
Phylogenetic Comparative Approach Reveals Evolutionary 
Conservatism, Ancestral Composition, and Integration of 
Vertebrate Gut Microbiota
Benoît Perez-Lamarque  ,*,1,2 Guilhem Sommeria-Klein  ,3 Loréna Duret  ,1 and 
Hélène Morlon  1

1Institut de Biologie de l’ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
2Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’histoire naturelle, CNRS, Sorbonne Université, 
EPHE, UA, Paris, France
3Department of Computing, University of Turku, Turku, Finland

*Corresponding author: benoit.perez@ens.psl.eu.
Associate editor: Aurélien Tellier

Abstract
How host-associated microbial communities evolve as their hosts diversify remains equivocal: how conserved is their 
composition? What was the composition of ancestral microbiota? Do microbial taxa covary in abundance over mil
lions of years? Multivariate phylogenetic models of trait evolution are key to answering similar questions for complex 
host phenotypes, yet they are not directly applicable to relative abundances, which usually characterize microbiota. 
Here, we extend these models in this context, thereby providing a powerful approach for estimating phylosymbiosis 
(the extent to which closely related host species harbor similar microbiota), ancestral microbiota composition, and 
integration (evolutionary covariations in bacterial abundances). We apply our model to the gut microbiota of mam
mals and birds. We find significant phylosymbiosis that is not entirely explained by diet and geographic location, 
indicating that other evolutionary-conserved traits shape microbiota composition. We identify main shifts in micro
biota composition during the evolution of the two groups and infer an ancestral mammalian microbiota consistent 
with an insectivorous diet. We also find remarkably consistent evolutionary covariations among bacterial orders in 
mammals and birds. Surprisingly, despite the substantial variability of present-day gut microbiota, some aspects of 
their composition are conserved over millions of years of host evolutionary history.
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Introduction
Host-associated microbial communities, referred to as the 
microbiota, often play central roles in the biology of the 
hosts and their interactions with the environment. As 
host clades diversify, the microbiota can furthermore play 
a key role in the adaptation of their hosts to different eco
logical conditions. This raises important questions on the 
evolution of the microbiota as hosts diversify. First, how 
much is microbiota composition conserved over host evo
lutionary timescales? Although the microbiota can be quite 
labile within and between host species (Ley et al. 2008; 
David et al. 2014; Hacquard et al. 2015; Hird et al. 2015; 
Amato et al. 2019), more closely related host species often 
tend to have more similar microbiota, a pattern referred to 
as phylosymbiosis (Brooks et al. 2016; Lim and Bordenstein 
2020). In animals, levels of phylosymbiosis appear to be het
erogeneous across tissues (e.g., gut or skin microbiota) and 
lineages (Mazel et al. 2018; Lim and Bordenstein 2020; Song 
et al. 2020; Perez-Lamarque, Krehenwinkel, et al. 2022).

The presence of a phylogenetic signal in microbiota com
position across hosts could potentially be used to 
reconstruct ancestral microbiota composition. Ancestral re
constructions could be particularly useful to detect events 
during host diversification associated with major shifts in 
microbiota composition or to verify hypotheses on ances
tral diets. A phylogenetic signal in microbiota composition 
may also inform on potential long-term evolutionary covar
iations in abundances between microbial taxa. Positive or 
negative covariations may arise from direct interactions be
tween microbial taxa, such as cross-feeding, trophic rela
tionships, or competition (Faust et al. 2012; Foster et al. 
2017; Kohl 2020), or from (anti)correlated responses to var
iations in the environment (e.g., similar or opposite re
sponses to decreased pH). We refer to these covariations 
as microbiota integration by analogy with the often observed 
phenotypic integration between traits in complex pheno
types (Pigliucci 2003). Such covariations would indicate con
straints in the evolution of microbiota composition.
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Phylogenetic comparative methods offer a rich toolbox 
for quantifying phylogenetic signal, reconstructing ances
tral states, and detecting integration in multidimensional 
phenotypes (Clavel et al. 2015). These methods rely on 
modeling the evolution of a set of phenotypic traits across 
evolutionarily related species through a multivariate sto
chastic process, such as the Brownian motion process, run
ning along the species’ phylogenetic tree (Revell et al. 2008; 
Harmon 2017). The multivariate Brownian process models 
the gradual evolution of traits through the accumulation 
of stochastic changes drawn from a multivariate normal 
distribution with a variance–covariance matrix that re
flects the magnitude of the changes for each trait (the vari
ance terms) and the covariation in the changes between 
trait pairs (the covariance terms). This process is relevant 
to represent long-term variations in the abundances of 
the different microbial taxa that constitute the microbiota, 
as such variations are an emerging outcome of (1) the sto
chastic accumulation of changes in the numerous host 
traits that can influence the microbiota, including both ex
trinsic (e.g., geographic location and habitat) and intrinsic 
(e.g., diet and antimicrobial excretions) traits (Moran et al. 
2019; Kohl 2020; Lim and Bordenstein 2020), and (2) inter
actions between microbial taxa (Foster et al. 2017). Indeed, 
the Brownian motion process has already been used to 
model variations in microbial abundances over host evolu
tionary time (Capunitan et al. 2020; Labrador et al. 2021). 
However, the process is not directly applicable to compos
itional data made of relative microbial abundances as it 
does not constrain its components to sum to 1, and abso
lute abundances are unfortunately typically not provided 
by mainstream metabarcoding technics used to character
ize microbiota composition. Thus, current phylogenetic 
comparative methods cannot directly be used in the con
text of microbiota evolution without transgressing several 
model assumptions (Hird 2019).

Here, we develop an approach to apply the multivariate 
Brownian motion process to compositional data. We 
also include a widely used tree transformation (Pagel 
1999) that quantifies phylosymbiosis by evaluating how 
much host phylogeny contributes to explaining interspe
cific variation in present-day microbiota composition. 
Phylosymbiosis is typically assessed using correlative ap
proaches such as Mantel tests (Lim and Bordenstein 
2020), which are known to suffer from frequent false nega
tives, whereas process-based approaches such as ours tend 
to be more powerful (Harmon and Glor 2010; Hird 2019; 
Perez-Lamarque, Maliet, et al. 2022). We apply our new ap
proach to the gut bacterial microbiota of mammals and 
birds. The gut microbiota is key to the functioning of their 
hosts, contributing to their nutrition, their protection, and 
their development (McFall-Ngai et al. 2013). Strong phylo
symbiosis in gut bacterial microbiota has been reported for 
mammals, including primates and rodents (Ochman et al. 
2010; Groussin et al. 2017; Kohl et al. 2018), whereas it is 
thought to be absent in birds, with some exceptions in a 
few young clades (Song et al. 2020; Trevelline et al. 2020; 
Bodawatta et al. 2022). We revisit this dichotomy here, 

on the premise that previous analyses may have not 
been powerful enough to detect phylosymbiosis in birds 
(Hird 2019). We analyze potential drivers of phylosymbio
tic patterns, including diet, geographic location, and flying 
ability, we estimate the ancestral microbiota composition 
of mammals and birds, and we investigate patterns of 
microbiota integration.

