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Abstract

Adaptation to local environments often occurs through natural selection acting on a large number of loci, each having a
weak phenotypic effect. One way to detect these loci is to identify genetic polymorphisms that exhibit high correlation
with environmental variables used as proxies for ecological pressures. Here, we propose new algorithms based on
population genetics, ecological modeling, and statistical learning techniques to screen genomes for signatures of local
adaptation. Implemented in the computer program “latent factor mixed model” (LFMM), these algorithms employ an
approach in which population structure is introduced using unobserved variables. These fast and computationally
efficient algorithms detect correlations between environmental and genetic variation while simultaneously inferring
background levels of population structure. Comparing these new algorithms with related methods provides evidence
that LFMM can efficiently estimate random effects due to population history and isolation-by-distance patterns when
computing gene-environment correlations, and decrease the number of false-positive associations in genome scans. We
then apply these models to plant and human genetic data, identifying several genes with functions related to develop-
ment that exhibit strong correlations with climatic gradients.
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Introduction

Local adaptation through natural selection plays a central role
in shaping the variation of natural populations (Darwin 1859;
Williams 1966) and is of fundamental importance in evolu-
tion, conservation, and global-change biology (Joost et al.
2007; Manel et al. 2010; Barrett and Hoekstra 2011; Jay et al.
2012; Schoville et al. 2012). The intensity of natural selection
commonly varies in space and can result in gene-environ-
ment interactions that have measurable effects on fitness
(Storz and Wheat 2010). This can lead to local adaptation if
populations maintain locally advantageous traits despite gene
flow with neighboring populations.

In principle, identifying chromosomal regions involved in
adaptive divergence can be achieved by scanning genome-
wide patterns of DNA polymorphism (Nielsen 2005; Storz
2005). Usually, the aim of screening procedures is to detect
locus-specific signatures of positive selection. In populations
inhabiting spatially distinct environments, loci that underlie
adaptive divergence can be detected by comparing relative
levels of differentiation among large samples of unlinked mar-
kers (Beaumont and Nichols 1996; Beaumont and Balding
2004) and by using empirical tests to compare levels of dif-
ferentiation with the genomic background (Kelley et al. 2006;
Akey 2009; Novembre and Di Rienzo 2009).

An alternative way to investigate signatures of local adap-
tation, especially when beneficial alleles have weak pheno-
typic effects, is by identifying polymorphisms that exhibit
high correlation with environmental variables (Joost et al.

2007; Hancock et al. 2008; Coop et al. 2010; Poncet et al. 2010;
Pritchard et al. 2010). In natural populations, quantitative
traits that exhibit continuous geographic variation are often
associated with specific ecological variables reflecting selective
pressures acting on individual phenotypes (Endler 1977). This
type of variation is then reflected in geographic clines or in
sympatric populations that exploit different ecological niches
(Haldane 1948; Berry and Kreitman 1993; Prugnolle et al. 2005;
Young et al. 2005). Evidence for local adaptation to continu-
ous environments can be detected if there is highly significant
association with the environmental variables at some loci
compared with the background genomic variation.

A major difficulty is that the geographical basis of both
environmental and genetic variation can confound interpre-
tation of the tests (Eckert et al. 2010), as local adaptation can
be hindered by gene flow (Lenormand 2002), and can be
difficult to distinguish from the effects of genetic drift and
demographic history (Novembre and Di Rienzo 2009). The
main problem is that without corrections for the effect of
population structure or isolation-by-distance (IBD), the un-
derlying null distribution may be insufficient to account for
the demographic history of the study organism. As a result,
tests for associations between loci and environmental vari-
ables using classical regression models will be prone to high
rates of false positives (FP) (Meirmans 2012). Recent studies
have used the background patterns of allele frequencies to
build a null model that accounts for the effects of drift and
demographic history (Hancock et al. 2008; Coop et al. 2010;
Fumagalli et al. 2011; Hancock et al. 2011). To correct for
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population stratification, Hancock et al. (2008) used an em-
pirical approach that estimates the covariance of allele fre-
quencies among populations. These authors assessed the
evidence for local adaptation of each allele by testing whether
environmental variables explained more variance than a null
model with this particular covariance structure.

A drawback of empirical tests is the need to identify selec-
tively neutral loci from the genomic background before test-
ing for associations with environmental factors. The need to
identify such a list a priori implies that tests based on empir-
ical estimates of relatedness can lack power to reject neutral-
ity, which is an important limitation for data sets where all loci
are potentially under selection. For example, single nucleotide
polymorphism (SNP) data sets derived from expressed se-
quences are often used to study local adaptation in nonmodel
organisms (Eckert et al. 2010). Choosing a subset of markers
not only reduces the size of such a data set but could also
arbitrarily bias downstream statistical tests if only certain sub-
sets of data (e.g, synonymous sites) are chosen as the neutral
markers. After all, putatively neutral sites can be linked to loci
under selection over large physical distances (Thibert-Plante
and Hendry 2010). In this study, we address this problem by
introducing statistical models called latent factor mixed
models (LFMM).

Using these models, we test correlations between environ-
mental and genetic variation while estimating the effects of
hidden factors that represent background residual levels of
population structure. To perform parameter estimation, we
extend probabilistic principal component analysis (PCA) and
recent statistical learning approaches (Tipping and Bishop
1999; Salakhutdinov and Mnih 2008; Engelhardt and
Stephens 2010; Frichot et al. 2012). Based on low rank ap-
proximation of the residual covariance matrix, we implement
algorithms to deal with hundreds of thousands of polymor-
phisms with rapid computing times. We show that our algo-
rithms control for random effects due to population history
and spatial autocorrelation when estimating gene-environ-
ment association, and we provide examples of how our ap-
proach can be used to detect local adaptation in plants and
humans.

