Abstract
"Serum ferritin" presents a paradox, as the iron storage protein ferritin is not synthesised in serum yet is to be found there. Serum ferritin is also a well known inflammatory marker, but it is unclear whether serum ferritin reflects or causes inflammation, or whether it is involved in an inflammatory cycle. We argue here that serum ferritin arises from damaged cells, and is thus a marker of cellular damage. The protein in serum ferritin is considered benign, but it has lost (i.e. dumped) most of its normal complement of iron which when unliganded is highly toxic. The facts that serum ferritin levels can correlate with both disease and with body iron stores are thus expected on simple chemical kinetic grounds. Serum ferritin levels also correlate with other phenotypic readouts such as erythrocyte morphology. Overall, this systems approach serves to explain a number of apparent paradoxes of serum ferritin, including (i) why it correlates with biomarkers of cell damage, (ii) why it correlates with biomarkers of hydroxyl radical formation (and oxidative stress) and (iii) therefore why it correlates with the presence and/or severity of numerous diseases. This leads to suggestions for how one might exploit the corollaries of the recognition that serum ferritin levels mainly represent a consequence of cell stress and damage.

Graphical Abstract
Serum ferritin is a widely used inflammatory biomarker but it is actually a marker of cell damage.
Introduction
In mammals (in contrast, for instance, to some functions in insects1–4), ferritin is supposed to be a cellular means of storing iron,5 not of transporting it, yet serum ferritin levels are widely measured as indicators of iron status. However, the soluble transferrin receptor (sTfR) : log ferritin ratio (sTfR Index) probably provides a better estimate of body iron over a wide range of normal and depleted iron stores.6–9 This is because serum ferritin levels can be raised significantly in response to inflammation and/or a variety of diseases (see later). "Serum ferritin" thus presents something of a paradox. Taking a systems approach, we develop and summarise the view that "serum ferritin" actually originates from damaged cells (and thus reflects cellular damage), that it contains some iron but has lost or liberated most of its normal content, and that since the protein part of ferritin is assumed to be benign, that it is this (initially) free iron that correlates with and is causative of disease. The rest of this analytical and synthetic review summarises the wide-ranging evidence for this. We necessarily start by reviewing iron metabolism from a systems point of view (Fig. 1).

Fig. 1
An overview of this manuscript. (A) A Mind map representation; to read this start at “1 o’clock” and go clockwise. (B) A representation as an infographic, covering (0) the systems biology of iron metabolism, (1) the nature and structure of serum ferritin (SF), (2) the relationship between SF and body iron stores and its measurement, the relationship between SF and (3) markers of oxidative stress and (4) disease, and finally (5) the evidence that ferritin is transferred from cells to serum mainly via cell damage and leakage rather than by regulated secretion.
A systems biology overview of human iron metabolism
A starting point for systems biology is the creation of the network (mathematically a ‘graph’) of interacting partners (e.g. ref. 10–14). To this end, a number of recent genomic-level or systems biology reviews have summarised the chief features of human iron metabolism (e.g. ref. 15–19). (Systems genetics analyses are also available.20–23) For the present purposes, aimed at seeking the ‘function’ of human serum ferritin (SF), we shall take a particularly high level view, and assume that the body has a very restricted number of compartments. Fig. 2, updated from ref. 15 shows essentially just three: intestinal tissue, peripheral tissue and blood/serum, and (see also ref. 24,25 and cf. ref. 26) these will be quite sufficient.

Fig. 2
A high-level, three-compartment overview of iron metabolism (based on15) and the means by which we consider that ferritin appears in serum by leakage from peripheral (and possibly intestinal) cells. BR biliverdin reductase, DMT1 divalent metal transporter1, HO haem oxygenase, Hph hephaestin, TfR transferrin receptor, Lcn2 lipocalin2, also known as Neutrophil gelatinase-associated lipocalin. Diagrams rendered by Dr Steve O’Hagan.
Thus, as is well known, ferric salts and ions are poorly water soluble (hence the need for siderophores – better known in microbiology27–30), and much of the complex (redox) chemistry of iron in the body is designed to deal with this. In addition to its existence in divalent and trivalent states, iron is also capable of being liganded in up to 6 places (4 equatorial, 2 polar), and this liganding is necessary to stop its otherwise exceptional reactivity, specifically the production of the very damaging hydroxyl radical that reacts in nanoseconds with the nearest biological substances15,17 via the Fenton reaction31–35 of H2O2 and Fe(ii). This may be coupled to the re-reduction of Fe(iii) to Fe(ii) by superoxide in the Haber–Weiss reaction,31–35 such that unliganded (or poorly liganded) iron moieties are catalytic and thus especially dangerous. Thus, while iron is vital for living processes, there is an exceptionally important need to sequester iron in a suitably liganded form, and cellular ferritin is a major means of doing this.36
Leaving aside haem, and also nutrient-derived ferritins,37,38 iron is absorbed in the intestine as ferrous ions and transported in the serum bound (in the ferric form) to transferrin, where it can enter peripheral tissues via suitable receptors, being re-reduced in the process. Ferrous iron is incorporated into ferritin, simultaneously being oxidised at a di-iron centre39 to ferric iron. Thus, importantly, ferritin is made in cells (including intestinal cells), and not in serum. We also note the evidence for the presence of ferritin within erythrocytes,40–54 the largest volume fraction of serum.55 In nucleated cells, ferritin resides mainly in the cytoplasm, but there are nuclear56–61 and mitochondrial62–64 forms (not considered here, as our focus is serum ferritin). An overview of cellular iron metabolism is given in Fig. 3.

Fig. 3
Some relevant aspects of cellular iron metabolism, including ferritin and its possible loss to serum. The figure is not to scale, and is based in part on.67 Membrane protein concentrations shown are lower (for clarity) than those in real cell membranes.458 Diagram rendered by Dr Steve O’Hagan.
Although there are bacterial (and other) ferritins that have only 12 subunits,65 human ferritins consist of 24 subunits of a light (L) and heavy (H) chain arranged by self-assembly in a tetracosameric, octahedral cage with 4-3-2 symmetry (e.g. ref. 5,66–70). In humans, the molecular masses of the two chains are 19 (173 amino acids) and 21 kDa (183 amino acids), respectively,61 and the subunits are structurally interchangeable,71 even between mammalian species.72 The heavy subunit is primarily responsible for the ferroxidase activity of the ferritin complex,39 whereas the light subunit (L also standing for Lacks catalysis73) facilitates the storage of iron into the ferritin core.61 Many X-ray structures are known.74 Broadly, each subunit consists of a 4-helix bundle, and their self-assembly (whether iron is present or not) is energetically extremely favourable – the melting or denaturation temperature of the 24mer cage is some 40°C greater than that of an individual subunit.75
Iron loading mechanism of ferritin
The main features of the typical 24-subunit ferritin architecture (shown as an all-H-chain variant) are given in Fig. 4. Human ferritin is some 12 nm diameter overall, with a 2 nm thick protein shell and a hollow internal 8 nm diameter cavity capable of holding up to 4500 iron atoms. Ferrous ions can diffuse into (and out of) the core via the eight, hydrophilic ∼4 Å × 15–20 Å channels located at the 3-fold symmetry axis,70,73,76–82 where they are oxidised by dioxygen (or H2O2 if present) at a di-iron catalytic site to form Fe(iii)2–O products that then form the Fe2O3·H2O mineral core.78,83,84 Other materials such as phosphate may also serve as counterions.82,85 Ferritin Fe3+O nucleation channels open onto the internal surfaces of ferritin protein cages at the four-fold symmetry axes of the ferritin protein cage.82 The six channels located at the 4-fold axis of the protein are hydrophobic; their function does not seem to be known with any certainty, but they may permit entry of dioxygen and/or H2O2.77

Fig. 4
The architecture of a human ferritin, rendered from PDB structure 1FHA (all-H-chain variant). (A) A view down one of the hydrophilic channels representing the 3-fold axis of symmetry through which iron enters the ferroxidase site en route to the core. (B) A view down the hydrophobic channels representing the 4-fold axis of symmetry (whose function is unknown). (C) Entry of Fe2+ into ferritin via a hydrophilic channel, and conversion at a di-iron site to Fe3+, based loosely on a diagram in73 – note that for clarity the iron atoms are not drawn to scale. Diagrams rendered by Dr Steve O’Hagan.
It is not quite so clear how (after storage as Fe(iii) in the ferritin core) Fe(ii) exits the channels81,86 to become available to cells, nor how the physiological (in vivo) reductant reaches the potential site of reduction inside the small channels. It is not clear even what the physiological reductant is,87 though NADH and FMN have been reported to serve,82,88 as have superoxide89 and other materials.81
How much iron in cellular/tissue ferritin?
The number of iron atoms/ferritin cage is said to average 1000–1500 normally,73 governed more by iron availability than anything else, with a maximum of 4500 iron atoms normally being quoted (e.g., ref. 90–92, and attained for iron overload conditions or when loaded artificially in vitro). Direct observation also leads to a mode value of ∼1500 in a liver biopsy from a patient with hereditary haemochromatosis.93
What kind of ferritin in which tissues?
As mentioned, from a structural point of view in terms of forming the 24mer nanocage, ferritin H and L forms are interchangeable.71 Similarly, as expected, ferritin is expressed in most tissues. Thus, human protein atlas expression data for the light chain http://www.proteinatlas.org/ENSG00000087086/normal show it mainly in CNS, bone marrow, spleen, liver, kidney, lung and adipocytes. Expression of the heavy chain is broadly similar http://www.proteinatlas.org/ENSG00000167996/normal save that it is also highly expressed in breast, uterus, testis, prostate and thyroid tissue. In terms of the actual stoichiometries of L:H in ferritin molecules in different tissues (which also affects the ordering or crystallinity of the mineral core73,87) there is rather less information, and variations in this may be causative of disease.94,95 Clearly, for a 24-subunit molecule with two kinds of subunits, one can build 25 canonical ‘isoferritins’.74 Liver and spleen ferritin is mainly the L subunit while heart and brain ferritin is mainly the H subunit. Serum ferritin is mainly in the L form,5,96 consistent with the view that it typically originates in the liver.97 The same (i.e. mainly the L form) is presumably true for erythrocyte ferritin, in that this is what the usual ELISA tests for serum ferritin are designed to detect.
Natural degradation of ferritin
The exact circumstances under which ferritin is normally degraded in vivo (if it is intact) are not entirely clear, but what is clear is that there is a fundamental conceptual problem, in that if the only part degraded is the protein the result is the damaging liberation of unliganded iron. Certainly, as expected for normal cellular degradation, the proteasome is involved,38,98 but there is also a major lysosomal degradation pathway.38,99–103 We note too that overexpression can lead to the formation of ferritin inclusion bodies.104
As well as proteolytic degradation, there are other means of ferritin removal. Thus, haemosiderin is an insoluble material formed from damaged ferritin (ferritin with exposed and potentially chemically reactive mineral sites), commonly appearing under conditions of iron overload and often reflecting a poorer disease prognosis (e.g. ref. 71,105–112). (Note that another insoluble cellular degradation cluster – lipofuscin (e.g. ref. 113–116) – is different, as it does not contain haemosiderin.) However, the insoluble substance neuromelanin (e.g. ref. 115,117–119) may contain ferritin or ferritin-like material.120–122 The question of what happens to haemosiderin seems rather poorly understood, but in contrast to ferritin it is not normally seen (nor at least measured) in serum;123,124 since it is composed of large, insoluble aggregates it is possibly not surprising that it does not leak from cells. Overall, however, it seems that we have comparatively little information on the important question of what happens to its iron content when the protein part of the ferritin molecule either leaves the intracellular environment or is degraded.
In what form is serum ferritin measured?
As mentioned previously, ferritin has an H and L form that are structurally interchangeable. Serum (L-)ferritin is usually measured with antibodies; only rarely is its iron content measured as well. Mass spectrometric methods, that can measure both protein and internal materials, may thus be expected to become the methods of choice.125–128 When such measurements are done, serum ferritin is usually found to contain some iron, but nothing like its full complement.91,92,97,129,130 This implies that it has lost it, whether during or after effluxing from the cells in which it originates.87
Is the protein component of serum ferritin benign or toxic?
