT
results are listed in the output of the DT-ModSel program
we developed.

Complex models resulting from the LRT-ModelTest,
Extended-AIC, and AIC did not perform better than the
simpler models coming from Extended-DT, DT, Ex-
tended-BIC, and BIC. This was quite clear in comparing
the estimated trees under these models with the true tree.
On the other hand, models from the latter keep within the
parsimony criterion of model selection (selecting the
simplest among a set of equivalent models) and, hence,
have less tendency of having higher variation in the
parameter estimates than do the more complicated models
(Burnham and Anderson 2002). In addition, using the
simpler models result in savings in the computational time.
There was about 70 hours difference between the search
using GTR1I1� and that using HKY1I1� and about
105 hours difference between the search using TVM1I1�
and that using HKY1I1�. HKY1I1� was chosen using
DT, Extended-DT, BIC, and Extended-BIC, whereas

Table 7
Relative Comparison of the Resulting Topologies Under Models Chosen Using the Different Methods (Other Than
Extended-DT) via Symmetric Distances

Method 1 Method 2 % Exact Matcha Median Mean
Standard
Deviation

Extended-DT DT 91.2% (0.90%) 0 0.820 3.21
Extended-DT Extended-BIC 97.3% (0.51%) 0 0.151 1.16
Extended-DT Extended-AIC 70.3% (1.44%) 0 1.991 4.22
Extended-DT LRT-ModelTest 63.3% (1.52%) 0 2.541 4.75
Extended-DT BIC 91.0% (0.90%) 0 0.814 3.18
Extended-DT AIC 69.9% (1.45%) 0 2.170 4.55
DT Extended-BIC 91.8% (0.87%) 0 0.763 3.10
DT Extended-AIC 68.7% (1.47%) 0 2.269 4.57
DT LRT-ModelTest 63.7% (1.52%) 0 2.529 4.71
DT BIC 97.8% (0.46%) 0 0.192 1.57
DT AIC 70.4% (1.44%) 0 2.078 4.37
Extended-BIC Extended-AIC 70.9% (1.44%) 0 1.962 4.19
Extended-BIC LRT-ModelTest 63.9% (1.52%) 0 2.522 4.74
Extended-BIC BIC 92.5% (0.83%) 0 0.717 3.03
Extended-BIC AIC 70.3% (1.44%) 0 2.159 4.54
Extended-AIC LRT-ModelTest 88.7% (1.00%) 0 0.842 3.08
Extended-AIC BIC 69.5% (1.46%) 0 2.193 4.49
Extended-AIC AIC 95.1% (0.68%) 0 0.525 2.67
LRT-ModelTest BIC 64.7% (1.51%) 0 2.417 4.60
LRT-ModelTest AIC 89.2% (0.98%) 0 0.743 2.81
BIC AIC 71.4% (1.43%) 0 1.966 4.23

NOTE.—Included are proportion of exact match and median, mean, and standard deviation of the symmetric distance differences.
a Number in parenthesis is equal to the standard error of the simulation.
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GTR1I1� and TVM1I1� were chosen using LRT-
ModelTest, and Extended-AIC and AIC, respectively.

The resulting trees always underestimated the true
branch lengths. This suggests that the models considered
here need to be improved to be able to capture important fea-
tures of sequence evolution. An obvious next extension is to
include partitioned-likelihood models in the set evaluated.
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