New Approaches

Consider the data matrix, (Gj,), where each entry records the
allele frequency for individual i at the genomic locus ¢,
1<i<n 1<{¢<L and n and L represent the total
sample size and number of loci, respectively. For simplicity,
we assume our loci are bi-allelic, for example, SNPs. In this
case, for each marker, there is an ancestral and a derived allele,
and Gj; is the number of derived alleles for locus £ and indi-
vidual i. For diploid data, Gj; is thus equal to 0, 1, or 2, and
corresponds to the genotype at locus £. In addition to the
genotypic data, we have a vector of d geographic and envi-
ronmental variables, (X;), for each individual. The vector of
covariates could include latitude and longitude, habitat and
other ecological information, climatic variables, and so forth,
which serve as proxies for unknown environmental pressures
(Hancock et al. 2008; Eckert et al. 2010).
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Model

To evaluate associations between allele frequencies and envi-
ronmental variables while correcting for background levels of
population structure, we regard the matrix G as being a re-
sponse variable in a regression mixed model

Gie = pe + BiXi+ U]V + €, (M

where 1y is a locus specific effect, B is a d-dimensional vector
of regression coefficients, U; and V/, are scalar vectors with K
dimensions that model latent factors and their scores
(1 < K < n). The residuals €, are statistically independent
Gaussian variables of mean zero and variance 0.

We refer to the earlier-mentioned statistical model as a
LFMM (see Materials and Methods). Similar models, termed
factor regression models, have been considered earlier in bio-
statistics in the inference of molecular pathways from gene
expression data (West 2003; Carvalho et al. 2008).

In LFMMs, environmental variables are introduced as fixed
effects while population structure is modeled using latent
factors. In the model, the matrix term UTV models the part
of genetic variation that cannot be explained by the environ-
mental pressures. Note that the use of factorization methods
is closely related to estimating population structure by singu-
lar value decomposition, a well-established technique for
identifying scores and loadings in PCA (Jolliffe 1986).
Recently, matrix factorization methods have been generalized
to include probabilistic PCA (Tipping and Bishop 1999) and
probabilistic matrix factorization algorithms (Salakhutdinov
and Mnih 2008), which have proven useful in analyzing pop-
ulation genetic data (Engelhardt and Stephens 2010). To clar-
ify the connection between LFMM and PCA, assume that no
environmental variable is available. In this case, we set 8, = 0
for all locus £. In matrix factorization algorithms, a data matrix
G with n rows and L columns can be decomposed into a
product of two matrices U and V, where U has n rows and K
columns, and V is a K x L matrix. Following Patterson et al.
(2006), we assume that the genotypic data are centered. We
consider the matrix Y;;y = G;; — G, where we have sub-
tracted the mean value of each column, G, = ZL Gije/n.
For each individual i and locus ¢, the decomposition is as
follows:

K
Y =U'V, = Z UicVike - (2)
=1

To estimate the factor vectors U; and V, the squared error
is minimized on the set of observed data

K
nJ’i\E‘ ; (Yie — UVie)” . (3)

With K = L, this approach is similar to computing PCA
loadings and scores (Jolliffe 1986). The number of compo-
nents K can, however, be chosen much lower than the
number of loci or individuals. In simulations, we based our
choice of K on Tracy—Widom theory (Patterson et al. 2006). In
real applications, this choice of K may be replaced by
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estimates of population genetic structure obtained with clus-
tering algorithms like STRUCTURE (Pritchard et al. 2000) or
TESS (Chen et al. 2007). When values of K are low our algo-
rithm is essentially a low-rank approximation of the covari-
ance structure (Eckart and Young 1936), which leads to
computationally fast estimation algorithms. To estimate the
LFMM parameters, we implemented a Gibbs sampler algo-
rithm (Materials and Methods and supplementary file S1,
Supplementary Material online). We computed |z | -scores
for all environmental effects, and we tested the significance of
these effects using the standard Gaussian distribution and
Bonferroni correction for multiple testing.

Incorporating population genetic structure using estimates
of principal components or ancestry coefficients is common
in genome-wide association studies (Price et al. 2006; Yu et al.
2006; Zhou and Stephens 2012), and in tests based on em-
pirical approaches (Coop et al. 2010; Poncet et al. 2010). In
this paragraph, we explain the distinction between LFMM
and tests based on empirical covariance matrices. Suppose
that we start by computing PCA scores from the matrix Y for
all individuals, and denote by U; the PCA scores for individual
i. The product matrix UUT is thus equal to the empirical
covariance matrix

uu” =YY" /n. (4)

Now using the scores as covariates in a Bayesian regression
model, we obtain

G=p+BX+U"V+e 5)

By a change of variables, this is equivalent to fitting the
model

G=p+pX+¢, (6)

where the distribution of € is a multivariate Gaussian distri-
bution of the covariance matrix equal to o?ld + o YY" /n.
Here, Id is the n-dimensional identity matrix, and o, is the
variance of factor coordinates. Setting o7, = 1 and consider-
ing small values of the scaling parameter o2, the model de-
fined in equation (6) is nearly equivalent to the model
implemented in empirical approaches. In a Bayesian
Gaussian regression framework, incorporating PCA scores as
covariates in an association model is equivalent to modeling
residuals as Gaussian vectors with covariance depending on
the empirical covariance matrix of the genotypic data. Thus, a
major difference between methods is that the factor matrix U
and the regression coefficients f are estimated by a two-stage
procedure in empirical approaches, whereas it requires a
single step in LFMMs.

Results

We designed experiments based on simulated data to answer
the following questions: 1) Are tests based on LFMMs con-
servative or liberal? 2) How does the LFMM algorithm
perform compared with existing methods such as logistic
or standard regression models (Joost et al. 2007), principal
component regression model (PCRM), partial Mantel tests
(PMTs) (Fumagalli et al. 2011), standard linear mixed

models (Zhou and Stephens 2012), and Bayesian mixed
models (Coop et al. 2010)?