This question arises because if the iron has escaped and now (say) the inside of the ferritin is exposed in the serum it might have effects that the intact protein does not (given that the intact protein is extremely stable to thermal unfolding75). There is some fragmentary evidence that serum ferritin itself may have apoptotic and other actions on cells.68,131,132 However, at present it is rather difficult to answer the question of how benign the protein-only form of ferritin (i.e. apoferritin) actually is, since serum ferritin does always tend to contain at least some iron, which can be released and is then not at all benign. When the iron is varied systematically, it is iron-loaded ferritin that is the more toxic,133 with apoferritin in fact being protective.133–137 An important piece of evidence comes from the fact that homozygous ferritin knockout mice are embryo-lethal138 but that heterozygous Fth+/− mice are fairly normal save that they have greatly increased levels of serum ferritin but unchanged serum iron.139 This shows us, importantly, (i) that iron and ferritin can be regulated independently, and (ii) that excess ferritin protein is not of itself toxic in vivo (see also ref. 140). Hereditary hyperferritinemia-cataract syndrome is another disease in which serum ferritin is high but there is no evidence of systemic iron overload.141–146 However, as well as (sometimes) being a marker of liver iron stores, serum ferritin is also an inflammatory marker, and there is often a considerable correlation between disease status and the serum ferritin protein level as measured using antibodies (which do not distinguish ferritins with varying iron content).
Serum ferritin can be a marker of iron stores but is also an inflammatory biomarker
What matters from the point of view of mammalian biology is both the total amount of iron and its speciation. While iron is necessary in every metabolising tissue, a substantial amount of iron is held in the liver, so ‘liver iron stores’ are often taken as the gold standard. Traditionally, these were measured in a biopsy, although this is not something that can be done with any frequency. Fortunately non-invasive measurement and imaging methods, e.g. neutron-stimulated emission controlled tomography,147 SQUID-biosusceptometry129,148 and (in particular) MRI (e.g. ref. 149–158), also widely used for brain imaging (e.g. ref. 159–161), are coming through. In some cases, where there is no inflammation and/or if a specific iron-related disease state is known, liver iron content can correlate with serum ferritin (e.g. ref. 162 and 163), but more often the correlation is poor (e.g. ref. 129,157,164–171). This is more or less inevitable when serum ferritin levels can be affected by two largely independent causes, viz. iron status and inflammatory status. Thus, as mentioned above, serum ferritin alone is falling out of favour as a marker of iron status, with serum (‘soluble’) transferrin receptor (sTfR) being seen as much more useful, since sTfR may be used to distinguish the anaemia of chronic disease from iron-deficiency anaemia.172 In particular, the "sTfR Index" (the sTfR/log ferritin ratio when both are measured in μg L−1) is now considered to provide an estimate of body iron over a wide range of normal and depleted iron stores,6–9 and again is thus better for discriminating iron deficiency anaemia from the anaemia of chronic disease9,173–175 (cf. ref. 176).
In consequence, and especially in countries where inflammatory diseases are highly prevalent, it would seem that serum ferritin may in general be a better marker of inflammation than of iron status.
Some diseases in which serum ferritin levels correlate with the presence or severity of disease
One of us has previously listed a great many (inflammatory) diseases in which iron dysregulation clearly plays a major role (e.g. ref. 15 and 17), but did not there distinguish serum ferritin explicitly. It is therefore helpful to set down some of the studies in which serum ferritin is known to associate with disease and/or disease severity, and this is done in Table 1.
Table 1A selection of diseases in which their presence or severity is known to be related to serum ferritin levels. The table purposely excludes classic ‘iron overload’ diseases such as haemochromatosis, thalassaemia and myelodysplastic syndrome. It also excludes syndromes such as Alzheimer’s disease177–179 and Parkinson’s disease,18,180 where a great many papers show dysregulation of iron metabolism in brain tissue but where there is very little work in serum. In the case of rheumatoid arthritis some of the studies involved synovial fluid; like serum, this is an extracellular fluid
Disease or syndrome
. | Selected references
. |
---|
Acute respiratory distress syndrome | 181–184 |
Amyotrophic lateral sclerosis | 185–189 |
Atherosclerosis | 96,190–200 |
Cancer | 201–214 |
Cirrhosis of the liver | 215–217 |
Coronary artery disease | 218–221 |
Diabetes mellitus, type 2 | 221–249 |
Hypertension | 250–254 |
Metabolic syndrome | 235,236,252,255–272 |
Multiple sclerosis | 273–276 |
Myocardial infarction | 277–285 |
Non-alcoholic fatty liver disease | 260,262,264,270,286–301 |
Preeclampsia | 302–306 |
Rheumatoid arthritis | 307–314 |
Sepsis/SIRS | 315–318 |
Stroke | 319–330 |
Systemic lupus erythematosus | 274,331–342 |
Disease or syndrome
. | Selected references
. |
---|
Acute respiratory distress syndrome | 181–184 |
Amyotrophic lateral sclerosis | 185–189 |
Atherosclerosis | 96,190–200 |
Cancer | 201–214 |
Cirrhosis of the liver | 215–217 |
Coronary artery disease | 218–221 |
Diabetes mellitus, type 2 | 221–249 |
Hypertension | 250–254 |
Metabolic syndrome | 235,236,252,255–272 |
Multiple sclerosis | 273–276 |
Myocardial infarction | 277–285 |
Non-alcoholic fatty liver disease | 260,262,264,270,286–301 |
Preeclampsia | 302–306 |
Rheumatoid arthritis | 307–314 |
Sepsis/SIRS | 315–318 |
Stroke | 319–330 |
Systemic lupus erythematosus | 274,331–342 |
Table 1A selection of diseases in which their presence or severity is known to be related to serum ferritin levels. The table purposely excludes classic ‘iron overload’ diseases such as haemochromatosis, thalassaemia and myelodysplastic syndrome. It also excludes syndromes such as Alzheimer’s disease177–179 and Parkinson’s disease,18,180 where a great many papers show dysregulation of iron metabolism in brain tissue but where there is very little work in serum. In the case of rheumatoid arthritis some of the studies involved synovial fluid; like serum, this is an extracellular fluid
Disease or syndrome
. | Selected references
. |
---|
Acute respiratory distress syndrome | 181–184 |
Amyotrophic lateral sclerosis | 185–189 |
Atherosclerosis | 96,190–200 |
Cancer | 201–214 |
Cirrhosis of the liver | 215–217 |
Coronary artery disease | 218–221 |
Diabetes mellitus, type 2 | 221–249 |
Hypertension | 250–254 |
Metabolic syndrome | 235,236,252,255–272 |
Multiple sclerosis | 273–276 |
Myocardial infarction | 277–285 |
Non-alcoholic fatty liver disease | 260,262,264,270,286–301 |
Preeclampsia | 302–306 |
Rheumatoid arthritis | 307–314 |
Sepsis/SIRS | 315–318 |
Stroke | 319–330 |
Systemic lupus erythematosus | 274,331–342 |
Disease or syndrome
. | Selected references
. |
---|
Acute respiratory distress syndrome | 181–184 |
Amyotrophic lateral sclerosis | 185–189 |
Atherosclerosis | 96,190–200 |
Cancer | 201–214 |
Cirrhosis of the liver | 215–217 |
Coronary artery disease | 218–221 |
Diabetes mellitus, type 2 | 221–249 |
Hypertension | 250–254 |
Metabolic syndrome | 235,236,252,255–272 |
Multiple sclerosis | 273–276 |
Myocardial infarction | 277–285 |
Non-alcoholic fatty liver disease | 260,262,264,270,286–301 |
Preeclampsia | 302–306 |
Rheumatoid arthritis | 307–314 |
Sepsis/SIRS | 315–318 |
Stroke | 319–330 |
Systemic lupus erythematosus | 274,331–342 |
There can be very little doubt that high serum ferritin levels accompany a great many diseases, and the corollary of this is that iron-induced hydroxyl radical formation leading to oxidative damage is likely to be a contributory factor in all of them. In addition, there are other useful phenotypic readouts that change with serum ferritin, and the next section describes one.
Some morphological and related readouts of haematological changes associated with inflammatory diseases
While not the entire focus of this review, we highlight two other accompaniments to the unliganded iron caused by its loss from ferritin, namely morphological changes to both fibrin and erythrocytes. Thus, we have recently been developing the idea that many of the consequences of unliganded iron can be observed directly, by changes in properties such as erythrocyte (RBC) morphology and deformability and the nature and morphology of fibrin fibres generated in the presence of thrombin (as is observed in a number of diseases343–346). When thrombin is added to healthy whole blood, the RBCs will keep their typical discoid shape while fibrin fibres will form over and around the RBCs (such a typical healthy RBC (from an individual with a serum ferritin of 19 ng·mL−1), surrounded by fibrin is shown in Fig. 5A). However, in inflammatory conditions, where iron overload is present, the RBCs lose their typical discoid shape, while the fibrin network forms a dense matted layer. This was previously noted in RBCs of hereditary haemochromatosis, pro-thrombin mutation and antiphospholipid syndrome with increased serum ferritin levels and in high serum ferritin levels in Alzheimer’s disease.347–351Fig. 5B–D show examples of RBCs and fibrin in these conditions. The corollary is clear, namely that these kinds of changes should be observable in cases where we see high serum ferritin, and some examples have already been published.

Fig. 5
A to D: whole blood with added thrombin, taken from females. (A) Erythrocyte surrounded by fibrin network, from a healthy individual (serum ferritin (SF) = 19 ng mL−1); (B) erythrocyte from a hereditary hemochromatosis individual (C282Y/C282Y) showing elongated shape with (in brown) matted fibrin (serum ferritin (SF) = 508 ng mL−1); (C) erythrocyte of an individual with a pro-thrombin mutation (G20210A – heterozygous) as well as anti-phospholipid syndrome, showing fibrin forming a covering on the elongated erythrocyte (serum ferritin (SF) = 177 ng mL−1); (D) erythrocyte from a high serum ferritin Alzheimer’s disease individual, showing architectural changes of the cell (serum ferritin (SF) = 256 ng mL−1). E and F: whole blood smears (without added thrombin) (E) erythrocyte of hereditary hemochromatosis individual (serum ferritin (SF) = 508 ng mL−1); (F) erythrocyte from hereditary hemochromatosis individual after addition of the iron chelator desferal (167 μM). Scale bar = 1 μm. Ethical clearance was obtained by E Pretorius for SEM analysis.
In the presence of iron, the already compromised RBCs are entrapped in the pathological fibrin masses. Iron plays an important role in the change of a netlike fibrin layer to a matted mass. We previously showed that healthy fibrin can be changed to resemble this matted appearance, when physiological levels of iron are added to plasma.352 Such matted fibrin morphology was also previously noted in type II diabetes, thrombotic ischemic stroke and systemic lupus erythematosus. Here the compromised RBCs twist around the fibres and this may cause a tight and rigid clot that might be particularly resistant to fibrinolysis.353–355
As well as undergoing a shape change, the RBC membranes, in the presence of iron overload, also lose their elastic ability (deformability). This was noted in Alzheimer’s Disease individuals with iron overload, where their RBCs have a decreased membrane elasticity.347 A changed RBC membrane roughness was also noted in diabetes.356
Further, RBC shape and membrane changes have been noted in smokers and in individuals with Chronic Obstructive Pulmonary Disorder (COPD).357,358 Both conditions are known to cause a general inflammatory state in the user as well as increased serum ferritin levels,359 and this may aid in the developing of the changed RBC deformability.
RBCs are extremely adaptable cells, particularly due to their rheological properties that force them to deform and reform under shear forces when they travel through narrow capillaries, while in the presence of high (poorly liganded) iron levels, they lose this deformability. By contrast, diseased RBCs can regain their discoid shape when selected chelators are added.350 Here we show how an RBC from a HH individual can return to the typical discoid shape after the addition of physiological levels of the iron chelator Desferal (Fig. 5E and F). This may have profound clinical implications under conditions where iron overload is present.
Thus, this unliganded iron affects (negatively) at least three things that can each contribute to vascular woes: erythrocyte morphology, erythrocyte deformability and fibrin structure/morphology.
Chelation for the reversal of iron-induced effects
The recognition that these changes can be reversed by known iron chelators leads to the recognition of a further prediction: that disease severity may be decreased through the use of iron chelators that may be pharmacological or nutritional. For the former, three iron chelators have been approved for clinical use (e.g. ref. 15,360–364), viz. desferal/deferoxamine/desferrioxamine,365 L1/deferiprone366–368 and deferasirox.369–372 From the nutritional point of view, there is considerable evidence that many of the benefits of polyphenolic antioxidants (such as are found in coloured, and especially purple, fruits) derive from their ability to chelate unliganded iron (see e.g. ref. 17,373–380).
