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We present a new method for detecting coevolving sites in molecules. The method relies on a set of aligned sequences
(nucleic acid or protein) and uses Markov models of evolution to map the substitutions that occurred at each site onto the
branches of the underlying phylogenetic tree. This mapping takes into account the uncertainty over ancestral states and
among-site rate variation. We then build, for each site, a ‘‘substitution vector’’ containing the posterior estimates of the
number of substitutions in each branch. The amount of coevolution for a pair of sites is then measured as the Pearson
correlation coefficient between the two corresponding substitution vectors and compared to the expectation under the null
hypothesis of independence. We applied the method to a 79-species bacterial ribosomal RNA data set, for which extensive
structural characterization has been done over the last 30 years. More than 95% of the intramolecular predicted pairs of sites
correspond to known interacting site pairs.

Introduction

Distinct positions in proteins and RNA molecules
might not evolve independently because of shared struc-
tural or functional constraints. In proteins, two amino acid
sites that are in close proximity in the three-dimensional
(3D) structure might coevolve in a complementary manner.
This is, for instance, the case of the ‘‘small-to-large’’ mu-
tation Ala129 to Met in bacteriophage T4 lysozyme, which
is compensated by the ‘‘large-to-small’’ mutation Leu121 to
Ala (Baldwin et al. 1996). RNA molecules—mainly trans-
fer RNA and ribosomal RNA (rRNA)—also evolve under
structural constraints. Their particular folding leads to
the formation of characteristic secondary motifs required
for the function of the molecule, namely, loops (single-
stranded regions) and stems (double-stranded regions with
a DNA-like double-helix structure). Stem positions are
known to evolve in a compensatory way (Woese 1987;
Rousset, Pélandakis, and Solignac 1991).

Detecting sites that do not evolve independently is im-
portant for the understanding of the various structural and
functional constraints acting on a molecule at the level of
specific sites. Such understanding is important for elucidat-
ing the mechanisms of molecular evolution and might also
have practical applications in structure prediction and drug
design.

Because many biochemical mechanisms may lead to
nonindependent evolution, it is difficult to take nonindepen-
dence into account in evolutionary models. Some attempts
have been made in the particular case of rRNA (Tillier and
Collins 1998; Savill, Hoyle, and Higgs 2001) and proteins
(Pollock, Taylor, and Goldman 1999). Tillier and Collins
(1995) assessed the impact of the independence hypothesis
on tree reconstruction methods. They showed that non-
independence among sites may be seen as a redundancy
of the phylogenetic signal within the data and hence
may lead to a reduced tree reconstruction efficiency.

Following this idea, Galtier (2004) showed that signal
redundancy may lead to overestimated bootstrap support
values because coevolving sites will tend to support the
same topology, either correct or incorrect. The detection
of coevolving sites could therefore help improve phyloge-
netic reconstructions.

The earliest methods for detecting coevolving sites
were proposed by structural biologists. They used compar-
ative sequence analysis to detect excessively frequent co-
occurrences of states at pairs of sites (Altschuh et al.
1987; Gutell et al. 1992; Neher 1994). Such methods suc-
ceeded in detecting coevolving sites but led to many false
positive predictions. The main reason is that biological se-
quence data sets depart from the independence assumption
not only because of possible functional interactions but also
because of shared evolutionary history. Thus, a method for
detecting coevolving sites should distinguish the desired
structural/functional correlation signal from the phyloge-
netic one.

A method suggested by Tillier and Lui (2003) aims to
remove the phylogenetic component from the computation
of coevolving positions. However, this method does not
rely on an evolutionary substitution model and hence cannot
take into account factors such as substitution probabilities
among states or the among-site rate variation. Model-based
methods rely on standard Markov models of sequence evo-
lution, considering the hypothesis of independence as the
null hypothesis. Two approaches for model-based inference
have been suggested. In the first approach, a likelihood ratio
test is used to compare the independence (single site) model
to a joint model allowing coevolution between a given num-
ber of coevolving sites (Pollock, Taylor, and Goldman
1999; Akmaev, Kelley, and Stormo 2000). Alterna-
tively, Tufféry and Darlu (2000), following Shindyalov,
Kolchanov, and Sander (1994), proposed a method based
on the (model-based) mapping of cosubstitutions onto
the tree. A cosubstitution was defined as two different sites
undergoing a substitution on the same branch of the tree.
For each site, substitutions were mapped onto the (presum-
ably known) phylogeny by reconstructing ancestral states at
each node and assigning one substitution to a given branch
if the states at the top and bottom nodes of that branch
differ. Then, the number of cosubstitutions for a pair of sites
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was calculated and compared to the expected number under
the null hypothesis of independence (Tufféry and Darlu
2000). This method does not account for multiple substitu-
tions or take into account the uncertainty in the reconstruc-
tion of ancestral states.