Results and Discussion
We developed a method to infer the dynamics of micro
biota composition during host diversification from host 
microbiota data (i.e., a fixed, bifurcating host phylogeny 
and microbiota relative abundances for each extant host 
species) using the multivariate Brownian motion process 
(fig. 1 and Materials and Methods). We assume that all mi
crobial taxa are present in all hosts, potentially in very low 
(undetectable) abundances, and that they were already 
present in the most recent common ancestor of all host 
species. These assumptions are met if we consider a taxo
nomic level in the definition of microbial taxa that is high 
enough given the host clade, such as bacterial orders in the 
vertebrate gut microbiota. We assume that, from ancestral 
values at the root X0, the log-absolute abundances of the 
different microbial taxa change on the host phylogeny fol
lowing a multivariate Brownian motion model with vari
ance–covariance matrix R (fig. 1a). Under this model, 
the log-absolute abundances fluctuate around their ances
tral values log X0 without directional change. In addition, 
we account for variation linked to present-day factors by 
including in the model the widely used Pagel’s λ transform
ation of the host phylogenetic tree (Pagel 1999). This 
transformation extends the terminal branches of the tree 
by (1−λ) of the total tree depth while compressing the in
ternal branches to keep the total tree depth constant, with 
λ ranging between 0 and 1 (see fig. 1b and Materials and 
Methods). λ estimates close to 1 indicate that an untrans
formed tree explains the data quite well, reflecting strong 
phylosymbiosis, whereas λ estimates close to 0 indicate 
that the tree has little explanatory power, reflecting 
weak or absent phylosymbiosis. Unlike the traditional 
case of the multivariate Brownian motion process applied 
to phenotypic data, where the phenotype is directly mea
sured at present, in the case of the microbiota, relative ra
ther than absolute abundances are measured. To handle 
this difficulty, we treat total microbial abundances in 
each host as latent variables and sample from the joint 
posterior distribution of these latent variables and our 
parameters of interest: Pagel’s λ, which provides us with 
an estimate of phylosymbiosis, the R matrix which reflects 
microbiota integration, and Z0, which indicates the relative 
microbial abundances in the ancestral microbiota.

We tested this inference method on data simulated 
from our model and found that we can accurately esti
mate the ancestral bacterial relative abundances Z0 (with 
a tendency for homogenization) and the variance–covari
ance matrix R between microbial taxa, provided that the 
number of host species (n) and bacterial taxa (p) are large 
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enough (n ≥ 50 and p ≥ 5, see Supplementary Results 1, 
Supplementary Material online). Similarly, the level of 
phylosymbiosis λ is accurately estimated for p ≥ 5, and 
its significance is correctly inferred for n ≥ 50 (see 
Supplementary Results 1, Supplementary Material on
line). This approach provides a more powerful way to de
tect phylosymbiosis than Mantel tests, which often failed 
at detecting low levels of phylosymbiosis (0 < λ<0.5; 
supplementary table S1, Supplementary Material on
line). This was expected, as Mantel tests are correlative 
and are known to suffer from frequent false negatives in 
comparison with more process-based approaches such as 
ours (Harmon and Glor 2010; Hird 2019; Perez-Lamarque, 
Maliet, et al. 2022).

We applied our model to the gut bacterial microbiota of 
215 mammal species and 323 bird species from Song et al. 
(2020) and found a pervasive signal of phylosymbiosis. We 
focused on the 14 most abundant bacterial orders, corre
sponding in abundance to 84% and 82% of the total gut 
bacterial microbiota of mammals and birds, respectively. 

We found a markedly higher level of phylosymbiosis in 
mammals (λ ≃ 0.65) than in birds (λ ≃ 0.31; 
supplementary table S2, Supplementary Material online, 
and supplementary figure S1, Supplementary Material on
line), consistent with previous literature and our finding 
that microbiota composition is more species-specific in 
mammals than in birds (supplementary table S3, 
Supplementary Material online). Indeed, bird microbiota 
is generally more sensitive to short-term environmental 
changes such as anthropogenic perturbations or parasite 
infections (Bodawatta et al. 2022). By explicitly modeling 
the nonphylogenetic component of microbiota compos
ition using a Pagel’s λ transformation, we detected a low 
but significant level of phylosymbiosis in the gut micro
biota of birds (supplementary table S2, Supplementary 
Material online), contrary to previous conclusions (Song 
et al. 2020; Bodawatta et al. 2022) that relied on Mantel 
tests. λ values are higher at the level of bacterial phyla 
(supplementary table S2, Supplementary Material online, 
and supplementary fig. S1, Supplementary Material

(a)

(b)

FIG. 1. A comparative phylogenetic model for the dynamics of microbiota composition during host diversification. (A) We model fluctuations in 
the abundances of microbial taxa along a host phylogeny with a multivariate Brownian motion parametrized by the ancestral abundances X0 and 
the variance–covariance matrix (R). The variance terms (on the diagonal) reflect the magnitude of the changes, whereas the covariance terms 
reflect positive or negative covariations in abundances between pairs of microbial taxa. The relative ancestral abundances Z0 and the variance– 
covariance matrix R are estimated by adjusting the model to the host microbiota data (host phylogeny and microbiota relative abundances for 
each host). (B) Following the widely used Pagel’s λ transformation, we extend the terminal branches of the host phylogenetic tree by (1−λ) of the 
total tree depth while compressing the internal branches to keep the total tree depth constant. λ is comprised between 0 and 1 and is coes
timated during inference. λ close to 1 indicates that closely related hosts tend to have similar microbiota due to shared evolutionary history 
(strong phylosymbiosis), whereas λ close to 0 indicates that microbiota composition is determined by present-day processes with little influence 
of host evolutionary history (weak or absent phylosymbiosis). The significance of phylosymbiosis is assessed with permutations.
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online), suggesting that microbiota composition is more 
evolutionarily conserved at higher taxonomic levels. 
Testing model performance on data simulated directly 
on the mammal and bird phylogenetic trees, we found a 
low type-I error rate and a high statistical power, suggest
ing that the phylosymbiosis we detected in birds is 
not due to false detection by our method, but rather to 
a higher power than previously used methods 
(supplementary table S4, Supplementary Material online). 
Phylosymbiosis is not linked to an effect of captivity nor 
the spurious concatenation of different studies either 
(Supplementary Results 2, Supplementary Material
online). Phylosymbiosis is particularly strong in Primates, 
Passeriformes, and Cetartiodactyla; lower but significant 
in Columbiformes, Chiroptera, and Carnivora; and 
nonsignificant in Rodentia, Charadriiformes, and 
Anseriformes (supplementary table S2, Supplementary 
Material online). Nonsignificant phylosymbiosis in 
these orders is likely due to an insufficient number of 
sampled species (n < 25, see Supplementary Results 1, 
Supplementary Material online). It appears that vertebrate 
orders with mainly herbivorous diets have stronger phylo
symbiosis, although this would need to be tested more ro
bustly with a better species coverage (supplementary table 
S2, Supplementary Material online).

Our results suggest that phylosymbiosis is only partially 
explained by evolutionary conservatism in flying ability, 
diet, or geographic location. First, excluding flying mam
mals (Chiroptera) or nonflying birds did not impact our es
timates of phylosymbiosis (supplementary table S2, 
Supplementary Material online). Second, permutation 
tests shuffling the microbiota of host species having the 
same diet, geographic location, flying ability, or 

combination of these traits resulted in much lower λ va
lues (fig. 2 and supplementary fig. S2, Supplementary 
Material online). In mammals, λ values resulting from 
such shuffling are still significant (fig. 2), suggesting that 
the evolutionary conservatism of flying ability, diet, and 
geographic location contributes to phylosymbiosis with
out fully explaining it (Moran et al. 2019). In birds, shuffling 
often resulted in nonsignificant λ values (fig. 2), indicating 
a weak or absent contribution of diet or geographic loca
tion in the observed phylosymbiosis. Similarly, the conser
vatism of these traits is not sufficient to explain the 
phylosymbiosis measured in some of the larger mammal 
and bird clades, such as Primates, Cetartiodactyla, and 
Passeriformes (supplementary fig. S3, Supplementary 
Material online). Thus, we suspect that other evolutionary- 
conserved physiological, immunological, or ecological 
traits act as host filters (Foster et al. 2017; Moran et al. 
2019) and contribute to phylosymbiosis in the gut micro
biota of mammals and birds (Goodrich et al. 2016; Mazel 
et al. 2018).