Chemical kinetic basis of the relation of serum ferritin to liver iron stores and with disease
Many dozens of references indicate that in normal humans (without overt inflammation) serum ferritin levels are more or less closely related to body iron stores (e.g. in the liver) as judged by magnetic resonance imaging, biopsy or repeated phlebotomies. A selection of such references includes.163,169,381–385
Since there is normally a decent correlation between body iron stores and serum ferritin, a series of simple (even first order) reactions in which cells release ferritin can account for this (Fig. 6). The question arises as to the nature of this ‘release’.

Fig. 6
A high-level systems approach to serum ferritin. The diagram serves to illustrate why there tend to be correlations between the amount of ferritin in cells, the rate of its excretion by cell damage (involving liberation of unliganded iron) and the levels of serum ferritin. The serum ferritin correlates with disease but the cause is iron, with which it too can correlate. As with any systems biology network, multiple differences in different elements of the network can lead to the same overall effects, explaining the lack of a perfect correlation with any individual process. Thus a first order rate of efflux of ferritin is the product of (and thus contains contributions from) both the internal ferritin concentration and the rate constant for efflux, which may vary independently. For these purposes we do not discriminate the many individual iron species.
Ferritin transfer from cells to serum in humans: less active secretion, more simply leakage from damaged cells
Partly because a fraction of serum ferritin is glycosylated, as judged more or less solely by its ability to bind to concanavalin A (not a very specific assay), it is occasionally stated that ferritin is ‘secreted’ (e.g.ref. 382,386 and 387), implying a controlled process, but without – so far as we are aware – any actual evidence for secretion rather than leakage being the mechanism in vivo. Indeed when ferritin is genuinely secreted, as it is for instance in insects,3,4,388 it has suitable leader (secretion signal) sequences, and mammalian ferritins do not.
This said, in cell cultures, there is some (scant) evidence for a comparatively small amount of regulated secretion,389 and one paper states that secretion can be decreased by brefeldin, an inhibitor of Golgi processes.390 This secreted form is said to be mainly the more acidic H form131 and is glycosylated. We note that both SCARA5 and the transferrin receptor can act as receptors for serum ferritin,68,391,392 as can TIM-2 in mice,393 that can in some circumstances be taken up into cells.394 There is also evidence for active secretion (of a non-glycosylated form) in mice.395 Overall, however, there is not as yet any real evidence for regulated or active secretion in humans in vivo, such that the origin of serum ferritin must indeed largely, if not entirely, be seen as cellular damage. A number of analyses in the literature are consistent with this, and the following four sections pertain.
Relative lack of homeostasis of serum ferritin
The ‘normal range’ of a biochemical concentration is a body fluid is usually taken as the middle 95 percentiles. Somewhat like the Gini indices of economics,396 it is then possible to assess the ratio of particular percentiles, which gives an indication of the spread of these among populations. We shall call this ratio (of the 2.5th and 97.5th percentile) the 95 percentile ratio or 95PR. A small spread implies a tighter degree of regulation or control. The large normal range of serum ferritin (18–350 ng mL−1) relative to other biochemical variables (http://www.globalrph.com/labs_def.htm#Ferritin_), with a 95PR of nearly 20, implies that it is not the subject of homeostasis, i.e. that its appearance is not regulated. One might also comment on the very low normal concentrations of serum ferritin (up to say 350 ng mL−1 in men, up to say 150 ng mL−1 in women) relative to say transferrin (1.88–3.41 mg mL−1) (http://www.globalrph.com/labs_t.htm) or fibrinogen (2–4 mg mL−1).
Association between serum ferritin and biomarkers of liver damage
As stated by Theil:70 "serum ferritin likely originates from cell leakage". The figure in67 implies a similar role. Similarly, Hubel305 points out correlations between serum aspartate aminotransferase (a marker of hepatocellular damage) and SF,397 which again implies that serum ferritin originates from cellular damage. Many other authors (e.g.ref. 87,91,129,288,382 and 398) take a similar view. Serum alanine aminotransferase is another well known marker of liver damage that correlates with serum ferritin,93,215,257,287–289,399–407 consistent with the view that serum ferritin is indeed a marker of damaged cells. In this regard, it is worth noting that the rate of cell turnover, and especially liver cell turnover/regeneration, can be very high (e.g. ref. 408–411).
Correlation of serum ferritin with other markers of oxidative stress and hydroxyl radical formation
Since intracellular ferritin is a means of storing iron safely,412 and indeed its synthesis is increased in response to oxidative stress,413–416 one should not necessarily expect serum ferritin to be related to biomarkers reflecting hydroxyl radical formation via the Fenton reaction, that is catalysed by unliganded iron. However, in a similar vein to the liver damage above, serum ferritin levels do correlate with serum markers of hydroxyl radical formation such as 8-hydroxydeoxyguanosine,17,417–424 27-hydroxycholesterol,425 4-hydroxynonenal,131,290 isoprostanes,426,427 and malondialdehyde.406,428–436 Given that only unliganded iron can do this, the easiest interpretation of such data is that the serum ferritin has lost its iron and that it is this unliganded iron that catalyses hydroxyl radical formation and thus the production of these markers. An extensive food processing literature also documents this loss of iron from ferritin in muscle foods (e.g. ref. 437–439), where the consequent lipid oxidation is a major issue in causing rancid tastes, and where metal chelators decrease it.440,441
Correlation of platelet microparticles with serum ferritin – further evidence for the cell damage hypothesis
As mentioned, a considerable number of papers note the presence of ferritin in erythrocytes, the largest cellular compartment in blood.40,43–50,53,54 In RBCs, one of the more notable cell death mechanisms is eryptosis, a suicidal death of erythrocytes; this is characterized by erythrocyte shrinkage, blebbing, and phospholipid scrambling of the cell membrane. There is limited evidence that eryptosis occurs in iron overload conditions like β-thalassemia.442 It is noteworthy that erythrocyte-derived microparticles are also often observable in the blood of patients with diseases associated with high serum ferritin levels (Table 1).443–453 These microparticles are circulating fragments derived from blebbing and shedding of cell membranes through several mechanisms that include activation, apoptosis (in nucleated cells) and cell damage.444,454 These microparticles are well-known in cardiovascular, neoplastic, and inflammatory diseases and this again implies a correlation between cellular damage and serum ferritin. Cell damage also releases both phospholipids and DNA, and (in a similar vein) ferritin levels are also raised in diseases in which antibodies to such molecules are also present (e.g. ref. 455–457).
Summarising remarks
Although serum ferritin is widely seen as an inflammatory biomarker, our understanding of its role as an intracellular iron storage protein gives no explanation of why it should even exist in serum. The view summarised here is that serum ferritin leaks from damaged cells, losing most of its iron on the way, and leaving that iron in an unliganded form that can impact negatively on health. This unliganded iron can of course stimulate further cell damage.17 This overall view serves straightforwardly to explain the following, known observations.
(1) Serum ferritin exists, despite the fact that ferritin is not synthesised in the serum.
(2) Serum ferritin lacks most of the iron it contained when intracellular.
(3) The intracellular ferritin must have ‘dumped’ its unliganded iron somewhere, where it can participate in Haber–Weiss and Fenton reactions, creating hydroxyl radicals and consequent further cellular damage.
(4) The serum ferritin protein is itself considered benign.139
(5) Yet the level of serum ferritin correlates with numerous inflammatory and degenerative diseases.
Quo vadis (where next)? A perspective for future work
We consider the summary presented here rather persuasive, as it has considerable explanatory power in terms of accounting for the nature and consequences of serum ferritin, and providing corollaries of the fact that it has largely ‘lost’ its iron that are borne out by evidence. It also leads us to note some of the experiments that need to be done. First, we need to understand much better the state of both cellular and serum ferritin in terms both of its subunit composition and the nature and extent of its iron content. We also need to understand better the different cellular and tissue distributions of the variously loaded forms, and we certainly need to determine the toxicity displayed, or protection afforded, by the different forms of well characterised ferritins under different circumstances. Far from implying that serum ferritin is a poor biomarker, it leads us rather to suggest that we need to follow it (and its sequelae) more carefully and longitudinally during the development or otherwise of various diseases, and to test how well its changes reflect therapeutic benefits to disease progression. Only then will we determine its true utility, whether alone or in combination with other biomarkers.
Acknowledgements
We thank Dr Steve O’Hagan for considerable assistance with a number of the figures, and Janette Bester for the preparation of the samples for SEM analysis.
References
A.
Mehta
, A.
Deshpande
and F.
Missirlis
Genetic screening for novel Drosophila mutants with discrepancies in iron metabolism
,
Biochem. Soc. Trans.
,
2008
,
36
,
1313
–
1316
.
F.
Missirlis
, S.
Kosmidis
, T.
Brody
, M.
Mavrakis
, S.
Holmberg
, W. F.
Odenwald
, E. M.
Skoulakis
and T. A.
Rouault
Homeostatic mechanisms for iron storage revealed by genetic manipulations and live imaging of Drosophila ferritin
,
Genetics
,
2007
,
177
,
89
–
100
.
D. Q. D.
Pham
and J. J.
Winzerling
Insect ferritins: Typical or atypical?
,
Biochim. Biophys. Acta
,
2010
,
1800
,
824
–
833
.
X.
Tang
and B.
Zhou
Ferritin is the key to dietary iron absorption and tissue iron detoxification in Drosophila melanogaster
,
FASEB J.
,
2013
,
27
,
288
–
298
.
P.
Arosio
, R.
Ingrassia
and P.
Cavadini
Ferritins: A family of molecules for iron storage, antioxidation and more
,
Biochim. Biophys. Acta
,
2009
,
1790
,
589
–
599
.
B. S.
Skikne
, C. H.
Flowers
and J. D.
Cook
Serum transferrin receptor: a quantitative measure of tissue iron deficiency
,
Blood
,
1990
,
75
,
1870
–
1876
.
Y.
Beguin
Soluble transferrin receptor for the evaluation of erythropoiesis and iron status
,
Clin. Chim. Acta
,
2003
,
329
,
9
–
22
.
B. S.
Skikne
Serum transferrin receptor
,
Am. J. Hematol.
,
2008
,
83
,
872
–
874
.
B. S.
Skikne
, K.
Punnonen
, P. H.
Caldron
, M. T.
Bennett
, M.
Rehu
, G. H.
Gasior
, J. S.
Chamberlin
, L. A.
Sullivan
, K. R.
Bray
and P. C.
Southwick
Improved differential diagnosis of anemia of chronic disease and iron deficiency anemia: A prospective multicenter evaluation of soluble transferrin receptor and the sTfR/log ferritin index
,
Am. J. Hematol.
,
2011
,
86
,
923
–
927
.
E.
Klipp
, R.
Herwig
, A.
Kowald
, C.
Wierling
and H.
Lehrach
Systems biology in practice: concepts, implementation and clinical application
,
Wiley/VCH
,
Berlin
,
2005
.
D. B.
Kell
and J. D.
Knowles
,
The role of modeling in systems biology
, in
System modeling in cellular biology: from concepts to nuts and bolts
, ed.
Z.
Szallasi
, J.
Stelling
and V.
Periwal
,
MIT Press
,
Cambridge
,
2006
, pp.
3
–
18
.
D. B.
Kell
Metabolomics, modelling and machine learning in systems biology: towards an understanding of the languages of cells. The 2005 Theodor Bücher lecture
,
FEBS J.
,
2006
,
273
,
873
–
894
.
B. Ø.
Palsson
Systems biology: properties of reconstructed networks
,
Cambridge University Press
,
Cambridge
,
2006
.
U.
Alon
An introduction to systems biology: design principles of biological circuits
,
Chapman and Hall/CRC
,
London
,
2006
.
D. B.
Kell
Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases
,
BMC Med. Genomics
,
2009
,
2
,
2
.
V.
Hower
, P.
Mendes
, F. M.
Torti
, R.
Laubenbacher
, S.
Akman
, V.
Shulaev
and S. V.
Torti
A general map of iron metabolism and tissue-specific subnetworks
,
Mol. Biosyst.
,
2009
,
5
,
422
–
443
.
D. B.
Kell
Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples
,
Arch. Toxicol.