Here, we introduce a new empirical Bayesian method
for the detection of coevolving positions, taking into ac-
count the uncertainty in substitution mappings, multiple
substitutions, and among-site rate variation. We apply it
to a bacterial rRNA data set to test whether the method
could detect site pairs involved in documented structural
motifs. We succeeded in retrieving a large number of sig-
nificant coevolving site pairs, almost 90% of which match
already known structural pairs involved in stems. Among
the remaining 10%, we show by using 3D structure infor-
mation and previous studies that at least 26 pairs out of 42
are true coevolving site pairs. Hence, for this rRNA data set,
more than 95% of the predicted interactions are true
‘‘coevolving pairs.’’

Methods

The method analyzes a set of aligned sequences (D)
using a phylogeny (assumed to be known), a Markovian
substitution model, and a discrete rate distribution across
sites. The set of parameters H, including branch lengths,
the entries in the substitution matrix, and the rate distribu-
tion parameters, is estimated using the maximum likelihood
(ML) method prior to the cosubstitution analysis. The
HKY85 1 C (Hasegawa, Kishino, and Yano 1985) substi-
tution model was used, with a four-class discretized gamma
rate distribution (Yang 1994).

The method relies on two points: the mapping of sub-
stitutions along the tree for each site and its uncertainty and
the estimation of the degree to which such substitutions co-
evolve for a pair of sites.

Substitution Vectors

Let Di be the ith site of the data set, i.e., a column of the
alignment. Let Vi5ðvi;1;.; vi; b;.; vi;mÞ be a vector of di-
mension m, the number of branches in the tree, where vi,b, is
the posterior estimate of the number of substitutions that
occurred on branch b for site i. Vi is called the substitution
vector for site i and is estimated as follows.

Let fx1, ., xag be a particular joint reconstruction of
ancestral states for site i and b a branch of length t, a being
the number of inner nodes in the tree. Let xp and xq be the
states at the top and bottom nodes, respectively, of this
branch for this reconstruction. vi,b, is the expected number
of substitutions on a branch of length t knowing its initial
state xp and final state xq (named nxp; xq ) times the probabil-
ity of the joint reconstruction, summed over all joint
reconstructions:

vi; b 5
X

fx1 ;.; xp ; xq ;.; xag
Pðx1;.; xa jDi;HÞ3 nxp ; xqðtÞ: ð1Þ

We can rewrite this equation by grouping all reconstruc-
tions with identical xp and xq:

vi; b 5
X
xp

X
xq

 
nxp ; xqðtÞ

3
X

fx1 ;.; xagnfxp ; xqg
Pðx1;.; xa jDi;HÞ

!
: ð2Þ

The rightmost summation is equivalent to the ‘‘two-states
joint’’ probability, Pðxp; xqjDi;HÞ:

vi; b 5
X
xp

X
xq

Pðxp; xq jDi;HÞ3 nxp ; xqðtÞ: ð3Þ

Estimating the Number of Substitutions According
to Initial and Final States

The usual way for mapping substitutions is to count
zero substitution when the two states at a branch are iden-
tical and one substitution if they are different (Tufféry and
Darlu 2000; Nielsen 2002). Because this does not account
for multiple substitutions, we chose to estimate the condi-
tional number of substitutions, nxp; xqðtÞ: Computations are
made as shown in Jean-Marie et al. (unpublished data). Let
N(t) be the number of jumps of the Markov chain on a given
branch of length t and note that

nxp ; xqðtÞ5EðNðtÞ j xp; xqÞ: ð4Þ

We introduce mxp; xqðtÞ defined as the joint expectation

mxp ; xqðtÞ5EðNðtÞ; xq j xpÞ: ð5Þ

We have

nxp ; xqðtÞ5
mxp ; xqðtÞ
pxp ; xqðtÞ

; ð6Þ

where pxp; xqðtÞ5PðxqjxpÞ: Let MðtÞ5fmxp; xqðtÞg, Jean-
Marie et al. (unpublished data) showed that

MðtÞ5
XN
n5 1

tn

n!

Xn�1

p5 0

Q
pðQ1KÞQn�p�1

; ð7Þ

where Q5fqxp; xqg is the generator of the Markov chain and
K5fkxp; xqg the diagonal matrix with all substitution rates
ðkxp; xq5�qxp; xq ; if xp5xq; else 0Þ: All nxp; xqðtÞ can be
computed approximatively by truncating the series (n 5
10 gives a good approximation).