Our ancestral reconstructions of the microbiota of early 
mammals and birds suggest that Proteobacteria and 
Firmicutes were much more abundant in the ancestral 
gut microbiota of birds than mammals (figs. 3 and 4 and 
supplementary figs. S4 and S5, Supplementary Material on
line). As common in phylogenetic ancestral reconstruc
tion, the uncertainty is quite high (supplementary fig. S6, 
Supplementary Material online); it is larger in mammals 
than in birds because of the long branches that separate 
marsupials and eutherians at the origin of all mammals. 
In the absence of fossil constraints, ancestral reconstruc
tions are a phylogenetically weighted average of extant 
characteristics. Estimated ancestral compositions are 
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FIG. 2. Phylogenetically conserved diets, geographic locations, or flying abilities partially contribute to phylosymbiosis in the gut microbiota of 
mammals, but not birds. For both mammals and birds, we compared the estimated level of phylosymbiosis (mean λ value represented by a 
diamond) to levels of phylosymbiosis (λ values within boxplots) estimated when shuffling the species that have the same diet, geographic lo
cation, flying ability (flying or nonflying), or combination of the latter traits. For each shuffling strategy, we performed 100 randomizations. 
Combining all traits strongly constrains the possible permutations, which may consequently retain a phylogenetic signal in the shuffling and 
lead to high λ values although the traits are actually not strongly contributing to phylosymbiosis.
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thus expectedly close from the average microbiota compo
sitions of extant bird and mammal species, yet they are dis
tinct (supplementary fig. S7, Supplementary Material
online). Comparing the ancestral microbiota composition 
of mammals to that of the extant wild mammal species, we 
found the highest similarity with invertebrate feeders (dis
tance to the centroid: d=1.46), such as the insectivorous 
armadillos (Zaedyus pichiy), and frugivores (d=1.24; fig. 5
and supplementary fig. S8, Supplementary Material
online; see Materials and Methods) and the lowest 
similarity with specialist consumers feeding on plants 
(d=2.50) or meat (d=2.82). This result is robust to 
uncertainty in our estimate of ancestral microbiota com
position (supplementary fig. S6b, Supplementary 
Material online) and when including species sampled in 
captivity (supplementary fig. S7, Supplementary Material
online). Given that mammals originated before fleshy fruit 
plants (Eriksson 2016), this suggests that ancestral mam
mals were generalist invertebrate feeders, which is 

consistent with the current hypothesis, based on the fossil 
record and ancestral diet reconstruction, of a generalist in
sectivorous diet in early mammals (Gill et al. 2014; 
Grossnickle et al. 2019). We found the gut microbiota 
composition of modern birds to be only weakly structured 
by diet compared with that of mammals, making the in
ferred ancestral microbiota composition of birds less in
formative in this respect (no strong clustering in the 
PCA plots; PermANOVA testing the effect of diet: 
R2∼0.03, p < 0.001, in birds vs. R2∼0.22, p < 0.001, in mam
mals; fig. 5; supplementary fig. S7 and S8, Supplementary 
Material online; and supplementary table S5, 
Supplementary Material online). In addition, the fact 
that, under the assumptions of our model, most extant 
microbiota compositions in both mammals and birds re
main centered around the estimated ancestral microbiota 
composition suggests that only a minority of the extant 
species experienced major shifts in their microbiota com
position during their evolution.
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FIG. 3. Ancestral reconstruction of mammalian gut microbiota. Phylogenetic tree of the sampled mammal species and associated relative abun
dances of the 14 most abundant bacterial orders (bar charts on the right). Pie charts at the root and nodes of the tree represent estimated 
ancestral microbiota compositions (mean of the posterior distribution of Z0 at the root and generalized least squares estimates at other internal 
nodes). Compositions are not represented at the most recent nodes for the sake of clarity.
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We detected significant changes in microbiota compos
ition in the ancestors of some mammal and bird orders (figs. 
3 and 4 and supplementary fig. S9, Supplementary Material
online). In mammals, the largest shift in microbiota com
position occurred in the ancestor of Chiroptera, with an in
creased proportion of Enterobacteriales (Proteobacteria), 
Mycoplasmatales (Tenericutes), and to a lesser extent 
Actinomycetales (Actinobacteria), as well as a decreased 
proportion of Bacteroidales (Bacteroidetes), and in 
Firmicutes, Clostridiales were replaced by Bacillales and 
Lactobacillales (fig. 3 and supplementary table S6, 
Supplementary Material online). Other shifts occurred in 
the ancestor of Carnivora, with an increased proportion 
of Fusobacteriales (Fusobacteria), and in the ancestors of 
Primates and Cingulata, with an increased proportion of 
some Firmicutes orders (e.g., Erysipelotrichales; fig. 3 and 
supplementary fig. S9, Supplementary Material online). In 
addition, Proteobacteria (especially Enterobacteriales and 

Pseudomonadales) almost disappeared in the ancestral 
microbiota of Ungulata and Simiiformes (New and Old 
World monkeys; supplementary table S6, Supplementary 
Material online). In birds, we found a shift in microbiota 
composition in the ancestor of Passeriformes, with 
more Bacillales and Enterobacteriales, and to a lesser 
extent Pseudomonadales, and a quasi-disappearance of 
Bacteroidales (figs. 4; supplementary fig. S5, Supplementary 
Material online; and supplementary table S6, 
Supplementary Material online). The ancestors of 
Anseriformes and Charadriiforms were characterized by a 
larger proportion of Bacteroidales, as well as a large propor
tion of Fusobacteriales, often absent or present in low 
abundances in other bird gut microbiota. Finally, the relative 
abundance of Actinomycetales increased in Columbiformes 
(supplementary table S6, Supplementary Material online). 
We found similar estimates of ancestral gut microbiota 
composition when running separate inferences for the 
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FIG. 4. Ancestral reconstruction of avian gut microbiota. Phylogenetic tree of the sampled birds and associated relative abundances of the 14 
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compositions (mean of the posterior distribution of Z0 at the root and generalized least squares estimates at other internal nodes). Compositions 
are not represented at the most recent nodes for the sake of clarity.
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different mammal and bird orders (supplementary fig. S9, 
Supplementary Material online). Some of these composition
al shifts might be linked to the ecological changes that these 
lineages experienced, such as the acquisition of flight for bats 
or carnivorous diets for Carnivora and Charadriiforms 
(Nishida and Ochman 2018; Song et al. 2020).