Distribution of P Values under the Null Hypothesis

To evaluate the calibration of P values, we used equation (1)
with B8 = 0 to simulate data under a null hypothesis of no
association with any environmental variable (Materials and
Methods). Figure 1 reports the empirical cumulative distribu-
tion function (ECDF) of P values for K = 5 and K = 20. Plots for
other values of K are shown in supplementary figure S1,
Supplementary Material online. P values are well calibrated
when their ECDF is close to the uniform distribution, repre-
sented by the bisector line. Below the line, the test is conser-
vative. For values of K less than 5, the ECDF was close to a
uniform distribution, and P values were correctly calibrated.
For K = 20, the tests were slightly conservative. Thus, for mod-
erate and for large values of the number of latent factors, the
tests produced small numbers of FP associations.

Next, we used equation (1) to simulate data exhibiting
various levels of population structure and association with a
randomly generated environmental variable, and we com-
pared the distributions of statistical errors for the following
three estimation approaches: 1) LFMM, 2) a standard linear
regression model, and 3) a PC regression model (Materials
and Methods).

Figure 2 reports the quantiles of absolute errors for
LFMM, the standard linear regression, and PC regression
models. For LFMM, absolute errors ranged between 0
and 06 for K=2—20, and between 0 and 1.0 for
K = 100. Mean squared errors indicated that the bias and
variance of estimates were small (table 1). Compared with
LFMMs, the relative errors of the linear and PC regression
estimates increased with the rank of the hidden factor
matrix. The absolute errors of these algorithms ranged be-
tween 0 and 1.4 for K =2, between 0 and 3.2 for K = 20, and
between 0 and 9.2 for K=100. When linear or PC regression
models were fitted to the data, the quantiles of errors shifted
to values = 1.74-fold higher for K = 2, & 3.8- to 4.1-fold higher
for K = 20, and & 5.5- to 7.7-fold higher for K= 100. Mean
squared errors provided additional evidence of relatively poor
performances of the linear regression and PC regression
estimates when the levels of underlying structure increased
(table 1).

Spatial Coalescent Simulations

In another series of experiments, we compared the LFMM
estimation algorithm against two methods that do not cor-
rect for population stratification, and against methods that
use the empirical covariance matrix to correct for population
stratification. The first set of methods include a linear model
(LM) and generalized linear model (GLM) (Joost et al. 2007),
and the second set of methods included three empirical
methods: a PCRM, PMTs (Smouse et al. 1986; Legendre and
Legendre 2012), and the mixed models implemented in
BAYENV and GEMMA (Coop et al. 2010; Zhou and Stephens
2012). In PMTs, the relationship between population genetic
distances at each SNP and a matrix of environmental variable
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Fic. 1. Simulations from the null model. ECDF of P values for LFMM tests for simulations from a latent factor model using (A) K=5 and (B) K =20

latent factors.
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Fic. 2. Generative model simulations. Quantiles of absolute errors for the standard linear regression, PC regression, and LFM models using simulations
from latent factor models using (A) K=2, (B) K=20, and (C) K =100 latent factors.

Table 1. Mean Squared Errors for Estimates of Environmental Effects.

K LM PCRM LFMM
2 0.20 0.21 0.15
20 127 1.42 0.08
100 6.13 12.41 0.20

distance was evaluated using a correction for correlations in
genome-wide allele frequencies. With GEMMA, we imple-
mented a standard linear mixed model in which a single en-
vironmental variable is explained by SNP genotype, and where
relatedness is introduced by a random effect (see Materials
and Methods for a description of all methods).

To examine the outcome of tests when genetic variation is
neutral at all loci, we computed the distributions of P values
under LM, GLM, PMT, PCRM, GEMMA, and LFMM with
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different values for the number of latent factors (K ranging
from 1 to 20). The distributions of P values for tests based on
LM and GLM showed a strong departure from the uniform
distribution (fig. 3A and B). In those cases, the tests were too
liberal and produced a large number of FP results. For GLM,
using population allele frequencies instead of individual ge-
notypes reduced the number of FP associations but the tests
based on these models remained liberal. The ECDF for PMTs
showed an excess of low and high P values, but the curve was
closer to a uniform distribution than with LM tests (fig. 3C).
Using K = 7 PCs in PCRM, P values for those tests and for
GEMMA were well calibrated (fig. 3D-F). Choosing K based
on Tracy—Widom theory (K = 7) and on Bayesian clustering
algorithms (K = 5) led to slightly conservative tests for
LFMM:s (fig. 3E). ECDFs for all values of K are shown in sup-
plementary figures S2 and S3, Supplementary Material online,
respectively.
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Fic. 3. Spatial neutral coalescent simulations. ECDF of P values for (A) the linear regression model (LM), (B) the GLM, (C) PMTs using Nei's genetic
distance and the empirical correlation matrix for correction, (D) the PC regression model using K = 7 principal components (PCRM), (E) the LFM
model using K = 1, 5, 7, and 20 latent factors (LFMM) where the value K = 5 corresponds to the estimate of the number of clusters obtained from
Bayesian clustering algorithms, and the value K = 7 is a Tracy—Widom estimate, and (F) the standard linear mixed model implemented in GEMMA.

Next, we evaluated the ability of LFMMs to detect loci
exhibiting correlations with particular environmental gradi-
ents and compared tests based on LFMMs with methods
based on linear models. An environmental variable, x, was
defined for each population as the geographic identifier of
the population in the linear stepping-stone model. Following
Haldane (1948), we chose a sigmoid function to represent the
shape of a selected allele frequency cline through geographic
space. Under strong selection (6 = 0.2), we expect that tests

produce low rates of FP associations while still preserving
reasonable power.

For all simulated data sets, we evaluated the rates of false
negative (FN) and of FP tests based on LM, GLM, PMT,
PCRM, GEMMA, and LFMM for two values of the type |
error (table 2). In the case of strong selection, we found
that standard linear models exhibited high rates of FP. In
contrast, tests that include corrections for population struc-
ture—based on PMTs, PCRM, and standard linear mixed
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Table 2. Rates of FN and FP Association for Tests Based on LM, PCRM, Standard Linear Mixed Models (GEMMA), PMT Correlations, and LFMM.