Taking Among-Site Rate Variations into Account

Equation (3) may be rewritten to account for among-
site rate variation (assuming a discrete distribution of rates)
by summing over all rate classes:

vi; b 5
X
c

X
xp

X
xq

Pðxp; xq; rc jDi;HÞ3 nxp ; xq; rcðtÞ; ð8Þ
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where rc is the rate of class c and nxp; xq; rcðtÞ is the condi-
tional number of substitutions expected on a branch of
length t knowing states xp and xq and the rate rc. This num-
ber is equal to the expected number of substitutions on
a branch of length t 3 rc:

vi; b 5
X
c

X
xp

X
xq

Pðxp; xq; rc jDi;HÞ

3 nxp ; xqðt3 rcÞ: ð9Þ

The first term in the above summation is the joint prob-
ability of having state xp at the bottom node, state xq at the
top node, and rate class c given the data and parameters. It
can be computed as follows:

Pðxp; xq; rc jDi;HÞ5Pðxp; xq; rc;Di jHÞ
PðDi jHÞ

5
Pðxp; xq;Di jH; rcÞ3PðrcÞ

PðDi jHÞ ; ð10Þ

where the first term of the numerator is the likelihood for
site i conditional on states xp and xq at top and bottom nodes
and rate equal to rc. This likelihood is computed as de-
scribed by Felsenstein (1981), after having multiplied all
branch lengths by rc (Yang 1993) and summing over all
possible ancestral states at each node except for the top
and bottom nodes of branch b, for which states xp and xq
are fixed. PðrcÞ is the prior probability for site i of being
in rate class c, and PðDijHÞ is the likelihood for site i.
This calculation extends the empirical Bayesian estimation
of ancestral states probability of Yang, Kumar, and Nei
(1995) to the two-states joint case, as previously proposed
by Galtier and Boursot (2000) and Pupko et al. (2003).

Replacing equations (10) and (6) into (9) allows one to
calculate estimated substitutions vectors Vi in time propor-
tional to the number of sites and to the square of the number
of sequences.

Coevolution Statistic for a Pair of Sites

The amount of coevolution for a pair of sites is mea-
sured by taking the Pearson correlation coefficient of the
two corresponding substitution vectors:

qi; j 5
covðVi;VjÞ

sdðViÞ3 sdðVjÞ
: ð11Þ

Positive values of q mean that the two sites tend to undergo
substitutions on the same branches, whereas q values close
to 0 are expected if the two sites evolve independently. One
can look for coevolution by measuring correlation coeffi-
cients for pairs of sites within a single molecule (intramo-
lecular coevolution) or by taking each site in a distinct data
set (intermolecular coevolution).

Mean Posterior Rates

We computed the mean posterior rates r̂i for each site
i by averaging upon each rate class:

r̂i 5
X
c

PðDi jH; rcÞ3PðrcÞ
PðDi jHÞ 3 rc

� �
: ð12Þ

This is the mean of all rc weighted by the posterior prob-
abilities of being in each class (Mayrose et al. 2004).

rRNA Sequence Data

Two data sets of bacterial large subunit (LSU) and
small subunit (SSU) rRNA were built, each with 79 sequen-
ces from the same 79 species. Aligned sequences were re-
trieved from the rRNA database (Wuyts, Perrière, and
Van De Peer 2004). Alignments were inspected by eye
and slightly modified. All ambiguously aligned and gap-
containing sites were discarded from the analysis. The
total number of analyzed sites was 2,312 (LSU) and
1,300 (SSU). Data are available in Supplementary Material.

The two data sets (LSU and SSU) were first concate-
nated to estimate a common phylogeny with the ML
method using the PhyML software (Guindon and Gascuel
2003). As for the coevolution analysis, we used the
HKY85 1 C model with a four-class discretized gamma
rate distribution. Other parameters were considered specific
and reestimated separately from each data set. Substitution
vectors were estimated for every site, and correlation coef-
ficient q was calculated for every pair of sites within and
between data sets (2,673,828 pairs for the LSU, 845,650
pairs for the SSU, and 3,005,600 pairs for the interaction).

Simulations

We used a parametric bootstrap approach to evaluate
the null distribution of q. All simulations were performed
under a HKY85 1 C model. Specifically, the null distribu-
tion was estimated by simulating 100,000 independent pairs
and computing q for each pair. Three distributions of q were
built, using each data set separately (intramolecular study)
and then together (intermolecular study).

The same approach was used to evaluate if the number
of site pairs in the data set with q higher than a specific
threshold is greater than the chance expectation. Fifty sim-
ulated data sets were generated for the LSU and SSU data
sets, with the same numbers of species and sites. For each
data set, we counted the number of site pairs with q greater
than the considered threshold. Parameters used for simula-
tion were the ones estimated from each data set. These pa-
rameter values were also used for the estimation of sub-
stitution vectors and were not reestimated for each simulated
data set. This is hence an approximated parametric bootstrap,
similar to the resampling of estimated log-likelihoods
(RELL) method of Kishino, Miyata, and Hasegawa (1990).

Structural Data

The secondary structures of Escherichia coli’s rRNA
sequences (accession number U18997) were used as a ref-
erence for the determination of structural pairs. The struc-
tures used are the ones given in the Dedicated Comparative
Sequence Editor (DCSE) alignment from the rRNA data-
base. The RNAViz2 software (De Rijk, Wuyts, and De
Wachter 2003) was used for RNA representation and site
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visualization. 3D analysis was performed using the
Thermus thermophilus 5.5 Å structure (Protein Data Bank
[PDB] accession number 1GIX and 1GIY for LSU and
SSU, respectively; Yusupov et al. 2001), T. thermophilus
3.0 Å SSU structure 1J5E (Wimberly et al. 2000), and De-
inococcus radiodurans 3.1 Å LSU structure 1NKW (Harms
et al. 2001). We used the MolScript (Kraulis 1991) and the
Raster3d (Merritt and Bacon 1997) softwares for 3D rep-
resentation of molecules.