Far from varying as uncorrelated units during the evo
lutionary history of mammals and birds, we found signifi
cant covariances between many microbial taxa, both 
positive and negative (fig. 6a), suggesting strong con
straints in the evolution of the microbiota. These patterns 
of microbiota integration are strikingly similar in mam
mals and birds (fig. 6b), indicating that they are conserved 
over long evolutionary times. Our simulation analyses on 
the mammal and bird trees suggest that these results are 

not artefactual, since we recover significant covariances only 
when we include them in the simulations (supplementary 
table S7, Supplementary Material online, and Supplementary 
Results 1, Supplementary Material online). Similar covariances 
were obtained when performing separate inferences on the 
different mammal and bird orders (supplementary fig. S10, 
Supplementary Material online), confirming our results 
and suggesting that the model assumption of a constant 
variance–covariance matrix across the host phylogenetic 
tree is reasonable. Combined with the high bacterial variabil
ity in time, across individuals, and across host species at low 
taxonomic levels, these consistent patterns at the level of 
bacterial orders on large time scales suggest that there is a 
certain level of functional redundancy among bacteria taxa 
within orders in the vertebrate gut microbiota.
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FIG. 5. Projection of the estimated ancestral gut microbiota of mammals and birds onto the space of present-day gut microbiota. Top panels: 
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components. Percentages indicate the explained variance of each PC. Only the nine most abundant orders are represented for the sake of clarity. 
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according to the species’ diet. For each diet, the ellipse contains on average 95% of the distribution approximated by a multivariate t-distribution, 
and the centroid is indicated by a diagonal cross. Ancestral microbiota compositions of mammals and birds are represented with larger dots. On 
each PCA plot, we indicated the three extant species with microbiota compositions closest to the ancestral microbiota composition. The an
cestral gut microbiota of mammals is closest to the gut microbiota of present-day invertebrate feeders; the gut microbiota of birds does not 
strongly reflect diet.

Phylogenetic Models Reveal Vertebrate Microbiota Evolution · https://doi.org/10.1093/molbev/msad144 MBE

7

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/7/m
sad144/7199396 by guest on 25 April 2024

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad144#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad144#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad144#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad144#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad144#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad144#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad144#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad144#supplementary-data


Both visual inspection and integration analyses of the 
covariances revealed that bacterial orders cluster into two 
main subsets within which taxa tend to covary in a con
certed way, whereas taxa from different subsets tend to 
be anticorrelated (fig. 6; see Materials and Methods). The 
first subset (“subset 1”) is formed in particular by the orders 
Clostridiales, Bacteroidales, and Fusobacteriales, and the 
second subset (“subset 2”) is mainly composed of the 
orders Enterobacteriales, Lactobacillales, Pseudomonades, 
Actinomycetales, and Bacillales. Although some host species 
have a microbiota composed of an even mixture of these 
two bacterial subsets, one subset generally prevails, leading 
to the existence of two main gut microbiota profiles. The 
first subset is dominant in the microbiota of most mammals 
(excluding Chiroptera), the ancestors of birds, and some ex
tant bird lineages (e.g., Anseriformes, Columbiformes, or 
Accipitriformes); the second subset predominates in the 

microbiota of Chiroptera and other bird lineages, including 
Passeriformes (supplementary fig. S11, Supplementary 
Material online). This result suggests the existence of two 
main gut microbiota profiles conserved over millions of 
years across vertebrates.

We can only speculate on the processes underlying 
positive or negative covariances between bacterial orders: 
we cannot distinguish from our analyses whether they in
dicate direct interactions between bacterial taxa (e.g., 
cross-feeding or competition) or indirect interactions 
mediated by similar/opposed microbial responses to 
changes in the gut environment. For instance, the frequent 
and strong negative covariations observed between the 
abundant Enterobacteriales (Proteobacteria) and the 
major bacterial orders Clostridiales (Firmicutes) and 
Bacteroidales (Bacteroidetes) may result from direct com
petitions (Shealy et al. 2021) and host immunological 
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FIG. 6. Estimated variances and covariances between the main bacterial taxa tend to be similar in the gut microbiota of mammals and birds. (A) 
For each variance–covariance matrix between bacterial taxa estimated using our model of host microbiota evolution, we represented negative 
covariances in red and positive covariances in blue, whereas variances are represented in shades of green. Nonsignificant covariances are repre
sented in white. Grey rectangles correspond to subsets of bacterial orders that tend to covary positively. (B) Correlation between covariances 
between the main bacterial taxa estimated in the gut microbiota of mammals or birds. The red line indicates the corresponding linear model, 
whereas the grey line corresponds to y = x.
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controls over Proteobacteria (Mirpuri et al. 2013) and/or 
be mediated by the oxygen concentration in the gut, as 
Proteobacteria are facultative anaerobes, whereas other 
phyla are obligate anaerobes (Shin et al. 2015). The stron
gest positive covariations we inferred between 
Actinomycetales, Pseudomonadales, and Rhizobiales, 
which are the most abundant bacterial orders in plant tis
sues (Wagner et al. 2016), may reflect a plant-based diet, 
which would lead to a concomitant increase of 
plant-associated bacteria in the gut microbiota of herbiv
orous vertebrates (Dion-Phénix et al. 2021). Some of the 
covariations we detected (e.g., the negative covariation be
tween Lactobacillales and Bacteroidales) have also been 
observed in human microbiome data using co-occurrence 
network analyses (Faust et al. 2012), suggesting that at 
least some covariations between microbial taxa that occur 
over short timescales within host species are conserved 
over macroevolutionary timescales.

To test the adequacy of our model to the data, we simu
lated microbiota under our model using the parameters 
estimated on mammal and bird data. We found that simu
lated microbiota have compositions similar to those ob
served in extant mammals and birds (supplementary fig. 
S12, Supplementary Material online), which indicates 
that, despite its simple assumptions, our multivariate 
Brownian motion model generates realistic gut microbiota 
(Hird 2019; Labrador et al. 2021). Nevertheless, the 
gut microbiota composition of mammals and birds ap
pears more constrained than the sets of compositions 
we can simulate using multivariate Brownian motions 
(supplementary fig. S12, Supplementary Material online). 
This is particularly true for mammals and may be linked 
to constraints that are not accounted for by our model, 
such as selective pressures toward particular microbiota 
compositions, potential existence of carrying capacities 
for some bacterial orders, or nonconstant or nonhomoge
neous variance–covariance matrices (e.g., more frequent 
shifts in microbiota composition early in clades history 
or effects of host traits such as diet or gut pH on covari
ation). Extensions of our multivariate Brownian motion 
approach could accommodate such constraints, but this 
may complexify inferences. We hope that this work will 
foster the development of more complex models that 
may better represent microbiota evolution in systems 
that present non-Brownian behaviors. As a first step, ex
tensions that relax the constant variance assumption 
(e.g., the early-burst model; Harmon et al. 2010) would 
be relatively straightforward to implement and could be 
particularly relevant to account for the major shifts in 
microbiota composition that took place at the origin of 
some mammalian orders (e.g., in bats). Meanwhile, by rely
ing on a simple and flexible Brownian motion process, our 
phylogenetic comparative model for microbiota evolution 
is general enough to be broadly applied across other host 
microbiota systems and reveal the global trends of micro
biota evolution.

Besides modeling assumptions, our results may be influ
enced by the inherent biases of metabarcoding data. 

Bacterial relative abundances characterized using meta
barcoding techniques are a distortion of the actual relative 
abundances (Knight et al. 2018; Lavrinienko et al. 2021), 
since metabarcoding is sensitive to the number of rRNA 
copies in the bacterial genomes, primer biases, and the 
quality and completeness of the reference database for 
taxonomic assignation (at the bacterial order/phylum level 
in our case). These issues are unlikely to artefactually gen
erate phylosymbiosis or covariations across bacterial taxa 
because we expect such biases to be homogeneous across 
host species; nevertheless, they are likely to affect our an
cestral reconstructions of microbiota compositions.