FN (FP) M GLM GEMMA PMT LFMM
Type | error
a = 0.001 0% (33%) 0% (24%) 100% (3%) 100% (2%) 99% (6.8%) 4% (5%)

o = 0.0001 0% (27%) 0% (19%)

100% (0%)

100% (0%) 100% (3.4%) 14% (3%)

models—exhibited low rates of FP. But PMT, PCRM, and
GEMMA exhibited large rates of FN, and these tests had low
power to reject neutrality. These results provide evidence that
the standard methods may fail to identify selected loci from
the genomic background even though association with the
environment is strong. In this context, tests based on LFMM
produced low rates of FP and had reasonable power to reject
neutrality (table 2).

To perform comparisons with the program BAYENV (Coop
et al. 2010), we wanted to evaluate whether the program
was able to detect weak selection. Thus, we set the intensity
of selection through space to a low level (6 = 0.1, Materials
and Methods). As BAYENV returns Bayes factors instead of P
values, we considered ranked lists recording the M loci corre-
sponding to the strongest associations (M between 1 and
L = 1,050). Figure 4 reports the number of true positives
(TP) as a function of the number of FP. Considering the
rates of TP and FP, the mean area under the receiver-operating
characteristic curve (AUC) for tests based on LFMMs with
K =5-7 factors were approximately 0.95-0.96, whereas the
AUC for BAYENV was equal to 0.88. In the linear stepping
stone model simulations, the tests based on LFMM performed
better than BAYENV for all values of K (fig. 4).

Loblolly Pine

To illustrate the application of LFMMs, we analyzed genomic
data of Loblolly pines (Pinus taeda, Pinaceae, Eckert et al.
2010). The Loblolly pine is distributed throughout the
Southeastern United States, ranging from the arid Great
Plains to the humid Eastern Temperate Forest ecoregion.
These data consisted of 1,730 SNPs selected in expressed se-
quence tags (ESTs) for 682 individuals (Eckert et al. 2010).
We applied LFMM to the Loblolly pine data, testing 5
environmental variables representing the 5 first compo-
nents of a PCA for 60 climatic variables (data from Eckert
et al. 2010). A total of 392, 113, and 30 SNPs obtained
| z| -scores greater than 3, 4, or 5 for at least one environ-
mental variable, respectively. On the basis this result, we
considered that a SNP effect was significant when its |z] -
score was greater than 4 (two-sided test). The cutoff |z | > 4
corresponds to P values P < 10> obtained after applying a
Bonferroni correction for a type | error o = 0.01 and
L ~ 10% loci. Among the 50 loci with the highest |z|-
scores, 17 were shared with those detected by Eckert et al.
(2010) using BAYENV. Seven of the 10 SNPs with Bayes fac-
tors greater than 10° were confirmed by the LFMM analysis.
For the first and second environmental variables, the two
SNPs which obtained the highest Bayes factors using
BAYENV were recovered by the LFMM analysis. Table 3 pro-
vides a list of SNPs associated with climatic gradients and
their functional annotation. The LFMM analysis discovered
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(STRUCTURE and Tracy—Widom values) and for K =1, 3, 10, and 20

for spatial coalescent simulations including 1,050 loci with 50 SNPs

under selection.

new significant and interesting associations with climatic
gradients not identified in the analysis of Eckert et al.
(2010), such as the chloroplast lumen 19 kDA protein in-
volved in photosynthesis (| z| = 6.42), a pentatricopeptide
repeat protein involved in oxidative stress and salt stress
(|1z|= 5.90), and the heat shock transcription factor hsf5
(|z]= 5.60) involved in regulation of transcription and re-
sponse to temperature stress (table 3 and supplementary
table S1, Supplementary Material online).

Human Data Analysis

We applied LFMM to a worldwide sample of genomic DNA
from 1,043 individuals in 52 populations, referred to as the
Human Genome Diversity Project — Centre d’Etude du
Polymorphisme Humain (HGDP-CEPH) Human Genome
Diversity Cell Line Panel (hagsc.org/hgdp/). We extracted cli-
matic data for each of the 52 population samples using the
WorldClim data set at 30 arcsecond (1 km?) resolution
(Hijmans et al. 2005) (supplementary table S2, Supplementary
Material online).

A total of 2,624 (0.4%) SNPs obtained |z | -scores greater
than 5 (supplementary fig. S3, Supplementary Material
online). The cutoff |z|> 5 (P < 1077) corresponds to the
standard Bonferroni correction for a nominal value of type |
error @ < 0.01 and L of order 10°. Among loci with |z| -
scores greater than 5, 28 genome-wide association
study (GWAS) SNPs with known disease or trait association
were found (Hindorff et al. 2009). These include several SNPs
discovered by Hancock et al. (2011). For example, the SNPs
rs12913832 and rs28777 have |z | -scores greater than 6 and
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Table 3. Loblolly Pines.