,
2010
,
577
,
825
–
889
.
C.
Funke
, S. A.
Schneider
, D.
Berg
and D. B.
Kell
Genetics and iron in the systems biology of Parkinson’s disease and some related disorders
,
Neurochem. Int.
,
2013
,
62
,
637
–
652
.
L. C.
Jellen
, J. L.
Beard
and B. C.
Jones
Systems genetics analysis of iron regulation in the brain
,
Biochimie
,
2009
,
91
,
1255
–
1259
.
B. C.
Jones
, J. L.
Beard
, J. N.
Gibson
, E. L.
Unger
, R. P.
Allen
, K. A.
McCarthy
and C. J.
Earley
Systems genetic analysis of peripheral iron parameters in the mouse
,
Am. J. Physiol.: Regul., Integr. Comp. Physiol.
,
2007
,
293
,
R116
–
R124
.
D.
Hwang
, I. Y.
Lee
, H.
Yoo
, N.
Gehlenborg
, J. H.
Cho
, B.
Petritis
, D.
Baxter
, R.
Pitstick
, R.
Young
, D.
Spicer
, N. D.
Price
, J. G.
Hohmann
, S. J.
Dearmond
, G. A.
Carlson
and L. E.
Hood
A systems approach to prion disease
,
Mol. Syst. Biol.
,
2009
,
5
,
252
.
L.
Yin
, E. L.
Unger
, L. C.
Jellen
, C. J.
Earley
, R. P.
Allen
, A.
Tomaszewicz
, J. C.
Fleet
and B. C.
Jones
Systems genetic analysis of multivariate response to iron deficiency in mice
,
Am. J. Physiol.: Regul., Integr. Comp. Physiol.
,
2012
,
302
,
R1282
–
R1296
.
C.
Berzuini
, P. C.
Franzone
, M.
Stefanelli
and C.
Viganotti
Iron kinetics: modelling and parameter estimation in normal and anemic states
,
Comput. Biomed. Res.
,
1978
,
11
,
209
–
227
.
P. C.
Franzone
, A.
Paganuzzi
and M.
Stefanelli
A mathematical model of iron metabolism
,
J. Math. Biol.
,
1982
,
15
,
173
–
201
.
T. J. S.
Lopes
, T.
Luganskaja
, M.
Vujić Spasić
, M. W.
Hentze
, M. U.
Muckenthaler
, K.
Schümann
and J. G.
Reich
Systems analysis of iron metabolism: the network of iron pools and fluxes
,
BMC Syst. Biol.
,
2010
,
4
,
112
.
G.
Winkelmann
Ecology of siderophores with special reference to the fungi
,
Biometals
,
2007
,
20
,
379
–
392
.
M.
Sandy
and A.
Butler
Microbial iron acquisition: marine and terrestrial siderophores
,
Chem. Rev.
,
2009
,
109
,
4580
–
4595
.
R. C.
Hider
and X.
Kong
Chemistry and biology of siderophores
,
Nat. Prod. Rep.
,
2010
,
27
,
637
–
657
.
M.
Miethke
Molecular strategies of microbial iron assimilation: from high-affinity complexes to cofactor assembly systems
,
Metallomics
,
2013
,
5
,
15
–
28
.
S.
Akatsuka
, Y.
Yamashita
, H.
Ohara
, Y. T.
Liu
, M.
Izumiya
, K.
Abe
, M.
Ochiai
, L.
Jiang
, H.
Nagai
, Y.
Okazaki
, H.
Murakami
, Y.
Sekido
, E.
Arai
, Y.
Kanai
, O.
Hino
, T.
Takahashi
, H.
Nakagama
and S.
Toyokuni
Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer
,
PLoS One
,
2012
,
7
,
e43403
.
S.
Goldstein
, D.
Meyerstein
and G.
Czapski
The Fenton reagents
,
Free Radical Biol. Med.
,
1993
,
15
,
435
–
445
.
S.
Toyokuni
Iron and carcinogenesis: from Fenton reaction to target genes
,
Redox Rep.
,
2002
,
7
,
189
–
197
.
P.
Wardman
and L. P.
Candeias
Fenton chemistry: An introduction
,
Radiat. Res.
,
1996
,
145
,
523
–
531
.
C. C.
Winterbourn
Toxicity of iron and hydrogen peroxide: the Fenton reaction
,
Toxicol. Lett.
,
1995
,
82–83
,
969
–
974
.
X.
Liu
and E. C.
Theil
Ferritins: dynamic management of biological iron and oxygen chemistry
,
Acc. Chem. Res.
,
2005
,
38
,
167
–
175
.
E. C.
Theil
, H.
Chen
, C.
Miranda
, H.
Janser
, B.
Elsenhans
, M. T.
Nunez
, F.
Pizarro
and K.
Schumann
Absorption of iron from ferritin is independent of heme iron and ferrous salts in women and rat intestinal segments
,
J. Nutr.
,
2012
,
142
,
478
–
483
.
M. C.
Linder
Mobilization of stored iron in mammals: a review
,
Nutrients
,
2013
,
5
,
4022
–
4050
.
K. H.
Ebrahimi
, E.
Bill
, P. L.
Hagedoorn
and W. R.
Hagen
The catalytic center of ferritin regulates iron storage via Fe(II)-Fe(III) displacement
,
Nat. Chem. Biol.
,
2012
,
8
,
941
–
948
.
F. S.
Porter
Erythrocyte ferritin
,
Pediatr. Res.
,
1973
,
7
,
954
–
957
.
E. R.
Bauminger
, S. G.
Cohen
, S.
Ofer
and E. A.
Rachmilewitz
Quantitative studies of ferritinlike iron in erythrocytes of thalassemia, sickle-cell anemia, and hemoglobin Hammersmith with Mössbauer spectroscopy
,
Proc. Natl. Acad. Sci. U. S. A.
,
1979
,
76
,
939
–
943
.
A.
Jacobs
, S. W.
Peters
, E. R.
Bauminger
, J.
Eikelboom
, S.
Ofer
and E. A.
Rachmilewitz
Ferritin concentration in normal and abnormal erythrocytes measured by immunoradiometric assay with antibodies to heart and spleen ferritin and Mössbauer spectroscopy
,
Br. J. Haematol.
,
1981
,
49
,
201
–
207
.
M. B.
Van der Weyden
, H.
Fong
, L.
Hallam
and M. J.
Breidahl
A rapid and simple assay for human erythrocyte ferritin
,
Clin. Chim. Acta
,
1983
,
127
,
397
–
401
.
M. B.
Van Der Weyden
, H.
Fong
, H. H.
Salem
, R. G.
Batey
and F. J.
Dudley
Erythrocyte ferritin content in idiopathic haemochromatosis and alcoholic liver disease with iron overload
,
BMJ
,
1983
,
286
,
752
–
754
.
L.
Muylle
, F. L.
Van de Vyver
and P. P.
Blockx
Erythrocyte ferritin content in idiopathic haemochromatosis and alcoholic liver disease with iron overload
,
BMJ
,
1983
,
286
,
2064
–
2065
.
A.
Piperno
, M. T.
Taddei
, M.
Sampietro
, S.
Fargion
, P.
Arosio
and G.
Fiorelli
Erythrocyte ferritin in thalassemia syndromes
,
Acta Haematol.
,
1984
,
71
,
251
–
256
.
H. H.
Bodemann
, A.
Rieger
, K. J.
Bross
, H.
Schroter-Urban
and G. W.
Lohr
Erythrocyte and plasma ferritin in normal subjects, blood donors and iron deficiency anemia patients
,
Blut
,
1984
,
48
,
131
–
137
.
A.
Piperno
, M.
Sampietro
, M. T.
Taddei
and G.
Fiorelli
Factors affecting erythrocyte ferritin content in thalassaemia intermedia
,
Br. J. Haematol.
,
1984
,
56
,
173
–
174
.
S. W.
Peters
, S. J.
May
and A.
Jacobs
Erythrocyte ferritin concentration in patients with myelodysplastic syndromes
,
J. Clin. Pathol.
,
1985
,
38
,
113
–
114
.
M. K.
Cruickshank
, J.
Ninness
, A.
Curtis
, R. M.
Barr
, P. R.
Flanagan
, C. N.
Ghent
and L. S.
Valberg
Usefulness of erythrocyte ferritin analysis in hereditary hemochromatosis
,
CMAJ
,
1987
,
136
,
1259
–
1264
.
M. I.
Oshtrakh
and V. A.
Semionkin
Mössbauer study of red blood cells from patients with erythremia
,
FEBS Lett.
,
1989
,
257
,
41
–
44
.
E. R.
Bauminger
, E.
Fibach
, A. M.
Konijn
, S.
Ofer
and E. A.
Rachmilewitz
Mössbauer studies of iron uptake, ferritin and hemoglobin synthesis and denaturation in erythroid cell cultures
,
Hyperfine Interact.
,
1991
,
66
,
11
–
23
.
V.
Christopoulou
, A.
Varsou
, A.
Travlou
and G.
Drivas
Erythrocyte ferritin in patients with chronic renal failure and heterozygous beta-thalassemia
,
Nephron
,
2002
,
91
,
463
–
467
.
C.
Novembrino
, A.
Porcella
, D.
Conte
, A. F.
de Vecchi
, G.
Buccianti
, S.
Lonati
, L.
Duca
, A.
Ciani
and F.
Bamonti-Catena
Erythrocyte ferritin concentration: analytical performance of the immunoenzymatic IMx-Ferritin (Abbott) assay
,
Clin. Chem. Lab. Med.
,
2005
,
43
,
449
–
453
.
H.
Beving
, L. E. G.
Eriksson
, C. L.
Davey
and D. B.
Kell
Dielectric properties of human blood and erythrocytes at radio frequencies (0.2-10 MHz): dependence on medium composition
,
Eur. Biophys. J.
,
1994
,
23
,
207
–
215
.
C.
Cai
, A.
Ching
, C.
Lagace
and T.
Linsenmayer
Nuclear ferritin-mediated protection of corneal epithelial cells from oxidative damage to DNA
,
Dev. Dyn.
,
2008
,
237
,
2676
–
2683
.
N.
Surguladze
, K. M.
Thompson
, J. L.
Beard
, J. R.
Connor
and M. G.
Fried
Interactions and reactions of ferritin with DNA
,
J. Biol. Chem.
,
2004
,
279
,
14694
–
14702
.
N.
Surguladze
, S.
Patton
, A.
Cozzi
, M. G.
Fried
and J. R.
Connor
Characterization of nuclear ferritin and mechanism of translocation
,
Biochem. J.
,
2005
,
388
,
731
–
740
.
M. V.
Nurminskaya
, C. J.
Talbot
, D. I.
Nurminsky
, K. E.
Beazley
and T. F.
Linsenmayer
Nuclear ferritin: a ferritoid-ferritin complex in corneal epithelial cells
,
Invest. Ophthalmol. Visual Sci.
,
2009
,
50
,
3655
–
3661
.
H. L.
Storr
, B.
Kind
, D. A.
Parfitt
, J. P.
Chapple
, M.
Lorenz
, K.
Koehler
, A.
Huebner
and A. J.
Clark
Deficiency of ferritin heavy-chain nuclear import in triple A syndrome implies nuclear oxidative damage as the primary disease mechanism
,
Mol. Endocrinol.
,
2009
,
23
,
2086
–
2094
.
A. A.
Alkhateeb
and J. R.
Connor
Nuclear ferritin: A new role for ferritin in cell biology
,
Biochim. Biophys. Acta
,
2010
,
1800
,
793
–
797
.
P.
Arosio
and S.
Levi
Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage
,
Biochim. Biophys. Acta
,
2010
,
1800
,
783
–
792
.
A.
Campanella
, E.
Rovelli
, P.
Santambrogio
, A.
Cozzi
, F.
Taroni
and S.
Levi
Mitochondrial ferritin limits oxidative damage regulating mitochondrial iron availability: hypothesis for a protective role in Friedreich ataxia
,
Hum. Mol. Genet.
,
2009
,
18
,
1
–
11
.
W. S.
Wu
, Y. S.
Zhao
, Z. H.
Shi
, S. Y.
Chang
, G. J.
Nie
, X. L.
Duan
, S. M.
Zhao
, Q.
Wu
, Z. L.
Yang
, B. L.
Zhao
and Y. Z.