Our approach to quantifying phylosymbiosis charac
terizes microbiota composition in terms of the relative 
abundances of higher bacterial taxa (orders or phyla). 
This characterization hides variations in the presence/ab
sence of bacterial taxa at lower taxonomic levels (e.g., 
genus or species). Indeed, distinct mammal or bird species 
are known to host different bacterial species (Song et al. 
2020), and this may not translate into abundance varia
tions at higher taxonomic levels if the different bacterial 
species belong to the same higher taxa. Besides the widely 
used Mantel tests, such variations could be accounted for 
by stochastic processes modeling the evolution of pres
ence/absence on host phylogenies (Braga et al. 2020), al
though we are not aware that these approaches have 
been used to detect bacterial phylosymbiosis. Yet another 
level of variation in microbiota composition that can con
tribute to phylosymbiosis arises through genetic differenti
ation below the bacterial species level: if a bacterial species 
is vertically transmitted during host diversification, we ex
pect bacterial strains from closely related host species to 
be more genetically similar (Sanders et al. 2014; Groussin 
et al. 2017; Perez-Lamarque and Morlon 2019). This latter 
process can be specifically tested thanks to cophylogenetic 
methods that consider the evolution of each microbial 
species separately (Dismukes et al. 2022; Perez-Lamarque 
and Morlon 2022). The abovementioned methods are 
complementary, as they focus on different levels of varia
tions in microbiota composition and on the distinct pro
cesses that simultaneously generate phylosymbiosis 
(Moran et al. 2019; Lim and Bordenstein 2020).

Phylosymbiosis is a widespread pattern that has fasci
nated microbial ecologists and evolutionary biologists 
since its discovery, spurring debates on the main processes 
underlying the pattern. Drawing upon phylogenetic com
parative methods, we have developed a new approach to 
studying phylosymbiosis. Our results on simulations and 
birds suggest that phylosymbiosis may be even more 
prevalent than currently recognized, but sometimes un
detected with correlative approaches. We have shown 
that conservatisms in diet, geographic location, and flying 
ability are not enough to explain phylosymbiosis, calling 
for an investigation of the role of other host ecological 
traits, as well as physiological and immunological traits. 
One of our most striking results, in the face of the well- 
known high variability of the gut microbiota, is its high le
vel of integration, with conserved covariations between 

Phylogenetic Models Reveal Vertebrate Microbiota Evolution · https://doi.org/10.1093/molbev/msad144 MBE

9

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/7/m
sad144/7199396 by guest on 25 April 2024

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad144#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad144#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad144#supplementary-data


bacterial orders over millions of years. The same two sub
sets of bacterial orders tend to covary in a concerted way 
in both mammals and birds, leading to the existence of 
two main gut microbiota profiles in vertebrates. Hence, 
microbial interactions combined with phylogenetically 
conserved host traits shape microbiota composition over 
millions of years, supporting the view of vertebrate gut 
microbiota as “ecosystems on a leash” (Foster et al. 2017).

Materials and Methods
A Multivariate Brownian Motion Model for 
Variations in Microbiota Composition Over Host 
Evolutionary Time
We denote by p the total number of microbial taxa de
tected across the microbiota of the n sampled host spe
cies. Standard metabarcoding techniques only measure 
the relative abundance of each microbial taxon j in 
each extant host species i, which we denote by 
Zij = Xij/Yi, where Xij is the unmeasured absolute abun
dance of microbial taxon j in host i and Yi =

􏽐

j
Xij is 

the unmeasured total microbial abundance in the micro
biota of host i. We assume that the logarithms of micro
bial absolute abundances log Xij vary along the host 
phylogenetic tree according to a multivariate Brownian 
motion starting from the ancestral abundances at the 
root, denoted by X0j (fig. 1). Indeed, taking the logarithm 
of the abundances yields values on the real axis that are 
amenable to be modeled with a Brownian motion, similar 
to continuous phenotypic traits. This model implies a log- 
normal distribution of abundances, as is commonly ob
served in microbial communities (Quince et al. 2008), 
and it can easily accommodate undetected microbial 
taxa in some hosts by assigning them very low unob
served relative abundances. To make the model identifi
able, we express the total abundances Yi relative to the 
unknown total abundance at the root Y0, and we only in
fer Ỹi = Yi/Y0. Each microbial taxon i is characterized by a 
certain variance, and pairs of microbial taxa can affect 
each other through a covariance term, so that their 
changes in abundance over time can be positively or 
negatively correlated. All variance and covariance values 
are assumed to be constant along the host phylogeny 
and are summarized by the invertible variance–covari
ance matrix R (fig. 1a).

Model Inference
To infer the model parameters, we sampled from their 
joint posterior distribution P( log Z0, R, λ, log Ỹ1, . . . , 
log Ỹn|Z11, . . . , Zij, . . . , Znp, C) using a No U-turn 
Hamiltonian Monte Carlo sampler, a computationally effi
cient Markov Chain Monte Carlo algorithm for continuous 
variables (Supplementary Methods 1, Supplementary 
Material online). We implemented it in the probabilistic 
programming language Stan, and we ran and compiled it 
through the RStan interface (R Core Team 2022; Stan 

Development Team 2022). Inferences were performed 
with 4 independent chains and a minimum of 4,000 itera
tions per chain including a warmup of 2,000 iterations. We 
checked the convergence of the chains using the Gelman 
statistics and effective sample sizes (ESS). We extracted 
the mean posterior value of each parameter and its asso
ciated 95% credible interval across posterior samples.

We considered a covariance to be significant if 0 was not 
included in its 95% credible interval. We could not use the 
same approach for λ, because it only takes positive values. 
Furthermore, model selection using Bayes factors led to 
many false negatives on simulated data (Supplementary 
Methods 2 and Results 1, Supplementary Material online). 
Therefore, we assessed the significance of λ using permuta
tions. We shuffled at random the extant host species to 
break the phylogenetic structure and ran again model in
ference of the randomized data set. We performed 100 re
plications and compared the distribution of λ values thus 
obtained to the original λ estimate: if the original λ was 
greater than at least 95% of the λ values obtained through 
permutations, we considered that there was a significant 
impact of host evolution on microbiota evolution.

Simulations
We evaluated our approach using simulations. We simu
lated the evolution of a microbiota along a host phylogeny 
using multivariate Brownian motions for log-abundances. 
We simulated phylogenies with n = 20, 50, 100, or 250 ex
tant host species using a pure birth model (pbtree function 
in the phytools R-package (Revell 2012)). We considered 
microbiota with p = 3, 5, 10, or 15 microbial taxa and uni
formly sampled the logarithms of their ancestral abun
dances at the root of the host phylogeny between −4 
and 0 before normalizing them so that 

􏽐

j
Z0j = 1. We gen

erated random positive definite variance–covariance ma
trices R following Uyeda et al. (2015) and Clavel et al. 
(2019) with eigenvalues of 1/4. Finally, we applied Pagel’s 
λ transformations with λ = 1, 0.75, 0.5, 0.25, or 0. For each 
combination of n, p, and λ values, we performed 100 inde
pendent simulations, leading to a total of 8,000 simulations. 
We verified that our approach correctly estimates the para
meters λ, Z0, and R and detects phylosymbiosis (significant 
λ) and covariations (significant R components) when they 
are simulated. We compared the performances of our ap
proach for detecting phylosymbiosis to that of Mantel tests 
(Perez-Lamarque, Maliet, et al. 2022).