Annotation

Gene Ontology

—Logo(P Value)

Thylakoid lumenal 19 kDa chloroplast Oxygen-evolving complex; Photosystem |l 9.87
Pentatricopeptide repeat protein Oxidative stress; salt stress 8.44
Conserved hypothetical protein Ubiquitin-specific protease 8.28
Chalcone synthase Flavonoid biosynthesis; wound response; oxidative stress 7.80
Heat shock Temperature stress 7.67
Dirigent protein pdir18 Disease response 6.56
Heat shock transcription factor hsf5 Regulation of transcription; response to stress 6.15
Zinc finger Transcription; DNA binding zinc ion binding 5.84
Probable n-acetyltransferase hookless 1 Auxin signaling; photomorphogenesis; ethylene response 5.78
Calcium-binding pollen allergen Polcalcin; calcium ion binding 4.61
Geranylgeranyl diphosphate synthase Cholesterol biosynthesis; isoprenoid biosynthesis 4.59
Hypothetical protein Osl_04393 Trehalose-6-phosphate phosphatase 4.59
Potassium proton antiporter Potassium ion transport; solute:hydrogen antiporter 5.54
DNA mismatch repair DNA repair; regulation of DNA recombination 5.44

Note.—Annotation and gene ontology for some interesting SNPs with z-scores with absolute value greater than 4 for the first two components of 60 climatic variables.

are associated with genes OCA2 and SLC45A2 (table 4).
Among the SNPs significantly correlated with climatic gradi-
ents, several notable examples include genes associated with
celiac disease (ICOSLG), height (LHX3-QSOX2 and IGFT1), and
vitamin D synthesis or activation (NADSYN1-encoding nico-
tinamide adenine dinucleotide synthetase and DHCR7 the
gene encoding 7-dehydrocholesterol reductase, an enzyme
catalyzing the production in skin of cholesterol from 7-dehy-
drocholesterol) (table 4).

We performed a Gene Ontology enrichment analysis on
human genes with |z |-scores greater than 5 (2,624 SNPs).
Using a threshold of 0.001 for the false discovery rate (FDR) g
values, we found significant enrichment of gene ontology
terms associated with six biological processes linked to cell
adhesion and locomotion, neural and organismal develop-
ment (supplementary tables S3-S4, Supplementary Material
online). The FDR g values for the regulation of developmental
processes (76 genes) and the regulation of multicellular or-
ganismal processes (88 genes) were equal to g = 0.006 and
g = 0.003. For examples of interesting genes with a high level
of association with climatic variables, we focus of the 65 SNPs
with |z |-scores greater than 7. Among the 65 SNPs, EPHB4
(|z] = 8.90) is involved in heart morphogenesis and angio-
genesis, NRG1 (| z| = 7.15) is involved with nervous system
development and cell proliferation, RBM19 (| z| = 7.04) is
involved with positive regulation of embryonic development,
EYA2 (|z| = 7.09) is involved with eye development and
DNA repair, and POLAT (|z| = 7.63) is involved with the
mitotic cell cycle and cell proliferation (Saccone et al. 2017;
Hornbeck et al. 2012; supplementary table S3, Supplementary
Material online). Supplementary table S5, Supplementary
Material online, describes a list of 508 SNPs with | z |-scores
greater than 6.

Discussion

Interpretation of LFMM Results and Other Methods

On the basis of a matrix factorization approach, LFMMs pro-
vide a unified framework for estimating effects of

environmental and demographic factors on genetic variation.
Without environmental variables, LFMM:s are similar to per-
forming a sparse version of a probabilistic PCA of allele fre-
quencies (Tipping and Bishop 1999; Engelhardt and Stephens
2010). When environmental variables are included, hidden
factors capture the part of genetic variation that cannot be
explained by the set of measured environmental variables.
This fraction of genetic variation could result from the demo-
graphic history of the species, unknown environmental pres-
sures or from IBD patterns.

Although a plethora of statistical tests have been proposed
for detecting genes evolving under positive selection and local
adaptation (Storz 2005; Novembre and Di Rienzo 2009), the
development of tests based on correlations with habitat or
landscape variables is still recent (Joost et al. 2007; Hancock
et al. 2008). Compared with methods based on summary
statistics, tests based on environmental association have in-
creased power to detect selection from standing genetic var-
iation and soft sweeps in a species genome (Pritchard et al.
2010; Schoville et al. 2012). However, simple implementation
of these tests, for example, linear or logistic regression models,
can be misleading in the presence of IBD patterns (Meirmans
2012). Our simulation results provide clear evidence that tests
based on LFMM:s significantly reduce the rates of FP associ-
ations in the presence of IBD.

Rates of FP and FN were also investigated for three regres-
sion methods that include corrections for population genetic
structure: PMTs, PCRM, and standard linear mixed models. In
the case of phylogenetic comparative analyses that infer en-
vironmental correlations for correlated DNA sequences,
PMTs were reported to be erroneous (Harmon and Glor
2010). In addition, Legendre and Legendre (2012) warn
against using partial Mantel correlations. The high error rate
may stem from autocorrelation of matrix elements due to
underlying phylogenetic structure. We found that PMTs pro-
duced an excess of high and low P values under IBD assump-
tions. Although PMTs were not correctly calibrated, these
tests can provide a useful statistic for ranking loci, and they
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Table 4. Human Data.

Landscape-Trait  Ref. SNP ID Nearby Gene

Disease or Trait Association —Logo (P Value)

Category
Pigmentation rs32579 PPARGC1
and tanning  rs12913832  OCA2/HERC2
rs11234027 DHCR7
rs3129882 HLA-DRA
rs28777 SLC45A2
Immune and rs1250550 ZMIZ1

autoimmune
rs2735839 KLK3
rs9264942 RPL3P2

rs2179367 Intergenic between SUMO4
and ZC3H12D
rs1551398 Intergenic between TRIB1

and LOC100130231
rs2289700 CTSH
rs4819388 ICOSLG
rs703842 CYP27B1/METTL1
rs12593813  MAP2K5
rs4664308 PLA2R1

Metabolism rs10908907  Intergenic MUC7
rs1566039 Intergenic between PAPD7 and MIR4278
rs7665090 MANBA
Cardiovascular rs869244 ADRA2A
rs12034383 CR1
rs3129882 HLA-DRA
rs11897119  MEIS1
Height rs7678436 NCAPG-LCORL
Other rs12479254  BOK