Chang
Mitochondrial ferritin attenuates beta-amyloid-induced neurotoxicity: reduction in oxidative damage through the Erk/P38 mitogen-activated protein kinase pathways
,
Antioxid. Redox Signaling
,
2013
,
18
,
158
–
169
.
S. C.
Andrews
The Ferritin-like superfamily: Evolution of the biological iron storeman from a rubrerythrin-like ancestor
,
Biochim. Biophys. Acta
,
2010
,
1800
,
691
–
705
.
K.
Orino
and K.
Watanabe
Molecular, physiological and clinical aspects of the iron storage protein ferritin
,
Vet. J.
,
2008
,
178
,
191
–
201
.
M. A.
Knovich
, J. A.
Storey
, L. G.
Coffman
, S. V.
Torti
and F. M.
Torti
Ferritin for the clinician
,
Blood Rev.
,
2009
,
23
,
95
–
104
.
W.
Wang
, M. A.
Knovich
, L. G.
Coffman
, F. M.
Torti
and S. V.
Torti
Serum ferritin: Past, present and future
,
Biochim. Biophys. Acta
,
2010
,
1800
,
760
–
769
.
R. K.
Watt
The many faces of the octahedral ferritin protein
,
Biometals
,
2011
,
24
,
489
–
500
.
E. C.
Theil
Ferritin: The Protein Nanocage and Iron Biomineral in Health and in Disease
,
Inorg. Chem.
,
2013
,
52
,
12223
–
12233
.
P. M.
Harrison
and P.
Arosio
Ferritins: Molecular properties, iron storage function and cellular regulation
,
Biochim. Biophys. Acta
,
1996
,
1275
,
161
–
203
.
P.
Rucker
, F. M.
Torti
and S. V.
Torti
Role of H and L subunits in mouse ferritin
,
J. Biol. Chem.
,
1996
,
271
,
33352
–
33357
.
E. C.
Theil
Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry
,
Curr. Opin. Chem. Biol.
,
2011
,
15
,
304
–
311
.
R. R.
Crichton
and J. P.
Declercq
X-ray structures of ferritins and related proteins
,
Biochim. Biophys. Acta
,
2010
,
1800
,
706
–
718
.
D. J. E.
Huard
, K. M.
Kane
and F. A.
Tezcan
Re-engineering protein interfaces yields copper-inducible ferritin cage assembly
,
Nat. Chem. Biol.
,
2013
,
9
,
169
–
176
.
F.
Bou-Abdallah
, G.
Zhao
, G.
Biasiotto
, M.
Poli
, P.
Arosio
and N. D.
Chasteen
Facilitated diffusion of iron(II) and dioxygen substrates into human H-chain ferritin. A fluorescence and absorbance study employing the ferroxidase center substitution Y34W
,
J. Am. Chem. Soc.
,
2008
,
130
,
17801
–
17811
.
F.
Bou-Abdallah
The iron redox and hydrolysis chemistry of the ferritins
,
Biochim. Biophys. Acta
,
2010
,
1800
,
719
–
731
.
T.
Tosha
, H. L.
Ng
, O.
Bhattasali
, T.
Alber
and E. C.
Theil
Moving Metal Ions through Ferritin-Protein Nanocages from Three-Fold Pores to Catalytic Sites
,
J. Am. Chem. Soc.
,
2010
,
132
,
14562
–
14569
.
P.
Turano
, D.
Lalli
, I. C.
Felli
, E. C.
Theil
and I.
Bertini
NMR reveals pathway for ferric mineral precursors to the central cavity of ferritin
,
Proc. Natl. Acad. Sci. U. S. A.
,
2010
,
107
,
545
–
550
.
I.
Bertini
, D.
Lalli
, S.
Mangani
, C.
Pozzi
, C.
Rosa
, E. C.
Theil
and P.
Turano
Structural Insights into the Ferroxidase Site of Ferritins from Higher Eukaryotes
,
J. Am. Chem. Soc.
,
2012
,
134
,
6169
–
6176
.
F.
Carmona
, Ò.
Palacios
, N.
Gálvez
, R.
Cuesta
, S.
Atrian
, M.
Capdevila
and J. M.
Domínguez-Vera
Ferritin iron uptake and release in the presence of metals and metalloproteins: Chemical implications in the brain
,
Coord. Chem. Rev.
,
2013
,
257
,
2752
–
2764
.
E. C.
Theil
, R. K.
Behera
and T.
Tosha
Ferritins for Chemistry and for Life
,
Coord. Chem. Rev.
,
2013
,
257
,
579
–
586
.
T.
Tosha
, R. K.
Behera
and E. C.
Theil
Ferritin ion channel disorder inhibits Fe(II)/O2 reactivity at distant sites
,
Inorg. Chem.
,
2012
,
51
,
11406
–
11411
.
R. K.
Watt
A unified model for ferritin iron loading by the catalytic center: implications for controlling “free iron” during oxidative stress
,
ChemBioChem
,
2013
,
14
,
415
–
419
.
R. K.
Watt
, R. J.
Hilton
and D. M.
Graff
Oxido-reduction is not the only mechanism allowing ions to traverse the ferritin protein shell
,
Biochim. Biophys. Acta
,
2010
,
1800
,
745
–
759
.
M. R.
Hasan
, T.
Tosha
and E. C.
Theil
Ferritin Contains Less Iron (Fe-59) in Cells When the Protein Pores Are Unfolded by Mutation
,
J. Biol. Chem.
,
2008
,
283
,
31394
–
31400
.
J. M.
Domínguez-Vera
, B.
Fernández
and N.
Gálvez
Native and synthetic ferritins for nanobiomedical applications: recent advances and new perspectives
,
Future Med. Chem.
,
2010
,
2
,
609
–
618
.
G.
Melman
, F.
Bou-Abdallah
, E.
Vane
, P.
Maura
, P.
Arosio
and A.
Melman
Iron release from ferritin by flavin nucleotides
,
Biochim. Biophys. Acta
,
2013
,
1830
,
4669
–
4674
.
F.
Bou-Abdallah
, J.
McNally
, X. X.
Liu
and A.
Melman
Oxygen catalyzed mobilization of iron from ferritin by iron(III) chelate ligands
,
Chem. Commun.
,
2011
,
47
,
731
–
733
.
F. M.
Torti
and S. V.
Torti
Regulation of ferritin genes and protein
,
Blood
,
2002
,
99
,
3505
–
3516
.
H.
Yamanishi
, S.
Iyama
, Y.
Yamaguchi
, Y.
Kanakura
and Y.
Iwatani
Relation between iron content of serum ferritin and clinical status factors extracted by factor analysis in patients with hyperferritinemia
,
Clin. Biochem.
,
2002
,
35
,
523
–
529
.
T.
Konz
, E.
Añón Alvarez
, M.
Montes-Bayon
and A.
Sanz-Medel
Antibody labeling and elemental mass spectrometry (inductively coupled plasma-mass spectrometry) using isotope dilution for highly sensitive ferritin determination and iron-ferritin ratio measurements
,
Anal. Chem.
,
2013
,
85
,
8334
–
8340
.
Y. H.
Pan
, K.
Sader
, J. J.
Powell
, A.
Bleloch
, M.
Gass
, J.
Trinick
, A.
Warley
, A.
Li
, R.
Brydson
and A.
Brown
3D morphology of the human hepatic ferritin mineral core: new evidence for a subunit structure revealed by single particle analysis of HAADF-STEM images
,
J. Struct. Biol.
,
2009
,
166
,
22
–
31
.
J.
Dobson
Magnetic iron compounds in neurological disorders
,
Ann. N. Y. Acad. Sci.
,
2004
,
1012
,
183
–
192
.
J.
Gałązka-Friedman
Iron as a risk factor in neurological diseases
,
Hyperfine Interact.
,
2008
,
182
,
31
–
44
.
D. G.
Meyers
The iron hypothesis – does iron cause atherosclerosis?
,
Clin. Cardiol.
,
1996
,
19
,
925
–
929
.
P.
Arosio
, M.
Yokota
and J. W.
Drysdale
Characterization of Serum Ferritin in Iron Overload – Possible Identity to Natural Apoferritin
,
Br. J. Haematol.
,
1977
,
36
,
199
–
207
.
M.
Rudeck
, T.
Volk
, N.
Sitte
and T.
Grune
Ferritin oxidation in vitro: implication of iron release and degradation by the 20S proteasome
,
IUBMB Life
,
2000
,
49
,
451
–
456
.
T. Z.
Kidane
, E.
Sauble
and M. C.
Linder
Release of iron from ferritin requires lysosomal activity
,
Am. J. Physiol.
,
2006
,
291
,
C445
–
C455
.
Y.
Zhang
, M.
Mikhael
, D.
Xu
, Y.
Li
, S.
Soe-Lin
, B.
Ning
, W.
Li
, G.
Nie
, Y.
Zhao
and P.
Ponka
Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit
,
Antioxid. Redox Signaling
,
2010
,
13
,
999
–
1009
.
T.
Asano
, M.
Komatsu
, Y.
Yamaguchi-Iwai
, F.
Ishikawa
, N.
Mizushima
and K.
Iwai
Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells
,
Mol. Cell. Biol.
,
2011
,
31
,
2040
–
2052
.
T. C.
Iancu
Ultrastructural aspects of iron storage, transport and metabolism
,
J. Neural Transm.
,
2011
,
118
,
329
–
335
.
A.
Terman
and T.
Kurz
Lysosomal Iron, Iron Chelation, and Cell Death
,
Antioxid. Redox Signaling
,
2013
,
18
,
888
–
898
.
R.
Vidal
, L.
Miravalle
, X.
Gao
, A. G.
Barbeito
, M. A.
Baraibar
, S. K.
Hekmatyar
, M.
Widel
, N.
Bansal
, M. B.
Delisle
and B.
Ghetti
Expression of a mutant form of the ferritin light chain gene induces neurodegeneration and iron overload in transgenic mice
,
J. Neurosci.
,
2008
,
28
,
60
–
67
.
E.
Miyazaki
, J.
Kato
, M.
Kobune
, K.
Okumura
, K.
Sasaki
, N.
Shintani
, P.
Arosio
and Y.
Niitsu
Denatured H-ferritin subunit is a major constituent of haemosiderin in the liver of patients with iron overload
,
Gut
,
2002
,
50
,
413
–
419
.
P.
Zamboni
, M.
Izzo
, L.
Fogato
, S.
Carandina
and V.
Lanzara
Urine hemosiderin: a novel marker to assess the severity of chronic venous disease
,
J. Vasc. Surg.
,
2003
,
37
,
132
–
136
.
C.
Quintana
, S.
Bellefqih
, J. Y.
Laval
, J. L.
Guerquin-Kern
, T. D.
Wu
, J.
Avila
, I.
Ferrer
, R.
Arranz
and C.
Patino
Study of the localization of iron, ferritin, and hemosiderin in Alzheimer’s disease hippocampus by analytical microscopy at the subcellular level
,
J. Struct. Biol.
,
2006
,
153
,
42
–
54
.
C.
Quintana
About the presence of hemosiderin in the hippocampus of Alzheimer patients
,
J. Alzheimer’s Dis.
,
2007
,
12
,
157
–
160
.
P.
Zamboni
, S.
Lanzara
, F.
Mascoli
, A.
Caggiati
and A.
Liboni
Inflammation in venous disease
,
Int. Angiol.
,
2008
,
27
,
361
–
369
.
F.
Maldonado
, J. G.
Parambil
, E. S.
Yi
, P. A.
Decker
and J. H.
Ryu
Haemosiderin-laden macrophages in the bronchoalveolar lavage fluid of patients with diffuse alveolar damage
,
Eur. Respir. J.
,
2009
,
33
,
1361
–
1366
.
H. L.
Persson
and L. K.
Vainikka
Lysosomal iron in pulmonary alveolar proteinosis: a case report
,
Eur. Respir. J.
,
2009
,
33
,
673
–
679
.
N.
Sakalihasan
and J. B.
Michel
Functional imaging of atherosclerosis to advance vascular biology
,
Eur. J. Vasc. Endovasc. Surg.
,
2009
,
37
,
728
–
734
.
A.
Terman
and U. T.
Brunk
Lipofuscin
,
Int. J. Biochem. Cell Biol.
,
2004
,
36
,
1400
–
1404
.
T.
Jung
, N.
Bader
and T.
Grune
Lipofuscin: formation, distribution, and metabolic consequences
,
Ann. N. Y. Acad. Sci.