We also evaluated our inference approach using data si
mulated on the phylogenetic tree of mammals or birds and 
using conditions and parameters matching the empirical 
data. We performed simulations with 7 taxa (corresponding 
to the 7 bacterial phyla in the data, see below) and 14 taxa 
(corresponding to the 14 bacterial orders in the data). We 
used values of λ = 1, 0.75, 0.5, 0.25, or 0 and values for the 
other model parameters similar to those estimated from 
the empirical data (supplementary fig. S13, Supplementary 
Material online). We performed 100 simulations per condi
tion (thus reaching a total of 2,000 simulations).
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Empirical Application
We downloaded the data set of Song et al. (2020) that 
gathered the gut microbiota of 2,677 mammal individuals 
from >200 species and 1,630 bird individuals from >300 
species, characterized by metabarcoding using the V4 re
gion of the 16S rRNA gene. Only studies using the standard 
protocol of the Earth Microbiome Project (Thompson 
et al. 2017) were included (see Song et al. (2020) for de
tails), making samples comparable across different studies 
(Knight et al. 2018). Song et al. converted bacterial reads 
into amplicon sequence variants (ASV), assigned each 
ASV taxonomically using the Greengenes database 
(DeSantis et al. 2006; Song et al. 2020), and rarefied ASV 
tables at 10,000 reads per sample. We complemented their 
data set with the consensus phylogenetic trees of Upham 
et al. (2019) and Jetz et al. (2012) for mammals and birds, 
respectively. We only kept the species having their micro
biota compositions characterized by at least two micro
biota samples (supplementary table S2, Supplementary 
Material online). We checked that gut microbiota from 
the same host species were more similar than gut micro
biota from different species using PermANOVA 
(Oksanen et al. 2016). Then, we obtained the microbiota 
composition of each host species by averaging the samples 
per species and extracted the relative abundances of the 
main bacterial orders and phyla per host species. We veri
fied that similar results were obtained when repeating our 
analyses by randomly sampling one individual per host 
species (supplementary fig. S14, Supplementary Material
online). We only considered the 14 most abundant bacter
ial orders, that is, those that each represented more than 
1% of the total bacterial abundance (which correspond 
in abundance to 84% and 82% of the total gut bacterial 
microbiota of mammals and birds, respectively) and the 
7 most abundant bacterial phyla (95% and 96% of the 
gut microbiota of mammals and birds respectively; 
supplementary fig. S15, Supplementary Material online). 
We also repeated all analyses using only the 9 (resp. 5) 
most abundant orders (resp. phyla). We did not apply 
our model at lower taxonomic levels mainly because the 
assumptions of our model (all microbial taxa are present 
in all hosts, potentially in undetectable abundances, and 
they were already present in the most recent common an
cestor of all host species) are more likely to be met at high 
taxonomic levels. At lower taxonomic levels, the micro
biota evolution of mammals and birds may be better re
presented using models of colonization and extinction 
(Song et al. 2020) than models of fluctuations in bacterial 
abundances such as ours. In addition, running the model 
with several hundreds of taxa would be computationally 
intensive. Finally, the quality of the taxonomic assignation 
and the number of taxa representing more than 1% of the 
gut microbiota decreased sharply at low taxonomic levels: 
only 81% and 45% of the gut microbiota of mammals and 
birds are assigned at the family and genus levels, respect
ively, and among them, only 60% and 18% of the bacterial 
taxa represent more than 1% of the gut microbiota.

Our multivariate Brownian motion model of micro
biota does not explicitly consider losses of bacterial 
taxa from the microbiota through time. Yet, some bac
terial taxa can be absent or undetected in the gut micro
biota of mammals and birds. We assumed that the 
absence of a particular taxon came from a very low abun
dance, below the detection threshold: we thus arbitrarily 
set the relative abundances of absent taxa to 0.001%. 
Setting the minimal relative abundances of absent taxa 
to 0.01% reduced the estimated variance of the rare 
taxa but did not affect other estimates (supplementary 
fig. S16, Supplementary Material online).

We applied the model separately on all mammals and 
all birds, getting estimates of Pagel’s λ, the ancestral micro
biota composition Z0, and the variance–covariance matrix 
R for each vertebrate class.

Effect of Host Traits on Phylosymbiosis
We gathered data on host species traits from Song et al. 
(2020) for diet, geographic location, and flying ability. 
We assigned a dominant diet to each host species as either 
“plants,” “fruits,” “invertebrates,” or “meat” following the 
EltonTraits database (Wilman et al. 2014). We assigned a 
geographic location to each species by picking the biogeo
graphic realm (Afrotropical, Antarctic, Australasian, Nearctic, 
Neotropic, Oriental, or Palearctic) where the highest 
number of wild individuals was sampled, or if not avail
able, where the highest number of captive individuals 
was sampled (this was the case for 48% of the mamma
lian species and 18% of the avian ones). We treated fly
ing ability as binary (yes/no). First, we assessed the 
influence of flight on the gut microbiota by performing 
inferences on nonflying mammal species only (i.e., ex
cluding bats) and on flying bird species only. Similarly, 
we investigated the effect of captivity on our inferences 
by replicating them using only the gut microbiota of 
wild or captive individuals. Second, we tested whether 
the evolutionary conservatism of diet, geographic loca
tion, or flying ability may explain phylosymbiosis in 
mammals and birds by performing permutations. We 
shuffled host species having the same diet, geographic 
location, and/or flying ability and reran the inferences 
on these randomized data sets. For each tested trait, 
we performed 100 independent randomizations. Finally, 
we verified that phylosymbiosis did not artefactually arise 
from the concatenation of the separate studies composing 
this data set by randomizing the species that came from 
the same study.

Comparison between Ancestral and Present-Day 
Microbiota Composition
We compared the estimated ancestral microbiota compos
ition Z0 of all mammals or birds with that of extant species 
using principal component analysis (PCA) after applying a 
centered log-ratio transform to the abundances (Aitchison 
1983). Given Z0, we also jointly estimated the ancestral 
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abundances at each node of the host phylogenetic tree 
using generalized least squares following Martins and 
Hansen (1997), Cunningham et al. (1998), and Clavel 
et al. (2019). As a first attempt to infer past diet based on 
the estimated ancestral microbiota composition Z0, we com
puted the centroid of each of the four diet categories and 
computed the distance di between Z0 and each centroid 
on the first five PC axes. We additionally performed separate 
model inference for all orders of mammals (Carnivora, 
Cetartiodactyla, Chiroptera, Primates, and Rodentia; 
supplementary table S2, Supplementary Material online) 
and birds (Anseriformes, Charadriiformes, Columbiformes, 
and Passeriformes) represented by at least 15 species and 
compared the ancestral microbiota composition obtained 
with separate and joint inferences.

Integration Analyses
We identified the significantly positive or negative covar
iances between bacterial orders. In addition, to charac
terize potential subsets of bacterial taxa that tend to 
vary in a concerted way, we clustered taxa using the clus
ter_fast_greedy function in the R-package igraph (Csardi 
and Nepusz 2006), based on the estimated variance–co
variance matrix R, modified to retain information of only 
positive covariances (negative ones were set to 0).

Model Adequacy
To assess whether our model for the evolution of the gut 
microbiota of mammals and birds yields realistic micro
biota compositions, we simulated the process of micro
biota evolution on the mammal or bird phylogenies 
using the parameters estimated for mammals and birds 
(log Z0, R, and λ). Next, we compared the simulated micro
biota compositions to the empirical microbiota composi
tions of the extant mammal or bird species using principal 
component analysis (PCA). We performed 20 independent 
simulations for each of our model inferences.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.