Tanning 9.42
Eye color, eye color traits, hair color, black vs. 9.15
blond hair color, black vs. red hair color
Vitamin D levels 7.78
Parkinson’s disease 6.97
Black vs. blond hair color, black vs. red 6.90
hair color
Crohn’s disease and inflammatory bowel disease 8.77
(early onset)
Prostate cancer 8.16
HIV-1 control 8.02
Dupuytren’s disease 7.57
Crohn’s disease 7.45
Bipolar disorder 6.98
Celiac disease 6.67
Multiple sclerosis 6.59
Restless legs syndrome 6.40
Nephropathy (idiopathic membranous) 6.28
Alcoholism (heaviness of drinking) 8.91
Sphingolipid levels 6.89
Primary biliary cirrhosis 6.48
Platelet aggregation 7.20
Erythrocyte sedimentation rate 7.15
Systemic sclerosis 6.97
PR interval 6.71
Height 9.43
Brain structure 9.43

Note—HGDP SNPs with the highest |z|-scores among those associated with phenotypic traits in GWAS.

can detect interesting associations after choosing a tail cutoff
(Fumagalli et al. 2011). P values based on PCRM and standard
linear mixed models were correctly calibrated. But we found
that the three regression methods had low power to detect
true associations under IBD assumptions. Although these
approaches might be useful to detect alleles with strong as-
sociations to environmental gradients, they can miss several
interesting associations. FN rates were high for PMT, PCRM,
and GEMMA because the simulated environmental variable
was strongly correlated with population structure. We sus-
pect all regression methods—including LFMM—have higher
power when environmental gradients are uncorrelated to the
main axis of neutral genetic variation.

Both the mixed model approach of the computer program
BAYENV and the LFMM approach include a covariance struc-
ture in a regression model, but there are important differences
between the two approaches. A first improvement is that
LFMMs estimate latent factors and regression coefficients si-
multaneously, whereas BAYENV first estimates a covariance
matrix, and then uses it when estimating (random) environ-
mental effects. To apply BAYENV, the authors suggest utilizing
selectively neutral SNPs to estimate the covariance matrix.
Inclusion of adaptive markers in the “neutral set” is some-
times unavoidable, and in this case, methods based on the
empirical covariance matrix may overlook interesting associ-
ations. For Loblolly pines expressed sequence data, the
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distinction between the two approaches may explain the
differences we observed between the list of loci obtained
from LFMM and the list obtained from BAYENV (Eckert
et al. 2010). For the pine data, it was difficult to select neutral
SNPs from the background a priori. Another distinction be-
tween LFMM and BAYENV approaches is our use of low rank
approximations of the covariance matrix. LFMMs actually
estimate correlations between environmental predictors
and allele frequencies while K hidden factors explain residual
genetic variation, where K is much smaller than the sample
size. Though program speed is generally difficult to evaluate
for Markov chain Monte Carlo methods, we observed that
LFMM was computationally faster than BAYENV when ana-
lyzing large data sets.

Number of Latent Factors

A potential weakness of tests based on LFMM is that we need
to choose K. In the LFMM modeling approach, the choice of
low values for K is important for optimizing the computa-
tional performances of the estimation algorithm. This choice
is reminiscent of selecting the number of components in PCA
or in Bayesian clustering programs, and it has also an impact
on test outcomes. For values of K taken too large, the tests are
conservative, and the power to reject neutrality declines.
Estimates of K that minimize the trade-off between the bias
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and variance for our statistical estimates could be obtained by
using cross-validation procedures. Cross-validation proce-
dures are computationally intensive, so instead we use
Tracy—Widom theory to select K (Patterson et al. 2006).
We evaluated this choice during our simulation analysis
and found that P values were well calibrated. Although the
choice of Tracy—Widom estimates is suboptimal, the perfor-
mances of LFMMs were superior to those of BAYENV in sim-
ulations of IBD patterns. In the analysis of human data, we
restricted K to be less than 50 (approximately the number of
population samples). We suggest that, when there is a rea-
sonable estimate of the number of genetic clusters for a spe-
cies, this should be used in LFMM tests directly. For example,
estimates of K based on independent genetic data sets could
be obtained from Bayesian clustering programs like
STRUCTURE (Pritchard et al. 2000). Although finer grain pop-
ulation structure could also be evaluated (Lawson et al. 2012),
our choice was again motivated by a trade-off between accu-
racy and run-time. A future development of our LFMM ap-
proach will be to develop fast numerical optimization
procedures based on variational approximations of the likeli-
hood, which will allow us to implement cross-validation al-
gorithms and increase the power of tests.

Plant and Human Data

For P. taeda, the LFMM results confirmed that several ESTs
previously discovered with BAYENV had functions linked to
climate (Eckert et al. 2010). In addition, the LFMM analysis
discovered new interesting candidate SNPs. Those variants
include functions associated with wound repair and immu-
nity; photosynthetic activity and carotenoid biosynthesis; cel-
lular respiration and carbohydrate metabolism; and heat, salt,
and oxidative stress responses (table 3). Applying LFMMs to
the HGDP data, we found that a total of 0.4% of all polymor-
phisms (2,624 SNPs) exhibited significant associations with
temperature gradients (| z| > 5). For example, we identified
SNPs associated with the gene OCA2 that may be functionally
linked to blue or brown eye color and the gene SLC45A2 that
may be associated with skin pigmentation (Hancock et al.
2011). This list also contained SNPs identified from GWAS
studies of height and vitamin D synthesis and diseases such as
gluten intolerance and Crohn’s disease. Another interesting
result is that the list of genic SNPs with |z |-scores greater
than 5 (| z| > 5) was enriched for gene ontology terms as-
sociated with six biological processes linked to cell adhesion
and locomotion, neural and organismal development.
Among the highest scores, the genes EPHB4, BOK, and
NRG1—with functions related to heart and brain develop-
ment—were associated with climatic gradients. Although
cautious interpretations of the results may be required
(Pavlidis et al. 2012), our data analysis confirmed that many
allele frequencies correlate with climatic gradients or with
some evolutionary pressures associated with these gradients.