Results
The Expected Distribution of the Correlation Coefficient

We developed a new measure of the amount of coevo-
lution for a pair of sites, defined as the Pearson correlation
coefficient q between two corresponding substitution vec-
tors. Positive q means that the two sites tend to substitute on
the same branch (cosubstitute, see Methods). Because pos-
itive values of q may be obtained by chance, we determined
the null distribution of q, assuming that sites evolve inde-
pendently. This was achieved by conducting simulations
(parametric bootstrapping) using parameter values esti-
mated from either the LSU or the SSU data set. The distri-
bution of q depends on the evolutionary rate of the two sites
tested. This is seen in figure 1, where the correlation coef-
ficient q is plotted as a function of the minimal posterior rate
r̂min: The relationship between q and r̂min appears complex.
Slow-evolving sites confer a high variance to q estimates,
so that high values of q can be reached just by chance. Two
invariable sites, for example, have identical substitution
maps and a correlation coefficient equal to one. Slow sites,
therefore, will be ignored when trying to detect coevolving
pairs. For fast-evolving pairs, q tends to be positive and
positively correlated with r̂min: This is due to the phyloge-
netic correlation: sites tend to undergo more substitutions in
the long branches and fewer in the short ones. This effect is
more obvious when sites undergo a large number of sub-
stitutions. Phylogenetic correlation appears to be stronger
in the SSU data set. This is consistent with the fact that
the SSU tree is longer than the LSU tree.

From these simulations, we want to determine a corre-
lation threshold (qm) above which a given pair of sites from
real rRNA data should be considered as significantly de-
parting from the independence hypothesis. According to
the above discussion, this threshold would ideally depend
on the evolutionary rates of the sites in the considered pair.
Based on the results shown in figure 1, we decided to con-
sider a site pair as coevolving if (1) its r̂min is greater than
r̂m 5 0:3 (LSU) or 0.2 (SSU) and (2) its q is greater than
qm 5 0.75 (LSU) or 0.8 (SSU). Virtually, no values of q
greater than these thresholds are expected under the null
hypothesis of independence. We call sites with r̂. r̂m
‘‘fast-evolving sites.’’ Pairs with r̂min . r̂m and q . qm
are defined as coevolving pairs.

Detecting the Coevolving Sites

Having set the two qm and r̂m thresholds, we checked if
there are coevolving pairs in the rRNA data sets. We found
258 coevolving pairs for the LSU data set and 126 for the
SSU data set. Figure 2 (graphs 1 and 3) shows the right-tail
distributions of the q statistic measured on real LSU and
SSU data sets. We then tested whether these numbers
are significant by simulating each data set under the inde-
pendence hypothesis and counting the number of pairs for
which q . qm. Figure 2 (graphs 2 and 4) shows the mean
distribution over 50 simulated data sets. There is a striking
difference between real and simulated data sets: only 5.9
and 0.94 site pairs, respectively, reach the qm value in
the simulated data sets. All detected pairs with q . qm
and r̂min . r̂m were drawn on the E. coli structure (Supple-
mentary Material).

Comparison with Secondary Structure

The number of detected coevolving sites was signifi-
cantly greater than the chance expectation. In order to char-
acterize the biological relevance of these sites, we analyzed
the secondary structure of rRNA given in the rRNA data-
base (Wuyts, Perrière, and Van De Peer 2004). Out of the
258 coevolving sites in the LSU data, 225 (87%) were

FIG. 1.—Correlation coefficient q plotted against the minimal posterior rate r̂min, for 100,000 simulated independent pairs. Dashed lines are drawn at
prior rates of the four classes of the gamma distribution. Continuous lines represent the r̂m and qm thresholds used in the analysis (see Results).
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found to match already known stem pairs. For the SSU data,
the ratio was even greater: out of the 126 coevolving pairs,
117 (93%) are known stem pairs.