Acknowledgments
The authors acknowledge Julien Clavel, Jonathan Drury, 
Félix Foutel–Rodier, and members of the BioDiv team at 
IBENS for helpful discussions, as well as the Editor 
Aurélien Tellier and two anonymous reviewers for their 
constructive comments. They also acknowledge the 
Hubert Curien Alliance program for funding workshops 
that initiated the project. G.S.-K. acknowledges support 
from the Academy of Finland (decision 340314) and the 
Sakari Alhopuro Foundation (grant 20210172). This work 
was performed using HPC resources from GENCI-IDRIS 
(Grants 2021-A0100312405 and 2022- AD010313735).

Author Contributions
B.P.-L., G.S.-K., L.D., and H.M. designed the study. B.P.-L. and 
G.S.-K. implemented the model. B.P.-L. performed the si
mulations and the empirical applications. B.P.-L., G.S.-K., 
and H.M. wrote the manuscript.

Data Availability
Raw data and processed data from (Song et al. 2020) used 
to perform the empirical applications are available in Qiita 
(https://qiita.ucsd.edu/study/description/11166). Our 
phylogenetic comparative method, referred to as 
ABDOMEN (A Brownian moDel Of Microbiota 
EvolutioN), is available on GitHub with a tutorial: 
https://github.com/BPerezLamarque/ABDOMEN.

References
Aitchison J. 1983. Principal component analysis of compositional 

data. Biometrika 70:57.
Amato KR, Sanders J G, Song SJ, Nute M, Metcalf JL, Thompson LR, 

Morton JT, Amir A, McKenzie V J, Humphrey G, et al. 2019. 
Evolutionary trends in host physiology outweigh dietary niche 
in structuring primate gut microbiomes. ISME J. 13:576–587.

Bodawatta KH, Hird SM, Grond K, Poulsen M, Jønsson KA. 2022. 
Avian gut microbiomes taking flight. Trends Microbiol. 30: 
268–280.

Braga MP, Landis MJ, Nylin S, Janz N, Ronquist F. 2020. Bayesian in
ference of ancestral host-parasite interactions under a phylo
genetic model of host repertoire evolution. Syst Biol. 69: 
1149–1162.

Brooks AW, Kohl KD, Brucker RM, van Opstal EJ, Bordenstein SR. 
2016. Phylosymbiosis: relationships and functional effects of mi
crobial communities across host evolutionary history. Relman D, 
editor. PLOS Biol. 14:e2000225.

Capunitan DC, Johnson O, Terrill RS, Hird SM. 2020. Evolutionary sig
nal in the gut microbiomes of 74 bird species from Equatorial 
Guinea. Mol Ecol. 29:829–847.

Clavel J, Aristide L, Morlon H. 2019. A penalized likelihood frame
work for high-dimensional phylogenetic comparative methods 
and an application to New-World monkeys brain evolution. 
Syst Biol. 68:93–116.

Clavel J, Escarguel G, Merceron G. 2015. mvMORPH: an R package for 
fitting multivariate evolutionary models to morphometric data. 
Poisot T, editor. Methods Ecol Evol. 6:1311–1319.

Csardi G, Nepusz T. 2006. The igraph software package for complex 
network research. InterJournal 2006, Complex Syst. 1695.

Cunningham CW, Omland KE, Oakley TH. 1998. Reconstructing an
cestral character states: a critical reappraisal. Trends Ecol Evol. 13: 
361–366.

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, 
Wolfe BE, Ling A V, Devlin AS, Varma Y, Fischbach MA, et al. 
2014. Diet rapidly and reproducibly alters the human gut micro
biome. Nature 505:559–563.

DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, 
Huber T, Dalevi D, Hu P, Andersen GL. 2006. Greengenes, a 
chimera-checked 16S rRNA gene database and workbench com
patible with ARB. Appl Environ Microbiol. 72:5069–5072.

Dion-Phénix H, Charmantier A, de Franceschi C, Bourret G, Kembel 
SW, Réale D. 2021. Bacterial microbiota similarity between pre
dators and prey in a blue tit trophic network. ISME J. 15: 
1098–1107.

Dismukes W, Braga MP, Hembry DH, Heath TA, Landis MJ. 
2022. Cophylogenetic methods to untangle the evolutionary 

Perez-Lamarque et al. · https://doi.org/10.1093/molbev/msad144 MBE

12

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/7/m
sad144/7199396 by guest on 25 April 2024

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad144#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad144#supplementary-data
https://qiita.ucsd.edu/study/description/11166
https://github.com/BPerezLamarque/ABDOMEN


history of ecological interactions. Annu Rev Ecol Evol Syst. 
53:275–298.

Eriksson O. 2016. Evolution of angiosperm seed disperser mutual
isms: the timing of origins and their consequences for co
evolutionary interactions between angiosperms and frugivores. 
Biol Rev. 91:168–186.

Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, 
Huttenhower C. 2012. Microbial co-occurrence relationships in 
the human microbiome. Ouzounis CA, editor. PLoS Comput 
Biol. 8:e1002606.

Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. 2017. The evolu
tion of the host microbiome as an ecosystem on a leash. Nature 
548:43–51.

Gill PG, Purnell MA, Crumpton N, Brown KR, Gostling NJ, 
Stampanoni M, Rayfield EJ. 2014. Dietary specializations and di
versity in feeding ecology of the earliest stem mammals. Nature 
512:303–305.

Goodrich JK, Davenport ER, Waters JL, Clark AG, Ley RE. 2016. 
Cross-species comparisons of host genetic associations with 
the microbiome. Science (80-.). 352:532–535.

Grossnickle DM, Smith SM, Wilson GP. 2019. Untangling the mul
tiple ecological radiations of early mammals. Trends Ecol Evol. 
34:936–949.

Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, 
Alm EJ. 2017. Unraveling the processes shaping mammalian gut 
microbiomes over evolutionary time. Nat Commun. 8:14319.

Hacquard S, Garrido-Oter R, González A, Spaepen S, Ackermann G, 
Lebeis S, McHardy AC, Dangl JL, Knight R, Ley R, et al. 2015. 
Microbiota and host nutrition across plant and animal king
doms. Cell Host Microbe 17:603–616.

Harmon LJ. 2017. Phylogenetic Comparative Methods.
Harmon LJ, Glor RE. 2010. Poor statistical performance of the Mantel 

test in phylogenetic comparative analyses. Evolution (N. Y). 64: 
2173–2178.

Harmon LJ, Losos JB, Jonathan Davies T, Gillespie RG, Gittleman JL, 
Bryan Jennings W, Kozak KH, McPeek MA, Moreno-Roark F, 
Near TJ, et al. 2010. Early bursts of body size and shape evolution 
are rare in comparative data. Evolution (N. Y). 64:2385–2396.

Hird SM. 2019. Microbiomes, community ecology, and the compara
tive method. mSystems 4:1–5.

Hird SM, Sánchez C, Carstens BC, Brumfield RT. 2015. Comparative gut 
microbiota of 59 neotropical bird Species. Front Microbiol. 6:1403.

Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. 2012. The glo
bal diversity of birds in space and time. Nature 491:444–448.

Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, 
Gonzalez A, Kosciolek T, McCall LI, McDonald D, et al. 2018. Best 
practices for analysing microbiomes. Nat Rev Microbiol. 16: 
410–422.

Kohl KD. 2020. Ecological and evolutionary mechanisms underlying 
patterns of phylosymbiosis in host-associated microbial commu
nities. Philos Trans R Soc B Biol Sci. 375:20190251.

Kohl KD, Dearing MD, Bordenstein SR. 2018. Microbial communi
ties exhibit host species distinguishability and phylosymbiosis 
along the length of the gastrointestinal tract. Mol Ecol. 27: 
1874–1883.