,
2007
,
1119
,
97
–
111
.
K. L.
Double
, V. N.
Dedov
, H.
Fedorow
, E.
Kettle
, G. M.
Halliday
, B.
Garner
and U. T.
Brunk
The comparative biology of neuromelanin and lipofuscin in the human brain
,
Cell. Mol. Life Sci.
,
2008
,
65
,
1669
–
1682
.
A.
Höhn
, T.
Jung
, S.
Grimm
and T.
Grune
Lipofuscin-bound iron is a major intracellular source of oxidants: role in senescent cells
,
Free Radical Biol. Med.
,
2010
,
48
,
1100
–
1108
.
M.
Gerlach
, A. X.
Trautwein
, L.
Zecca
, M. B. H.
Youdim
and P.
Riederer
Mössbauer Spectroscopic Studies of Purified Human Neuromelanin Isolated from the Substantia-Nigra
,
J. Neurochem.
,
1995
,
65
,
923
–
926
.
K. L.
Double
, M.
Gerlach
, V.
Schunemann
, A. X.
Trautwein
, L.
Zecca
, M.
Gallorini
, M. B.
Youdim
, P.
Riederer
and D.
Ben-Shachar
Iron-binding characteristics of neuromelanin of the human substantia nigra
,
Biochem. Pharmacol.
,
2003
,
66
,
489
–
494
.
M.
Gerlach
, K. L.
Double
, D.
Ben-Shachar
, L.
Zecca
, M. B.
Youdim
and P.
Riederer
Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson’s disease
,
Neurotoxic Res.
,
2003
,
5
,
35
–
44
.
L.
Zecca
, M.
Gallorini
, V.
Schunemann
, A. X.
Trautwein
, M.
Gerlach
, P.
Riederer
, P.
Vezzoni
and D.
Tampellini
Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes
,
J. Neurochem.
,
2001
,
76
,
1766
–
1773
.
S.
Bohic
, K.
Murphy
, W.
Paulus
, P.
Cloetens
, M.
Salome
, J.
Susini
and K.
Double
Intracellular Chemical Imaging of the Developmental Phases of Human Neuromelanin Using Synchrotron X-ray Microspectroscopy
,
Anal. Chem.
,
2008
,
80
,
9557
–
9566
.
F.
Tribl
, E.
Asan
, T.
Arzberger
, T.
Tatschner
, E.
Langenfeld
, H. E.
Meyer
, G.
Bringmann
, P.
Riederer
, M.
Gerlach
and K.
Marcus
Identification of L-ferritin in neuromelanin granules of the human substantia nigra: a targeted proteomics approach
,
Mol. Cell. Proteomics
,
2009
,
8
,
1832
–
1838
.
H.
Saito
, A.
Tomita
, H.
Ohashi
, H.
Maeda
, H.
Hayashi
and T.
Naoe
Determination of ferritin and hemosiderin iron in patients with normal iron stores and iron overload by serum ferritin kinetics
,
Nagoya J. Med. Sci.
,
2012
,
74
,
39
–
49
.
H.
Saito
, H.
Hayashi
, A.
Tomita
, H.
Ohashi
, H.
Maeda
and T.
Naoe
Increasing and Decreasing Phases of Ferritin and Hemosiderin Iron Determined by Serum Ferritin Kinetics
,
Nagoya J. Med. Sci.
,
2013
,
75
,
213
–
223
.
G.
Ricolleau
, C.
Charbonnel
, L.
Lode
, D.
Loussouarn
, M. P.
Joalland
, R.
Bogumil
, S.
Jourdain
, S.
Minvielle
, M.
Campone
, R.
Déporte-Fety
, L.
Campion
and P.
Jézéquel
Surface-enhanced laser desorption/ionization time of flight mass spectrometry protein profiling identifies ubiquitin and ferritin light chain as prognostic biomarkers in node-negative breast cancer tumors
,
Proteomics
,
2006
,
6
,
1963
–
1975
.
M. E.
del Castillo Busto
, M.
Montes-Bayón
and A.
Sanz-Medel
The potential of mass spectrometry to study iron-containing proteins used in clinical diagnosis
,
Anal. Chim. Acta
,
2009
,
634
,
1
–
14
.
M.
Hoppler
, C.
Zeder
and T.
Walczyk
Quantification of Ferritin-Bound Iron in Plant Samples by Isotope Tagging and Species-Specific Isotope Dilution Mass Spectrometry
,
Anal. Chem.
,
2009
,
81
,
7368
–
7372
.
H. Q.
Huang
, X. H.
Hu
, X. P.
Fang
, T. M.
Cao
and B.
Kong
Characteristics of H and L Subunits with Mass Spectrometry, Electrophoresis and Transmission Electron Microscopy in Liver Ferritin of Dasyatis Akajei
,
Chin. J. Anal. Chem.
,
2009
,
37
,
631
–
636
.
P.
Nielsen
, U.
Günther
, M.
Dürken
, R.
Fischer
and J.
Düllmann
Serum ferritin iron in iron overload and liver damage: Correlation to body iron stores and diagnostic relevance
,
J. Lab. Clin. Med.
,
2000
,
135
,
413
–
418
.
K.
Watanabe
, Y.
Yamashita
, K.
Ohgawara
, M.
Sekiguchi
, N.
Satake
, K.
Orino
and S.
Yamamoto
Iron content of rat serum ferritin
,
J. Vet. Med. Sci.
,
2001
,
63
,
587
–
589
.
N.
Bresgen
, H.
Jaksch
, H.
Lacher
, I.
Ohlenschlager
, K.
Uchida
and P. M.
Eckl
Iron-mediated oxidative stress plays an essential role in ferritin-induced cell death
,
Free Radical Biol. Med.
,
2010
,
48
,
1347
–
1357
.
A. A.
Alkhateeb
, B.
Han
and J. R.
Connor
Ferritin stimulates breast cancer cells through an iron-independent mechanism and is localized within tumor-associated macrophages
,
Breast Cancer Res. Treat.
,
2013
,
137
,
733
–
744
.
T.
Kurz
, B.
Gustafsson
and U. T.
Brunk
Cell sensitivity to oxidative stress is influenced by ferritin autophagy
,
Free Radical Biol. Med.
,
2011
,
50
,
1647
–
1658
.
B.
Garner
, K.
Roberg
and U. T.
Brunk
Endogenous ferritin protects cells with iron-laden lysosomes against oxidative stress
,
Free Radical Res.
,
1998
,
29
,
103
–
114
.
B.
Garner
, W.
Li
, K.
Roberg
and U. T.
Brunk
On the cytoprotective role of ferritin in macrophages and its ability to enhance lysosomal stability
,
Free Radical Res.
,
1997
,
27
,
487
–
500
.
H. L.
Persson
, K. J.
Nilsson
and U. T.
Brunk
Novel cellular defenses against iron and oxidation: ferritin and autophagocytosis preserve lysosomal stability in airway epithelium
,
Redox Rep.
,
2001
,
6
,
57
–
63
.
T.
Kurz
, J. W.
Eaton
and U. T.
Brunk
The role of lysosomes in iron metabolism and recycling
,
Int. J. Biochem. Cell Biol.
,
2011
,
43
,
1686
–
1697
.
C.
Ferreira
, D.
Bucchini
, M. E.
Martin
, S.
Levi
, P.
Arosio
, B.
Grandchamp
and C.
Beaumont
Early embryonic lethality of H ferritin gene deletion in mice
,
J. Biol. Chem.
,
2000
,
275
,
3021
–
3024
.
C.
Ferreira
, P.
Santambrogio
, M. E.
Martin
, V.
Andrieu
, G.
Feldmann
, D.
Henin
and C.
Beaumont
H ferritin knockout mice: a model of hyperferritinemia in the absence of iron overload
,
Blood
,
2001
,
98
,
525
–
532
.
J. t.
Wilkinson
, X.
Di
, K.
Schönig
, J. L.
Buss
, N. D.
Kock
, J. M.
Cline
, T. L.
Saunders
, H.
Bujard
, S. V.
Torti
and F. M.
Torti
Tissue-specific expression of ferritin H regulates cellular iron homoeostasis in vivo
,
Biochem. J.
,
2006
,
395
,
501
–
507
.
G.
Hetet
, I.
Devaux
, N.
Soufir
, B.
Grandchamp
and C.
Beaumont
Molecular analyses of patients with hyperferritinemia and normal serum iron values reveal both L ferritin IRE and 3 new ferroportin (SLC11A3) mutations
,
Blood
,
2003
,
102
,
1904
–
1910
.
K. P.
Burdon
, S.
Sharma
, C. S.
Chen
, D. P.
Dimasi
, D. A.
Mackey
and J. E.
Craig
A novel deletion in the FTL gene causes hereditary hyperferritinemia cataract syndrome (HHCS) by alteration of the transcription start site
,
Hum. Mutat.
,
2007
,
28
,
742
.
C.
Kannengiesser
, A. M.
Jouanolle
, G.
Hetet
, A.
Mosser
, F.
Muzeau
, D.
Henry
, E.
Bardou-Jacquet
, M.
Mornet
, P.
Brissot
, Y.
Deugnier
, B.
Grandchamp
and C.
Beaumont
A new missense mutation in the L ferritin coding sequence associated with elevated levels of glycosylated ferritin in serum and absence of iron overload
,
Haematologica
,
2009
,
94
,
335
–
339
.
J.
Álvarez-Coca-Gonzalez
, M. I.
Moreno-Carralero
, J.
Martinez-Pérez
, M.
Méndez
, M.
García-Ros
and M. J.
Morán-Jiménez
The hereditary hyperferritinemia-cataract syndrome: a family study
,
Eur. J. Pediatr.
,
2010
,
169
,
1553
–
1555
.
C.
Beaumont
Miscellaneous Iron-Related Disorders
, in
Iron Physiology and Pathophysiology in Humans
, ed.
G. J.
Anderson
and G. D.
McLaren
,
2012
, pp.
417
–
439
.
S.
Luscieti
, G.
Tolle
, J.
Aranda
, C. B.
Campos
, F.
Risse
, É.
Morán
, M. U.
Muckenthaler
and M.
Sánchez
Novel mutations in the ferritin-L iron-responsive element that only mildly impair IRP binding cause hereditary hyperferritinaemia cataract syndrome
,
Orphanet. J. Rare Dis.
,
2013
,
8
,
30
.
G. A.
Agasthya
, B. C.
Harrawood
, J. P.
Shah
and A. J.
Kapadia
Sensitivity analysis for liver iron measurement through neutron stimulated emission computed tomography: a Monte Carlo study in GEANT4
,
Phys. Med. Biol.
,
2012
,
57
,
113
–
126
.
P.
Nielsen
, R.
Engelhardt
, J.
Dullmann
and R.
Fischer
Non-invasive liver iron quantification by SQUID-biosusceptometry and serum ferritin iron as new diagnostic parameters in hereditary hemochromatosis
,
Blood Cells, Mol., Dis.
,
2002
,
29
,
451
–
458
.
A.
Castiella
, J. M.
Alústiza
, J. I.
Emparanza
, E. M.
Zapata
, B.
Costero
and M. I.
Díez
Liver iron concentration quantification by MRI: are recommended protocols accurate enough for clinical practice?
,
Eur. Radiol.
,
2010
,
21
,
137
–
141
.
M. I.
Argyropoulou
and L.
Astrakas
MRI evaluation of tissue iron burden in patients with beta-thalassaemia major
,
Pediatr. Radiol.
,
2007
,
37
,
1191
–
1200
. quiz 1308-1199.
O.
Dereure
, N.
Jumez
, D.
Bessis
, B.
Gallix
and B.
Guillot
Measurement of liver iron content by magnetic resonance imaging in 20 patients with overt porphyria cutanea tarda before phlebotomy therapy: a prospective study
,
Acta Derm.-Venereol.
,
2008
,
88
,
341
–
345
.
K. M.
Musallam
, M. D.
Cappellini
, J. C.
Wood
, I.
Motta
, G.
Graziadei
, H.
Tamim
and A. T.
Taher
Elevated liver iron concentration is a marker of increased morbidity in patients with beta thalassemia intermedia
,
Haematologica
,
2011
,
96
,
1605
–
1612
.
K. M.
Musallam
, M. D.
Cappellini
and A. T.