Conclusion

With ever increasing amounts of genetic data generated by
high-throughput  sequencing technologies, population

genetic methods have shifted from empirical approaches to
models that incorporate hidden factors. Estimates of ancestry
and other population parameters are commonly obtained
from mixture models (Pritchard et al. 2000; Durand et al.
2009; Alexander and Lange 2011), principal component anal-
yses (Patterson et al. 2006), hidden Markov models (Price et al.
2009), and factor analysis (Engelhardt and Stephens 2010).
Our study contributes to the factor analysis methods for
population and landscape genomic analysis by implementing
new tests of gene-environment association. These new tests
use comparisons between closely related populations that
have adapted to different environments, and they may help
to detect modes of selection that differ from the classic se-
lective sweep paradigm.

Materials and Methods

LFMM Implementation Details

Consider the data matrix, (Gj), where each entry records the
allele frequency in individual i at the genomic locus ¢,
1<i<n 1<{¢<L and n and L represent the total
sample size and number of loci, respectively. LFMMs were
defined by the following equation:

Gie = e+ BpXi+ Ul Vi + €

where g is a locus-specific effect, B, is a d-dimensional
vector of regression coefficients, U; and V, are scalar vectors
with K dimensions (1 < K < n). The residuals €;; are statis-
tically independent Gaussian variables of mean zero and var-
iance o2,

We use Bayesian analysis to estimate the regression coef-
ficients and their standard deviations. We assume Gaussian
prior distributions on (1, and B¢ with means equal to zero
and variances o7, and afgj (Bej ~ N(O, afgj)). Prior distribu-
tions on U; and V, are Gaussian distributions with means
equal to zero and constant variance for each component
(the components are independent random variables). The
variance of V, is set to o = 1. The prior distributions on
o and aﬂ are noninformative distributions. The variance of
each factor, o}, follows an inverse-Gamma distribution

I'"'(n,n) where n = 10> — 103. This parameterization en-
courages sparsity in factor estimates and provides a more
accurate description of underlying population structure
(Engelhardt and Stephens 2010).

To simultaneously estimate scores (U) and loadings (V),
environmmental effects (), and biases (1), we implemented
a Gibbs sampler algorithm for LFMM:s (supplementary file S1,
Supplementary Material online). The Gibbs sampler was
based on computing products of matrices of low dimen-
sion—typical values of K were less than 50—and its speed
scales with the current size of SNP data sets, around
n ~ 1,000 and L & 500,000. We implemented a stochastic
algorithm to compute standard deviations for the environ-
mental effects (supplementary file S1, Supplementary
Material online). The |z|-scores were computed as the
ratios between the centered values of the regression coeffi-
cients B, and their standard deviations, and they were con-
verted into P values according to the standard Gaussian
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distribution. The cutoff for |z|-scores was obtained after
applying a Bonferroni correction, corresponding to a type |
error of 0.01. From a preliminary set of experiments using data
simulated from the model defined in equation (1), we found
that the estimates of fixed effects stabilized quickly, after 1,000
to 10,000 sweeps for n = 100 — 1,000 individuals and
L = 1,000 — 100,000 loci. A 10-fold increase in the number
of sweeps, however, was necessary to recover the true values
of the latent factors. Additionally, we developed numerical
optimization methods to compute maximum a posteriori
(MAP) estimates for the LFMM. One of these methods, the
alternate least square method uses deterministic steps that
are similar to our stochastic Gibbs sampler (Koren et al. 2009).
When checking for convergence of the Markov chain Monte
Carlo (MCMC) algorithm, we also found that least square
estimates of regression coefficients were close to the point
estimates computed by the Gibbs sampler method. The com-
putational complexity of a single sweep of the LFMM Gibbs
sampler algorithm is of order O(nLK?). For about 1,000 loci
and 1,000 individuals, the LFMM MCMC algorithm was run
for approximately 1minute of a 2.4 GHz Intel Xeon 64 bit
processor. For larger data sets with 650K loci and 1,000 indi-
viduals, we used a multithreated version of the algorithm, for
which a single run lasted approximately 24 h on a multipro-
cessor computer system (using 10 threads).

Alternative Regression Approaches
The standard linear regression model (LM) was defined as

Gie = e + BiXi + € . (7)

and the GLMs used the binomial family and the canonical
link. The PCRM was defined as

Gie = me+ BXi+ U Ve + € (8)

where (U;) are the first K PCs computed from the matrix G.
For each SNP, we applied PMTs to assess the relationship
between the matrix of allele frequency distances and the
matrix for environmental variable distance (Smouse et al.
1986; Legendre and Legendre 2012). PMTs are nonparametric
permutation-based tests for quantifying association between
two distance matrices, while controlling for the effect of a
third matrix. The allele frequency distance matrices were
computed using Nei’s distance (Nei 1972), and the environ-
mental distance matrix used the Euclidean distance. The third
matrix was the Pearson’s correlation matrix computed over
all loci. P values were computed from the R package vegan
using 10,000 permutations (R Development Core Team
2012). We used the computer program GEMMA to implement
a standard linear mixed model for genome-wide association
studies (Zhou and Stephens 2012). The model had the fol-
lowing form

X,':G,'gﬂg+u,'+6,'g i:1,...,l’),

where u is a multivariate random effect having a Gaussian
distribution of covariance matrix AT 'A, and each €, is a
residual error vector having a Gaussian distribution of covari-
ance matrix T 'l,. The parameter T is the variance of the
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residual errors, and / is the ratio between the variance com-
ponents. The matrix A is an n x n relatedness matrix, and I,
is the identity matrix. Finally, we used the generalized linear
mixed model implemented in the computer program
BAYENV with the default settings of the software (Coop
et al. 2010).

LFMM Generative Model Simulations

We used equation (1) with 8 = 0 to generate data under a
null hypothesis of no association with any environmental
variables. In these experiments, we set the number of individ-
uals to n = 100, and the number of loci to L = 1,000. We
used six values, K = 1, 3, 5, 7, 10, and 20, for the rank of the
factor matrix, V. For each series of experiments, we generated
10 replicates of this generative model, and we studied the
distributions of P values for tests using LFMM:s. In these tests,
we set the rank of the factor matrix equal to the values we
used to generate simulations.