Labrador MdM, Doña J, Serrano D, Jovani R. 2021. Quantitative inter
specific approach to the stylosphere: patterns of bacteria and 
fungi abundance on passerine bird feathers. Microb Ecol. 81: 
1088–1097.

Lavrinienko A, Jernfors T, Koskimäki JJ, Pirttilä AM, Watts PC. 2021. 
Does intraspecific variation in rDNA copy number affect analysis 
of microbial communities? Trends Microbiol. 29:19–27.

Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. 2008. Worlds 
within worlds: evolution of the vertebrate gut microbiota. Nat 
Rev Microbiol. 6:776–788.

Lim SJ, Bordenstein SR. 2020. An introduction to phylosymbiosis. 
Proc R Soc B Biol Sci. 287:20192900.

Martins EP, Hansen TF. 1997. Phylogenies and the comparative meth
od: a general approach to incorporating phylogenetic informa
tion into the analysis of interspecific data. Am Nat. 149:646–667.

Mazel F, Davis KM, Loudon A, Kwong WK, Groussin M, Parfrey LW. 
2018. Is host filtering the main driver of phylosymbiosis across 
the tree of life? Bik H, editor. mSystems. 3:1–15.

McFall-Ngai M, Hadfield MG, Bosch TCG, Carey H V, Domazet-Lošo 
T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, et al. 
2013. Animals in a bacterial world, a new imperative for the 
life sciences. Proc Natl Acad Sci. 110:3229–3236.

Mirpuri J, Raetz M, Sturge CR, Wilhelm CL, Benson A, Savani RC, Hooper 
L V, Yarovinsky F. 2013. Proteobacteria-specific IgA regulates mat
uration of the intestinal microbiota. Gut Microbes. 5:28–39.

Moran NA, Ochman H, Hammer TJ. 2019. Evolutionary and ecologic
al consequences of gut microbial communities. Annu Rev Ecol 
Evol Syst. 50:451–475.

Nishida AH, Ochman H. 2018. Rates of gut microbiome divergence in 
mammals. Mol Ecol. 27:1884–1897.

Ochman H, Worobey M, Kuo CH, Ndjango JBN, Peeters M, Hahn BH, 
Hugenholtz P. 2010. Evolutionary relationships of wild hominids 
recapitulated by gut microbial communities. PLoS Biol. 8:3–10.

Oksanen J, Kindt R, Pierre L, O’Hara B, Simpson GL, Solymos P, 
Stevens MH, Wagner H, Blanchet FG, Kindt R, et al. 2016. vegan: 
Community Ecology Package, R package version 2.4-0. R Packag. 
version 2.2-1.

Pagel M. 1999. Inferring the historical patterns of biological evolu
tion. Nature 401:877–884.

Perez-Lamarque B, Krehenwinkel H, Gillespie RG, Morlon H. 2022a. 
Limited evidence for microbial transmission in the phylosymbio
sis between Hawaiian spiders and their microbiota. Hird SM, edi
tor. mSystems 7:e01104–21.

Perez-Lamarque B, Maliet O, Pichon B, Selosse M-A, Martos F, 
Morlon H. 2022b. Do closely related species interact with similar 
partners? Testing for phylogenetic signal in bipartite interaction 
networks. Peer Community J. 2:e59.

Perez-Lamarque B, Morlon H. 2019. Characterizing symbiont inher
itance during host–microbiota evolution: application to the 
great apes gut microbiota. Mol Ecol Resour. 19:1659–1671.

Perez-Lamarque B, Morlon H. 2023. Comparing different computa
tional approaches for detecting long-term vertical transmission 
in host-associated microbiota. Mol Ecol. https://doi.org/10. 
1111/mec.16681

Pigliucci M. 2003. Phenotypic integration: studying the ecology and 
evolution of complex phenotypes. Ecol Lett. 6:265–272.

Quince C, Curtis TP, Sloan WT. 2008. The rational exploration of mi
crobial diversity. ISME J. 2:997–1006.

R Core Team. 2022. R: a language and environment for statistical 
computing.

Revell LJ. 2012. . Phytools: an R package for phylogenetic comparative 
biology (and other things). Methods Ecol. Evol. 3:217–223.

Revell LJ, Harmon LJ, Collar DC. 2008. Phylogenetic signal, evolution
ary process, and rate. Syst Biol. 57:591–601.

Sanders JG, Powell S, Kronauer DJC, Vasconcelos HL, Frederickson 
ME, Pierce NE. 2014. Stability and phylogenetic correlation in 
gut microbiota: lessons from ants and apes. Mol Ecol. 23: 
1268–1283.

Shealy NG, Yoo W, Byndloss MX. 2021. Colonization resistance: 
metabolic warfare as a strategy against pathogenic 
Enterobacteriaceae. Curr Opin Microbiol. 64:82–90.

Shin NR, Whon TW, Bae JW. 2015. Proteobacteria: microbial signa
ture of dysbiosis in gut microbiota. Trends Biotechnol. 33: 
496–503.

Song SJ, Sanders JG, Delsuc F, Metcalf J, Amato K, Taylor MW, Mazel 
F, Lutz HL, Winker K, Graves GR, et al. 2020. Comparative ana
lyses of vertebrate gut microbiomes reveal convergence between 
birds and bats. MBio. 11:1–14.

Stan Development Team. 2022. RStan: the R interface to Stan.

Phylogenetic Models Reveal Vertebrate Microbiota Evolution · https://doi.org/10.1093/molbev/msad144 MBE

13

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/7/m
sad144/7199396 by guest on 25 April 2024

https://doi.org/10.1111/mec.16681
https://doi.org/10.1111/mec.16681


Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, 
Prill RJ, Tripathi A, Gibbons SM, Ackermann G, et al. 2017. A 
communal catalogue reveals Earth’s multiscale microbial diver
sity. Nature 551:457–463.

Trevelline BK, Sosa J, Hartup BK, Kohl KD. 2020. A bird’s-eye view 
of phylosymbiosis: weak signatures of phylosymbiosis 
among all 15 species of cranes. Proc R Soc B Biol Sci. 287: 
20192988.

Upham NS, Esselstyn JA, Jetz W. 2019. Inferring the mammal 
tree: species-level sets of phylogenies for questions in ecology, 

evolution, and conservation. Tanentzap AJ, editor. PLoS Biol. 
17:e3000494.

Uyeda JC, Caetano DS, Pennell MW. 2015. Comparative analysis of 
principal components can be misleading. Syst Biol. 64:677–689.

Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, 
Mitchell-Olds T. 2016. Host genotype and age shape the leaf and 
root microbiomes of a wild perennial plant. Nat Commun. 7:12151.

Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz 
W. 2014. EltonTraits 1.0: species-level foraging attributes of the 
world’s birds and mammals. Ecology 95:2027–2027.

Perez-Lamarque et al. · https://doi.org/10.1093/molbev/msad144 MBE

14

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/7/m
sad144/7199396 by guest on 25 April 2024


	Phylogenetic Comparative Approach Reveals Evolutionary Conservatism, Ancestral Composition, and Integration of Vertebrate Gut Microbiota
	Introduction
	Results and Discussion
	Materials and Methods
	A Multivariate Brownian Motion Model for Variations in Microbiota Composition Over Host Evolutionary Time
	Model Inference
	Simulations
	Empirical Application
	Effect of Host Traits on Phylosymbiosis
	Comparison between Ancestral and Present-Day Microbiota Composition
	Integration Analyses
	Model Adequacy

	Supplementary Material
	Acknowledgments
	Author Contributions
	Data Availability
	References