Taher
Evaluation of the 5mg/g liver iron concentration threshold and its association with morbidity in patients with beta-thalassemia intermedia
,
Blood Cells, Mol., Dis.
,
2013
,
51
,
35
–
38
.
V.
Positano
, B.
Salani
, A.
Pepe
, M. F.
Santarelli
, D.
De Marchi
, A.
Ramazzotti
, B.
Favilli
, E.
Cracolici
, M.
Midiri
, P.
Cianciulli
, M.
Lombardi
and L.
Landini
Improved T2* assessment in liver iron overload by magnetic resonance imaging
,
Magn. Reson. Imaging
,
2009
,
27
,
188
–
197
.
C.
Rose
, P.
Vandevenne
, E.
Bourgeois
, N.
Cambier
and O.
Ernst
Liver iron content assessment by routine and simple magnetic resonance imaging procedure in highly transfused patients
,
Eur. J. Haematol.
,
2006
,
77
,
145
–
149
.
K.
Tziomalos
and V.
Perifanis
Liver iron content determination by magnetic resonance imaging
,
World J. Gastroenterol.
,
2010
,
16
,
1587
–
1597
.
S.
Tony
, S.
Daar
, M.
Elshinawy
, S.
Al-Zadjaly
, M.
Al-Khabori
and Y.
Wali
T2* MRI in regularly transfused children with thalassemia intermedia: serum ferritin does not reflect liver iron stores
,
Pediatr. Hematol. Oncol.
,
2012
,
29
,
579
–
584
.
K.
Ziv
, G.
Meir
, A.
Harmelin
, E.
Shimoni
, E.
Klein
and M.
Neeman
Ferritin as a reporter gene for MRI: chronic liver over expression of H-ferritin during dietary iron supplementation and aging
,
NMR Biomed.
,
2010
,
23
,
523
–
531
.
E. M.
Haacke
, N. Y.
Cheng
, M. J.
House
, Q.
Liu
, J.
Neelavalli
, R. J.
Ogg
, A.
Khan
, M.
Ayaz
, W.
Kirsch
and A.
Obenaus
Imaging iron stores in the brain using magnetic resonance imaging
,
Magn. Reson. Imaging
,
2005
,
23
,
1
–
25
.
W.
Kirsch
, G.
McAuley
, B.
Holshouser
, F.
Petersen
, M.
Ayaz
, H. V.
Vinters
, C.
Dickson
, E. M.
Haacke
, W.
Britt Iii
, J.
Larsen
, I.
Kim
, C.
Mueller
, M.
Schrag
and D.
Kido
Serial susceptibility weighted MRI measures brain iron and microbleeds in dementia
,
J. Alzheimer’s Dis.
,
2009
,
17
,
599
–
609
.
W.
Zheng
, H.
Nichol
, S.
Liu
, Y. C.
Cheng
and E. M.
Haacke
Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging
,
NeuroImage
,
2013
,
78C
,
68
–
74
.
M. J.
Kim
, D. G.
Mitchell
, K.
Ito
, H. W.
Hann
, Y. N.
Park
and P. N.
Kim
Hepatic iron deposition on MR imaging in patients with chronic liver disease: correlation with serial serum ferritin concentration
,
Abdom. Imaging
,
2001
,
26
,
149
–
156
.
A. W.
Olthof
, P. E.
Sijens
, H. G.
Kreeftenberg
, P.
Kappert
, R.
Irwan
, E. J.
van der Jagt
and M.
Oudkerk
Correlation between serum ferritin levels and liver iron concentration determined by MR imaging: impact of hematologic disease and inflammation
,
Magn. Reson. Imaging
,
2007
,
25
,
228
–
231
.
O. G.
Papakonstantinou
, T. G.
Maris
, V.
Kostaridou
, A. D.
Gouliamos
, G. K.
Koutoulas
, A. E.
Kalovidouris
, G. B.
Papavassiliou
, G.
Kordas
, C.
Kattamis
and L. J.
Vlahos
et al., Assessment of liver iron overload by T2-quantitative magnetic resonance imaging: correlation of T2-QMRI measurements with serum ferritin concentration and histologic grading of siderosis
,
Magn. Reson. Imaging
,
1995
,
13
,
967
–
977
.
P. D.
Jensen
, F. T.
Jensen
, T.
Christensen
and J.
Ellegaard
Evaluation of transfusional iron overload before and during iron chelation by magnetic resonance imaging of the liver and determination of serum ferritin in adult non-thalassaemic patients
,
Br. J. Haematol.
,
1995
,
89
,
880
–
889
.
P. D.
Jensen
, F. T.
Jensen
, T.
Christensen
, H.
Eiskjaer
, U.
Baandrup
and J. L.
Nielsen
Evaluation of myocardial iron by magnetic resonance imaging during iron chelation therapy with deferrioxamine: indication of close relation between myocardial iron content and chelatable iron pool
,
Blood
,
2003
,
101
,
4632
–
4639
.
P. D.
Jensen
, F. T.
Jensen
, T.
Christensen
, J. L.
Nielsen
and J.
Ellegaard
Relationship between hepatocellular injury and transfusional iron overload prior to and during iron chelation with desferrioxamine: a study in adult patients with acquired anemias
,
Blood
,
2003
,
101
,
91
–
96
.
Z.
Pakbaz
, R.
Fischer
, E.
Fung
, P.
Nielsen
, P.
Harmatz
and E.
Vichinsky
Serum ferritin underestimates liver iron concentration in transfusion independent thalassemia patients as compared to regularly transfused thalassemia and sickle cell patients
,
Pediatr. Blood Cancer
,
2007
,
49
,
329
–
332
.
A.
Taher
, F.
El Rassi
, H.
Isma’eel
, S.
Koussa
, A.
Inati
and M. D.
Cappellini
Correlation of liver iron concentration determined by R2 magnetic resonance imaging with serum ferritin in patients with thalassemia intermedia
,
Haematologica
,
2008
,
93
,
1584
–
1586
.
A.
Kolnagou
, K.
Natsiopoulos
, M.
Kleanthous
, A.
Ioannou
and G. J.
Kontoghiorghes
Liver iron and serum ferritin levels are misleading for estimating cardiac, pancreatic, splenic and total body iron load in thalassemia patients: factors influencing the heterogenic distribution of excess storage iron in organs as identified by MRI T2*
,
Toxicol. Mech. Methods
,
2013
,
23
,
48
–
56
.
D. A.
Tsitsikas
, R.
Nzouakou
, V.
Ameen
, B.
Sirigireddy
and R. J.
Amos
Comparison of Serial Serum Ferritin Measurements and Liver Iron Concentration Assessed by MRI in Adult Transfused Patients with Sickle Cell Disease
,
Eur. J. Haematol.
,
2014
,
92
,
164
–
167
.
B. J.
Ferguson
, B. S.
Skikne
, K. M.
Simpson
, R. D.
Baynes
and J. D.
Cook
Serum Transferrin Receptor Distinguishes the Anemia of Chronic Disease from Iron-Deficiency Anemia
,
J. Lab. Clin. Med.
,
1992
,
119
,
385
–
390
.
K.
Punnonen
, K.
Irjala
and A.
Rajamäki
Serum transferrin receptor and its ratio to serum ferritin in the diagnosis of iron deficiency
,
Blood
,
1997
,
89
,
1052
–
1057
.
J. D.
Cook
Diagnosis and management of iron-deficiency anaemia
,
Best Pract. Res., Clin. Haematol.
,
2005
,
18
,
319
–
332
.
E.
Hanif
, M.
Ayyub
, M.
Anwar
, W.
Ali
and M.
Bashir
Evaluation of serum transferrin receptor concentration in diagnosing and differentiating iron deficiency anaemia from anaemia of chronic disorders
,
J. Pak. Med. Assoc.
,
2005
,
55
,
13
–
16
.
E.
Joosten
, R.
Van Loon
, J.
Billen
, N.
Blanckaert
, R.
Fabri
and W.
Pelemans
Serum transferrin receptor in the evaluation of the iron status in elderly hospitalized patients with anemia
,
Am. J. Hematol.
,
2002
,
69
,
1
–
6
.
A.
Skoumalová
and J.
Hort
Blood markers of oxidative stress in Alzheimer’s disease
,
J. Cell. Mol. Med.
,
2012
,
16
,
2291
–
2300
.
K.
Henriksen
, S. E.
O’Bryant
, H.
Hampel
, J. Q.
Trojanowski
, T. J.
Montine
, A.
Jeromin
, K.
Blennow
, A.
Lönneborg
, T.
Wyss-Coray
, H.
Soares
, C.
Bazenet
, M.
Sjögren
, W.
Hu
, S.
Lovestone
, M. A.
Karsdal
and M. W.
Weiner
The future of blood-based biomarkers for Alzheimer’s disease
,
Alzheimer’s Dementia
,
2014
,
10
,
115
–
131
.
M.
Schrag
, C.
Mueller
, M.
Zabel
, A.
Crofton
, W. M.
Kirsch
, O.
Ghribi
, R.
Squitti
and G.
Perry
Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: a meta-analysis
,
Neurobiol. Dis.
,
2013
,
59
,
100
–
110
.
K.
Ikeda
, Y.
Nakamura
, T.
Kiyozuka
, J.
Aoyagi
, T.
Hirayama
, R.
Nagata
, H.
Ito
, K.
Iwamoto
, K.
Murata
, Y.
Yoshii
, K.
Kawabe
and Y.
Iwasaki
Serological profiles of urate, paraoxonase-1, ferritin and lipid in Parkinson’s disease: changes linked to disease progression
,
Neurodegener. Dis.
,
2011
,
8
,
252
–
258
.
K. G.
Connelly
, M.
Moss
, P. E.
Parsons
, E. E.
Moore
, F. A.
Moore
, P. C.
Giclas
, P. A.
Seligman
and J. E.
Repine
Serum ferritin as a predictor of the acute respiratory distress syndrome
,
Am. J. Respir. Crit. Care Med.
,
1997
,
155
,
21
–
25
.
R. A.
Sharkey
, S. C.
Donnelly
, K. G.
Connelly
, C. E.
Robertson
, C.
Haslett
and J. E.
Repine
Initial serum ferritin levels in patients with multiple trauma and the subsequent development of acute respiratory distress syndrome
,
Am. J. Respir. Crit. Care Med.
,
1999
,
159
,
1506
–
1509
.
A. L.
Lagan
, G. J.
Quinlan
, S.
Mumby
, D. D.
Melley
, P.
Goldstraw
, G. J.
Bellingan
, M. R.
Hill
, D.
Briggs
, P.
Pantelidis
, R. M.
du Bois
, K. I.
Welsh
and T. W.
Evans
Variation in iron homeostasis genes between patients with ARDS and healthy control subjects
,
Chest
,
2008
,
133
,
1302
–
1311
.
Y. Y.
Park
Ischemia/reperfusion Lung Injury Increases Serum Ferritin and Heme Oxygenase-1 in Rats
,
Korean J. Physiol. Pharmacol.
,
2009
,
13
,
181
–
187
.
E. F.
Goodall
, M. S.
Haque
and K. E.
Morrison
Increased serum ferritin levels in amyotrophic lateral sclerosis (ALS) patients
,
J. Neurol.
,
2008
,
255
,
1652
–
1656
.
M.
Qureshi
, R. H.
Brown Jr.
, J. T.
Rogers
and M. E.
Cudkowicz
Serum ferritin and metal levels as risk factors for amyotrophic lateral sclerosis
,
Open Neurol. J.
,
2008
,
2
,
51
–
54
.
K.
Ikeda
, T.
Hirayama
, T.
Takazawa
, K.
Kawabe
and Y.
Iwasaki
Relationships between Disease Progression and Serum Levels of Lipid, Urate, Creatinine and Ferritin in Japanese Patients with Amyotrophic Lateral Sclerosis: A Cross-Sectional Study
,
Intern. Med.
,
2012
,
51
,
1501
–
1508
.
Y.
Nadjar
, P.
Gordon
, P.
Corcia
, G.
Bensimon
, L.
Pieroni
, V.
Meininger
and F.
Salachas
Elevated serum ferritin is associated with reduced survival in amyotrophic lateral sclerosis
,
PLoS One
,
2012
,
7
,
e45034
.
X. W.
Su
, Z.
Simmons
, R. M.
Mitchell
, L.
Kong
, H. E.
Stephens
and J. R.
Connor
Biomarker-Based Predictive Models for Prognosis in Amyotrophic Lateral Sclerosis
,
JAMA Neurol.