Next we used equation (1) to generate data showing var-
ious levels of population structure and association with an
environmental variable. The environmental variable was uni-
formly generated in the range (0, 1). Here, we used three
values for the rank of the factor matrix, K =2, 20, and 100,
representing low, moderate, and high levels of underlying
population genetic structure. For each series of experiments,
we generated 20 replicates of the generative model.

To compute point estimates of environmental effects and
their | z | -scores, Gibbs sampler algorithms were run for 1,000
sweeps after a burn-in period of 100 sweeps. For these par-
ticular run length parameters, we checked that similar esti-
mates were obtained for distinct initializations of the
algorithm. For each locus, we recorded both the true, By,
and estimated environmental effects, B, and evaluated the
absolute error

Eo= 18— PBel.

Spatial Coalescent Simulations

To enable comparisons with other models, we simulated ge-
notypic data from spatial coalescent models with the com-
puter program ms (Hudson 2002). Ten data sets were
generated according to a linear stepping-stone model with
40 demes, setting the effective migration rate between pairs of
adjacent demes to the value 4Nm = 25. Sampling five indi-
viduals in each deme, each data set included a total of n = 200
haploid individuals genotyped at L = 1,000 unlinked SNP
loci. We ran the LFMM during 100 sweeps for burn-in, and
we used the next 900 sweeps to compute point estimates,
variances, and | z | -scores. An environmental variable, x, was
defined for each population as the geographic identifier of the
population in the linear stepping-stone model.

We created an environmental gradient for the artificial
variable x using a logistic function, s(x), of x as follows

1

S(X) = m , 6 > 0. (9)
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For each of the 10 previously generated neutral stepping-
stone simulations, we simulated binary alleles at 50 unlinked
loci for each deme x with frequency s(x), and with the slope of
the gradient & = 0.1 — 0.2. We then obtained 10 data sets
with L = 1050 unlinked loci including 50 loci correlated with
the environmental gradient, s(x). Using Tracy—Widom tests
implemented in SmartPCA, we found that the number of
principal components with P values smaller than 0.01 was
around Kty = 7. Using the Bayesian clustering programs
STRUCTURE and TESS, we found that K = 5 components
could better describe our simulated data. A value 6 = 0.2
corresponds to a strong intensity of selection through geo-
graphic space, whereas & = 0.1 corresponds to a weak inten-
sity of selection. We used the value & = 0.2 when comparing
tests based on linear and PC regression models. When com-
paring LFMMs with BAYENV, we used the value 6 = 0.1 to
better fit the objectives of both models. As BAYENV returns
Bayes factors instead of P values, we considered ranked lists
recording the M loci corresponding to the strongest associa-
tions (M between 1 and L = 1,050). For each M, we com-
puted the number of TPs and the number of FPs. Locus
ranking was performed on the basis of |z|-scores in
LFMM and on the basis of Bayes factors in BAYENV. The
LFMM tests used values of K equal to K =1, 3, 5, 7, 10,
and 20, and we used of the BAYENV algorithm to compute
Bayes factors. Experiments were assessed by counting the
number of FP and FN associations, and by measuring the
AUC averaged over 10 replicates.

Real Data

Loblolly Pine

The Loblolly pine data consisted of 1,730 SNPs selected in
ESTs for 682 individuals (Eckert et al. 2010). We considered 5
environmental variables representing the 5 first components
of a PCA for 60 climatic variables (Eckert et al. 2010). The first
component (PC1) was mainly described by latitude, longi-
tude, temperature, and winter aridity. PC2 was described by
longitude, spring-fall aridity, and precipitation (Eckert et al.
2010). For each of the 5 environmental variables, we applied
the LFMM algorithm using 100 sweeps for burn-in and 400
additional sweeps to compute | z| -scores for all loci. On the
basis of a prior analysis of the genotypic data with the pro-
gram SmartPCA and Tracy—Widom tests, we used K =10
latent factors.

Human Data

Genotypes from the HGDP-CEPH data set were generated on
lllumina 650 K arrays (Li et al. 2008), and the data were filtered
to remove low quality SNPs included in the original files. We
extracted climatic data for each of the 52 population samples
using the WorldClim data set at 30 arcsecond (1km?) reso-
lution (Hijmans et al. 2005). These data included 11 biocli-
matic variables interpolated from global weather station data
collected during a 50-year period (averaged of the years 1950—
2000). The environmental variables were mainly related to
temperature data. These variables included annual mean
temperature, mean diurnal range, maximum temperature
of warmest month, minimum temperature of coldest

month, and so forth (supplementary table S2, Supplementary
Material online). We summarized them by using the first axis
of a PCA (all 11 climatic variables were given similar loadings).
For this environmental proxy, we applied the LFMM algo-
rithm and computed |z| -scores for each locus, using 100
sweeps for burn-in and 900 additional sweeps to compute
estimates. We used K = 50 which was of the same order as the
number of population samples and the value returned by the
Tracy-Widom tests. We investigated whether the gene on-
tology terms of environmentally associated SNPs were en-
riched in specific categories of biological processes. The list
of target genes with |z | -scores greater than 5 was compared
with the background list of 14,042 genes represented in the
HGDP-CEPH data set using a hypergeometric distribution.
This test was implemented using the GORILLA software tool
(Eden et al. 2009), with significance determined by at an FDR
corrected g value threshold of 0.01.

Software Availability

Source codes and computer programs for fitting LFMMs are
available from the author websites (http://membres-timc.
imagfr/EricFrichot/ and  http://membres-timcimagfr/
Olivier.Francois/lIfmm.html).

Supplementary Material

Supplementary file S1 and tables S1-S5 and figures S1-S3 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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