Comparison with Tertiary Structure

Forty-two detected pairs did not match any known
stem pair in the secondary structure. These pairs were fur-
ther examined using the 3D structure of both T. thermophi-
lus (LSU and SSU) and D. radiodurans (for the LSU).
Results are shown in tables 2 and 3. We classified these
pairs into four categories (see table 1 and fig. 3 for exam-
ples), ranging from nondocumented Watson-Crick (WC)
pairs to structurally distant sites. Only sites falling into cat-
egory 4 cannot be confirmed as coevolving and may be
false positives. It is noteworthy that this concerns 10 pairs
out of the 258 1 126 detected ones. Pairs in category 3b

correspond to ambiguously predicted stems and/or probable
frameshifts. This is the case of the E25 stem of the LSU for
instance. The DCSE structure of E. coli shows two unpaired
loops, whereas the Comparative RNA Web site (CRW,
Cannone et al. 2002) predicts it as a stem, with several mis-
matches. Shifting down the right strand from one nucleo-
tide, as suggested by our results, leads to a similar number
of mismatches because the left strand is made of four con-
secutive G’s (fig. 4). Out of 384 detected pairs, 342 corre-
spond to unambiguous stem pairs and 26 to confirmed
tertiary interactions (categories 1–3a). This leads to a score
of 95.8% successful predictions

We checked the CRW to compare our results with
those of other methods. It was possible to retrieve from this
knowledge database a list of site pairs previously predicted
as being involved in tertiary interaction by a battery of
approaches, including comparative analysis and secondary
structure prediction methods. We found that all sites from
category 1 to 3a were actually known to be interacting (see
tables 2 and 3). Sixty-one (LSU 1 SSU) pairs of sites in the
CRW were not detected by our method. Three explanations
for the nonidentification of these reported pairs are as fol-
lows: (1) 7 pairs were considered as ambiguously aligned in
our analysis, (2) 6 pairs include a site with a gap in our align-
ment, and (3) 39 pairs include a site evolving too slowly
(posterior rate ,0.3 for LSU, 0.2 for SSU). All these sites
were hence excluded from our analysis. Thus, as far as 3D
interactions are concerned, only nine CRW-documented
site pairs potentially detectable by our method were missed.

Intermolecular Interaction

We also applied the method to search for interactions
between the two subunits. This has been achieved by
measuring all possible correlation coefficients between

FIG. 2.—Right-tail distribution of q for the LSU and SSU data sets. The number of pairs is plotted against the correlation coefficient q, for rRNA data
set (graphs 1 and 3) and corresponding simulated data sets (graphs 2 and 4). In the latter case, the average number over 50 simulations was used. Only fast-
evolving site pairs, i.e., when both sites have a posterior rate greater than 0.3 (LSU) or 0.2 (SSU), were used. Vertical lines correspond to the correlation
threshold qm used in each case.

Table 1
Classification of Detected Coevolving Sites That Are
not Stem Pairs

Type Description Example

1 Canonical WC base pair. Pairs are of type AU
or GC and have two or three hydrogen
bonds. Rings are in the same plane.

Figure 3(A and B)

2 Bases are close enough to allow hydrogen
bonds but are not canonical WC pairs.

2a Pair belongs to a stem (local mismatch)
2b Pair does not belong to a stem Figure 3C
3 Bases are close enough to be interacting, but

residues do not allow hydrogen bonds.
Coevolution may hence be due to the
following:

3a Hydrophobic or van der Waals interaction Figure 3D
3b Frameshift Figure 5
4 Bases are not close enough to be directly

interacting.
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one site from LSU and one site from SSU. The null distri-
bution is different from the intra-subunit ones: fewer site
pairs with high q values are observed. This may be because
the estimated branch lengths are different between the two
subunits. No high value of q is observed from the real data
too. We checked the 10 pairs with greatest q and did not
find already documented interacting pairs, mostly because

sites known to be involved in interactions between LSU and
SSU are highly conserved through evolution. Yusupov
et al. (2001) give a list of these sites.

Impact of the Model, Rate Distribution, and
Tree Topology on the Results

We examined the robustness of our method with re-
spect to the substitution model used in the analysis. This
was done by repeating our analysis with several other mod-
els (all substitutions equal [Jukes and Cantor 1969], distinct
transitions and transversions rates [Kimura 1980], and tran-
sitions and transversions 1 distinct GC and AU proportions
[Tamura 1992]). None of the models significantly changed
the results. We also tested a model with a constant distri-
bution of rates among sites. The method performed poorly
because slow-evolving sites that are not removed from the
analysis lead to false-positive detected pairs.

We assessed the importance of the tree topology—
assumed to be known in the analysis—by conducting the
analysis on several randomly generated trees. These topolo-
gies were obtained by randomly pruning/regrafting subtrees
from a neighbor-joining input tree, with the constraint of
keeping nodes with bootstrap support .90% unaltered.
Here again, results were essentially unchanged.

Finally, we estimated the minimum number of
sequences required for detecting nonindependent sites.

FIG. 3.—Example of detected coevolving sites that do not belong to a stem in Escherichia coli. (A) Small stem near B17, (B) long-range WC
interaction, (C) triple interaction between B11 and B13, and (D) probable size interaction near I3. See figures in Supplementary Material online for
two-dimensional pairs representation and table 1 for a classification of nonstem detected sites.

FIG. 4.—Probable example of detected coevolution due to frameshifts
during bacterial evolution. E25 stem in Escherichia coli: (A) structure in
the DCSE database, (B) structure as proposed by the CRW, (C) alternative
model with the right strand shifted down by 1 nt, and (D) right strand
shifted up by 1 nt.
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We generated several sub–data sets by randomly selecting
sequences in our data set and reperformed the analysis.
Small sub–data sets (,30 sequences) lead to a large number
of detected pairs, including many false positives, because
high q values were more likely to occur under the hypoth-
esis of independence. We used the percentage of stem pairs
among detected pairs as an indicator of how well the
method performs. Plotting this indicator as a function of

the number of sequences used leads to a sigmoidal curve
with a plateau reached at 60 sequences (results not shown).

Methodological Improvements

Our method is based on an improved substitution map-
ping. Improvements concern uncertainty over ancestral
states and multiple substitution events. As a consequence

Table 3
Nonstem Pairs Detected for the SSU Data Set

Site Pair

r̂min q
State
(Ec) %WC Type Location CRWAlignment

Escherichia
coli, 1GIX, 1J5E

513, 539 152, 169 0.683 0.885 AC 0.000 2a Near stem 9 Yes
1432, 1498 245, 283 0.661 1.000 UU 0.000 2a Loop with helix 12 Yes
3841, 3860 722, 733 0.681 0.932 GG 0.000 2a Loop near helix 26 Yes
6080, 6082 1415, 1416 0.279 0.806 GG 0.000 3b gStem 49
6082, 6315 1416, 1485 0.268 0.807 GU 0.329 3b
6360, 6361 1520, 1521 0.686 0.836 CC 0.025 3b 3# end
3793, 5636 690, 1233 0.249 0.806 GG 0.000 4 Helices 25–34
4827, 5593 1075, 1202 0.246 0.816 UU 0.076 4 gHelices 38–40
4837, 5593 1082, 1202 0.246 0.854 AU 0.861 4

NOTE.—See legend in table 2.

Table 2
Nonstem Pairs Detected for the LSU Data Set

Site Pair

Alignment
Escherichia

coli 1GIY 1NKW r̂min q
States
(Ec) %WC Type Location CRW

908, 926 338, 355 317, 334 328, 345 3.157 0.953 GC 0.975 1 gB16–B17 (see fig. 3A)
Yes

909, 925 339, 354 318, 333 329, 344 1.293 0.858 CG 0.975 1 Yes
1160, 7936 437, 2429 416, 2407 429, 2386 0.662 0.999 UA 1.000 1 G15–B19 (see fig. 3B) Yes
1318, 6551 552, 2040 531, 2018 541, 2001 0.691 0.853 CG 0.987 1 gCenter of the 2D

representation
Yes

4032, 6550 1283, 2039 1262, 2017 1275, 2000 0.681 0.960 AU 1.000 1 Yes
2925, 3090 883, 936 862, 915 875, 927 0.663 0.992 GC 0.962 1 Between D13 and D14 Yes
4183, 4442 1365, 1424 1344, 1403 1357, 1416 0.777 0.967 UA 1.000 1 E7–E10 Yes
6151, 6161 1773, 1777 1752, 1756 1743, 1747 0.679 0.762 CG 0.949 1 Loop between E20 and E21 Yes
6192, 8146 1803, 2608 1782, 2586 1773, 2565 0.684 1.000 UU 0.000 1 E22 and loop near G20 Yes
7705, 7822 2351, 2408 2329, 2386 2308, 2365 2.302 0.902 UA 1.000 1 gG12–G17

Yes
7706, 7821 2352, 2407 2330, 2385 2309, 2364 0.447 0.888 GC 1.000 1 Yes
8964, 9126 2834, 2908 2813, 2887 2788, 2862 3.157 0.914 AA 0.911 1 I1 Yes
462, 482 240, 255 219, 234 196, 211 0.415 0.825 AU 0.987 2b gTriplet (see fig. 3C)

Yes
462, 1176 240, 451 219, 430 196, 443 0.415 0.824 AA 0.000 2b Yes
482, 1176 255, 451 234, 430 211, 443 0.588 0.998 UA 1.000 2b Yes

6349, 6410 1877, 1907 1856, 1886 1848, 1869 3.122 0.836 UU 0.747 2a gE25

Yes
6351, 6408 1879, 1905 1858, 1884 1850, 1867 0.654 0.854 AG 0.013 2a Yes
6350, 6351 1878, 1879 1857, 1858 1849, 1850 0.606 0.787 GA 0.000 3b
6351, 6352 1879, 1880 1858, 1859 1850, 1851 0.683 0.794 AU 0.215 3b
6352, 6408 1880, 1905 1859, 1884 1851, 1867 0.654 0.800 UG 0.013 3b
6709, 6766 2133, 2166 2111, 2144 2094, NF 0.492 0.893 UG 0.000 2b gG4. Alpha-carbons of sites

are close in Thermus
thermophilus but sites are
not in the Deinococcus
radiodurans file

Yes
6709, 6769 2133, 2169 2111, 2147 2094, 2121 0.504 0.997 UA 1.000 1 Yes
6710, 6806 2134, 2191 2112, 2169 2095, 2165 0.396 0.954 GA 0.000 2b Yes
6711, 6807 2135, 2192 2113, 2170 NF, 2166 0.681 0.876 UA 0.975 1 Yes
6766, 6769 2166, 2169 2144, 2147 NF, 2121 0.492 0.858 GA 0.000 1 Yes
9033, 9099 2870, 2887 2849, 2866 2824, 2841 3.150 0.771 UU 0.000 3a Loops within I3 Yes
178, 6512 123, 2002 102, 1980 100, 1963 0.458 0.780 UG 0.000 4 B6–E21

1147, 2352 425, 599 404, 578 417, 587 0.407 0.781 AG 0.000 4 Near B19–near D1
1320, 4133 554, 1338 533, 1317 543, 1330 0.603 0.763 GG 0.051 4 Center and E6
2328, 4133 581, 1338 560, 1317 569, 1330 0.609 0.790 CG 0.861 4 C1–E6
2347, 3837 594, 1218 573, 1197 582, 1211 0.448 0.784 UG 0.013 4 Center–near D21
2831, 6350 829, 1878 808, 1857 821, 1849 0.606 0.849 GG 0.000 4 D6 and loop near E25
5344, 8443 1712, 2701 1691, 2679 1708, 2658 0.625 0.771 CA 0.051 4 E19–H3

NOTE.—Positions are given for the database alignment, the E. coli sequence, and the T. thermophilus (1GIY) and D. radiodurans (1NKW) structures. r̂min: minimum

posterior rate; q: estimated correlation coefficient; States: site states in E. coli; %WC: percentage of WC pairs among species; Type: interaction type (see table 1); CRW: is pair

documented on the CRW; 2D: two-dimensional; NF: not found in PDB file.
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of this new mapping procedure, we use the Pearson corre-
lation coefficient not the number of cosubstitution events
(Tufféry and Darlu 2000) as a measure of the amount of
coevolution for a pair of sites. In order to test which of these
improvements matter, we tested them separately on the
LSU data set. Our method detected 258 pairs, among which
246 were already documented as coevolving. For each
method assessed, we sorted site pairs according to their cor-
relation statistic and recorded the best 258 pairs. Among
these, we counted the number of pairs documented as
coevolving, thus characterizing the efficiency of various
methods in a comparable way. Results are shown in table 4.
It appears that removing the correction for multiple substi-
tutions (i.e., counting one substitution when states at the
bottom and top nodes on a branch are different, zero sub-
stitution otherwise) detected four additional pairs. Actually,
this uncorrected method detected eight pairs not detected by
our method, and our method detected four pairs not
detected by the uncorrected one. Our unbiased estimate
of site-specific, branch-specific number of changes does
not, therefore, appear to improve the cosubstitution analy-
sis. Averaging over all mappings slightly improves the ef-
ficiency, whereas the use of the correlation coefficient
instead of the number of cosubstitutions more than doubles
the number of interacting sites detected.

Discussion

A model-based method for detecting coevolving site
pairs is proposed. It is based on the comparison of substi-
tution maps of the candidate site pairs. The method was ap-
plied to bacterial rRNA data, a benchmark data set for
which a tremendous effort of structural characterization
has been made over the last 30 years (Gutell et al. 1992).

Biochemical Constraints Underlying the
Cosubstitution Process

The major part of detected pairs belongs to stems,
where coevolution is due to the selection for WC pairs.
The canonical WC pairs (AU and GC) are more stable
in stems, although the GU pair is sometimes allowed
(Tillier and Collins 1998). A striking result is the impor-
tance of these interactions in nonstem paired detected sites
(interactions of type 1, 15 pairs out of 26 confirmed pairs).

More generally, hydrogen bond interactions appear to
be the main source of chemical interaction in coevolving
rRNA. This is the case for stem pairs, types 1 and 2.
Another probable source of coevolution is strand shifting,
leading one site to interact with one base on the other strand
in one species and with an adjacent site in another related
species. This phenomenon may explain type 3b interac-
tions. Finally, we found one case where van der Waals
interactions are a likely cause for coevolution (see fig. 3D).

Genetics Mechanisms Underlying the
Cosubstitution Process

The near exclusivity of WC pairs in stem pairs raises
the question of the underlying substitution process. Indeed,
substituting a WC pair to another involves two simulta-
neous substitution events. Authors have hence hypothe-

sized that the GU pair could be a less deleterious
intermediate (Rousset, Pélandakis, and Solignac 1991),
but data analysis shows that this may be the case only in
highly variable regions (Tillier and Collins 1998). The
GU pair is indeed frequently observed in several but not
all stem pairs. Moreover, the GU intermediate does not ex-
plain all observed substitutions (in our data set, no stem pair
with high rate is compatible with a pure GC 4 GU 4 AU
or CG 4 UG 4 UA scenario). GU intermediates hence
exist and have a sufficiently high lifetime to be observed in
present day sequences, but other intermediates must be in-
voked to explain the evolution of interacting sites (see
Higgs 1998 for theoretical development).

Our interpretation is that the main factor responsible
for ribosome structure evolution lies in the variations of
constraints across space and time. For instance, a given pair
of interacting sites could temporarily allow a non-WC state
provided that another site pair in the neighborhood is WC.
For intermediate levels of constraint intensity, the GU pairs,
but not other non-WC pairs, could be acceptable.

Performance of the Method

Our method succeeded in retrieving most of the coevo-
lution information in the RNA data. Indeed, there are
around 700 stem pairs in the LSU and 400 in the SSU
of E. coli, which represent ’ 40% of the sites. Among these
pairs, about 510 (LSU) and 330 (SSU) are homologous
stem pairs, i.e., pairs made of sites that are correctly aligned,
and about 320 and 190 have a sufficiently high rate of evo-
lution to be included in the analysis. The method succeeded
in detecting 227 (LSU) and 117 (SSU) of these pairs, i.e.,
67% of detectable pairs in both cases (cf. Comparison with
Secondary Structure). Additionally, the method detected
interactions that probably result from frameshifts and are
not documented on the CRW.

Using a lower q threshold increased the number of
recovered stem pairs but led to more false positives. For
instance, using a q threshold of 0.7 instead of 0.75 for the
LSU data set added 115 detected pairs including only 35
additional stem pairs and 0 documented tertiary interaction.
Using a q threshold of 0.8, however, removed six out of
seven type 4 interactions.

The power of the method relies on the ability to take
among-site rate variation into account, which enabled us to
remove slow-evolving sites from the analysis. With our
method, the coevolutionary signal of these sites—if there
is any—does not clearly rise above the noise, as shown

Table 4
Efficiency of Methodological Improvements

Method
Ancestral

States Probability
Mult.
Subst. Statistic

N.
Det.

TD2000 Estimated Marginal No N. of cosub. 89
Estimated Marginal No Corr. coefficient 233
Averaged Joint No Corr. coefficient 250

This article Averaged Joint Yes Corr. coefficient 246

NOTE.—Mult. Subst, correction for multiple substitutions; N. Det, number of

known interacting pairs among the first 258 detected pairs; TD2000, Tufféry and

Darlu (2000); N. of cosub., number of cosubstitution; Corr. coefficient, correlation

coefficient.
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by the null distribution of the q statistic. Considering only
fast-evolving sites allowed us to choose a statistic threshold
leading to solid predictions with very few false positives,
which is a strength of the method. One may also wish to
be more exhaustive and choose a lower threshold to retrieve
a larger number of coevolving pairs but with potentially
more false positives.

The method is based on the cosubstitution mapping
and does not make any hypothesis concerning the underly-
ing mechanism and possible intermediates. This generality
is a strength of the method, which can be applied to rRNA
and protein data, but may also be a weakness. Indeed, the
method may miss some coevolving pairs containing inter-
mediate states such as the GU pair. Figure 5 shows the
q statistic as a function of the GU content of each LSU stem
pair with a minimum posterior rate of 0.3 (the GU content
of a site pair is defined as the proportion of sequences in the
data set showing states GU or UG for this pair). The method
succeeded in retrieving 205/242 5 85% of the stem pairs
with GU content �0.15, whereas it detected only 5/67 5
7% of the pairs with GU content .0.15. This probably
comes from the fact that stem pairs for which GU is allowed
can evolve according to the pathway GC /GU /AU, for
instance, a pattern that does not involve any cosubstitution
if the substitutions occur on different branches. This
problem apparently explains a substantial fraction of the
nondetected stem pairs (fig. 5).

Perspectives

An obvious perspective in this work is the extension to
proteins. The method is alphabet independent and can be
applied to protein data sets as is. In a preliminary analysis
of a 100-species vertebrate myoglobin data set, however,
the null distribution raised high values of q, and no signif-

icant coevolving pair could be retrieved. The low perfor-
mance of the method on this data set can be explained
in two ways. First, the method assumes that all substitutions
are functionally equivalent. In proteins, however, the vari-
ety of amino acid properties makes this assumption unreli-
able. Second, amino acid sites probably do not coevolve in
a pairwise fashion as in rRNA. The method therefore needs
to be improved to deal with protein data sets, for instance,
by incorporating chemical distances and/or using mutivari-
ate analysis (e.g., Fleishman, Yifrach, and Ben-Tal 2004).

Finally, our method assumes that several parameters
are known, namely, tree topology and branch lengths, sub-
stitution model, and rate distribution. These parameters
were assumed to be equal to their ML estimate. One
may account for the uncertainty of these values by encap-
sulating the method in a hierarchical Bayesian framework
using Monte-Carlo Markov chains (e.g., Nielsen 2002).

Supplementary Material

The alignment of LSU and SSU sequences used are
available in MASE format, with site selections. Two color
pictures with all detected sites plotted on the Escherichia
coli secondary structure are also given. Figures are avail-
able at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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