,
2013
,
70
,
1505
–
1511
.
S.
Kiechl
, J.
Willeit
, G.
Egger
, W.
Poewe
and F.
Oberhollenzer
Body iron stores and the risk of carotid atherosclerosis: prospective results from the Bruneck study
,
Circulation
,
1997
,
96
,
3300
–
3307
.
S. A.
You
, S. R.
Archacki
, G.
Angheloiu
, C. S.
Moravec
, S.
Rao
, M.
Kinter
, E. J.
Topol
and Q.
Wang
Proteomic approach to coronary atherosclerosis shows ferritin light chain as a significant marker: evidence consistent with iron hypothesis in atherosclerosis
,
Physiol. Genomics
,
2003
,
13
,
25
–
30
.
B.
Wolff
, H.
Volzke
, J.
Ludemann
, D.
Robinson
, D.
Vogelgesang
, A.
Staudt
, C.
Kessler
, J. B.
Dahm
, U.
John
and S. B.
Felix
Association between high serum ferritin levels and carotid atherosclerosis in the study of health in Pomerania (SHIP)
,
Stroke
,
2004
,
35
,
453
–
457
.
K. A.
Reis
, G.
Guz
, H.
Ozdemir
, Y.
Erten
, V.
Atalay
, Z.
Bicik
, Z. N.
Ozkurt
, M.
Bali
and S.
Sindel
Intravenous iron therapy as a possible risk factor for atherosclerosis in end-stage renal disease
,
Int. Heart J.
,
2005
,
46
,
255
–
264
.
S. A.
You
and Q.
Wang
Ferritin in atherosclerosis
,
Clin. Chim. Acta
,
2005
,
357
,
1
–
16
.
J. J. M.
Marx
, A. E. R.
Kartikasari
and N. A.
Georgiou
Can iron chelators influence the progression of atherosclerosis?
,
Hemoglobin
,
2008
,
32
,
123
–
134
.
J. L.
Sullivan
Iron in arterial plaque: A modifiable risk factor for atherosclerosis
,
Biochim. Biophys. Acta
,
2009
,
1790
,
718
–
723
.
N.
Ahluwalia
, A.
Genoux
, J.
Ferrieres
, B.
Perret
, M.
Carayol
, L.
Drouet
and J. B.
Ruidavets
Iron status is associated with carotid atherosclerotic plaques in middle-aged adults
,
J. Nutr.
,
2010
,
140
,
812
–
816
.
R. G.
DePalma
, V. W.
Hayes
, B. K.
Chow
, G.
Shamayeva
, P. E.
May
and L. R.
Zacharski
Ferritin levels, inflammatory biomarkers, and mortality in peripheral arterial disease: A substudy of the Iron (Fe) and Atherosclerosis Study (FeAST) Trial
,
J. Vasc. Surg.
,
2010
,
51
,
1498
–
1503
.
P.
Syrovatka
, P.
Kraml
, K.
Hulikova
, L.
Fialova
, M.
Vejrazka
, J.
Crkovska
, J.
Potockova
and M.
Andel
Iron stores are associated with asymptomatic atherosclerosis in healthy men of primary prevention
,
Eur. J. Clin. Invest.
,
2011
,
41
,
846
–
853
.
L. R.
Zacharski
, R. G.
Depalma
, G.
Shamayeva
and B. K.
Chow
The Statin-Iron Nexus: Anti-Inflammatory Intervention for Arterial Disease Prevention
,
Am. J. Public Health
,
2013
,
103
,
e105
–
e112
.
J. T.
Hazard
and J. W.
Drysdale
Ferritinaemia in cancer
,
Nature
,
1977
,
265
,
755
–
756
.
B. M.
Jones
, M.
Worwood
and A.
Jacobs
Serum ferritin in patients with cancer: determination with antibodies to HeLa cell and spleen ferritin
,
Clin. Chim. Acta
,
1980
,
106
,
203
–
214
.
A.
Jacobs
Serum ferritin and malignant tumours
,
Med. Oncol. Tumor Pharmacother.
,
1984
,
1
,
149
–
156
.
J. H.
Silber
, A. E.
Evans
and M.
Fridman
Models to Predict Outcome from Childhood Neuroblastoma – the Role of Serum Ferritin and Tumor Histology
,
Cancer Res.
,
1991
,
51
,
1426
–
1433
.
R. L.
Nelson
, F. G.
Davis
, E.
Sutter
, L. H.
Sobin
, J. W.
Kikendall
and P.
Bowen
Body iron stores and risk of colonic neoplasia
,
J. Natl. Cancer Inst.
,
1994
,
86
,
455
–
460
.
Z.
Kırkalı
, M.
Güzelsoy
, M. U.
Mungan
, G.
Kırkalı
and K.
Yörükoğlu
Serum ferritin as a clinical marker for renal cell carcinoma: influence of tumor size and volume
,
Urol. Int.
,
1999
,
62
,
21
–
25
.
S.
Hercberg
, C.
Estaquio
, S.
Czernichow
, L.
Mennen
, N.
Noisette
, S.
Bertrais
, J. C.
Renversez
, S.
Briancon
, A.
Favier
and P.
Galan
Iron status and risk of cancers in the SU.VI.MAX cohort
,
J. Nutr.
,
2005
,
135
,
2664
–
2668
.
L. R.
Zacharski
, B. K.
Chow
, P. S.
Howes
, G.
Shamayeva
, J. A.
Baron
, R. L.
Dalman
, D. J.
Malenka
, C. K.
Ozaki
and P. W.
Lavori
Decreased cancer risk after iron reduction in patients with peripheral arterial disease: results from a randomized trial
,
J. Natl. Cancer Inst.
,
2008
,
100
,
996
–
1002
.
K. H.
Zhang
, H. Y.
Tian
, X.
Gao
, W. W.
Lei
, Y.
Hu
, D. M.
Wang
, X. C.
Pan
, M. L.
Yu
, G. J.
Xu
, F. K.
Zhao
and J. G.
Song
Ferritin heavy chain-mediated iron homeostasis and subsequent increased reactive oxygen species production are essential for epithelial-mesenchymal transition
,
Cancer Res.
,
2009
,
69
,
5340
–
5348
.
A. A.
Alkhateeb
, K.
Leitzel
, S. M.
Ali
, C.
Campbell-Baird
, M.
Evans
, E. M.
Fuchs
, W. J.
Köstler
, A.
Lipton
and J.
Connor
Elevation in inflammatory serum biomarkers predicts response to trastuzumab-containing therapy
,
PLoS One
,
2012
,
7
,
e51379
.
A. A.
Alkhateeb
and J. R.
Connor
The significance of ferritin in cancer: Anti-oxidation, inflammation and tumorigenesis
,
Biochim. Biophys. Acta
,
2013
,
1836
,
245
–
254
.
A.
Amid
, N.
Barrowman
, A.
Vijenthira
, P.
Lesser
, K.
Mandel
and R.
Ramphal
Risk factors for hyperferritinemia secondary to red blood cell transfusions in pediatric cancer patients
,
Pediatr. Blood Cancer
,
2013
,
60
,
1671
–
1675
.
A.
Alkhateeb
, L.
Zubritsky
, B.
Kinsman
, K.
Leitzel
, C.
Campbell-Baird
, S. M.
Ali
, J.
Connor
and A.
Lipton
Elevation in Multiple Serum Inflammatory Biomarkers Predicts Survival of Pancreatic Cancer Patients with Inoperable Disease
,
J. Gastrointest. Cancer
,
2014
, DOI:
.
R.
Orlandi
, M.
De Bortoli
, C. M.
Ciniselli
, E.
Vaghi
, D.
Caccia
, V.
Garrisi
, S.
Pizzamiglio
, S.
Veneroni
, C.
Bonini
, R.
Agresti
, M. G.
Daidone
, D.
Morelli
, C.
Camaschella
, P.
Verderio
and I.
Bongarzone
Hepcidin and ferritin blood level as noninvasive tools for predicting breast cancer
,
Ann. Oncol.
,
2014
, DOI:
.
K.
Jurczyk
, M.
Wawrzynowicz-Syczewska
, A.
Boroń-Kaczmarska
and Z.
Sych
Serum iron parameters in patients with alcoholic and chronic cirrhosis and hepatitis
,
Med. Sci. Monit.
,
2001
,
7
,
962
–
965
.
D. H. G.
Crawford
, T. L.
Murphy
, L. E.
Ramm
, L. M.
Fletcher
, A. D.
Clouston
, G. J.
Anderson
, V. N.
Subramaniam
, L. W.
Powell
and G. A.
Ramm
Serum Hyaluronic Acid with Serum Ferritin Accurately Predicts Cirrhosis and Reduces the Need for Liver Biopsy in C282Y Hemochromatosis
,
Hepatology
,
2009
,
49
,
418
–
425
.
T. C. H.
Tan
, D. H.
Crawford
, M. E.
Franklin
, L. A.
Jaskowski
, G. A.
Macdonald
, J. R.
Jonsson
, M. J.
Watson
, P. J.
Taylor
and L. M.
Fletcher
The serum hepcidin:ferritin ratio is a potential biomarker for cirrhosis
,
Liver Int.
,
2012
,
32
,
1391
–
1399
.
M. E.
Olesnevich
, M.
Fanelli Kuczmarski
, M.
Mason
, C.
Fang
, A. B.
Zonderman
and M. K.
Evans
Serum ferritin levels associated with increased risk for developing CHD in a low-income urban population
,
Public Health Nutr.
,
2012
,
15
,
1291
–
1298
.
K. C.
Sung
, S. M.
Kang
, E. J.
Cho
, J. B.
Park
, S. H.
Wild
and C. D.
Byrne
Ferritin is independently associated with the presence of coronary artery calcium in 12,033 men
,
Arterioscler., Thromb., Vasc. Biol.
,
2012
,
32
,
2525
–
2530
.
Y.
Zhou
, T.
Liu
, C.
Tian
, P.
Kang
and C.
Jia
Association of serum ferritin with coronary artery disease
,
Clin. Biochem.
,
2012
,
45
,
1336
–
1341
.
B.
Ponikowska
, T.
Suchocki
, B.
Paleczny
, M.
Olesinska
, S.
Powierza
, L.
Borodulin-Nadzieja
, K.
Reczuch
, S.
von Haehling
, W.
Doehner
, S. D.
Anker
, J. G.
Cleland
and E. A.
Jankowska
Iron Status and Survival in Diabetic Patients With Coronary Artery Disease
,
Diabetes Care
,
2013
,
36
,
4147
–
4156
.
J. T.
Salonen
, T. P.
Tuomainen
, K.
Nyyssonen
, H. M.
Lakka
and K.
Punnonen
Relation between iron stores and non-insulin dependent diabetes in men: case-control study
,
BMJ
,
1998
,
317
,
727
.
E. S.
Ford
and M. E.
Cogswell
Diabetes and serum ferritin concentration among U.S. adults
,
Diabetes Care
,
1999
,
22
,
1978
–
1983
.
J. G.
Wilson
, J. H.
Lindquist
, S. C.
Grambow
, E. D.
Crook
and J. F.
Maher
Potential role of increased iron stores in diabetes
,
Am. J. Med. Sci.
,
2003
,
325
,
332
–
339
.
R.
Jiang
, J. E.
Manson
, J. B.
Meigs
, J.
Ma
, N.
Rifai
and F. B.
Hu
Body iron stores in relation to risk of type 2 diabetes in apparently healthy women
,
JAMA
,
2004
,
291
,
711
–
717
.
M.
Mert
, M.
Korkmaz
, M.
Temizel
and M.
Acar
The Level of Ferritin in Diabetic and Nondiabetic Patients with Acute Myocardial Infarction
,
Turk. J. Med. Sci.
,
2005
,
35
,
25
–
34
.
R. T.
Acton
, J. C.
Barton
, L. V.
Passmore
, P. C.
Adams
, M. R.
Speechley
, F. W.
Dawkins
, P.
Sholinsky
, D. M.
Reboussin
, G. D.
McLaren
, E. L.
Harris
, T. C.
Bent
, T. M.
Vogt
and O.
Castro
Relationships of serum ferritin, transferrin saturation, and HFE mutations and self-reported diabetes in the Hemochromatosis and Iron Overload Screening (HEIRS) study
,
Diabetes Care
,
2006
,
29
,
2084
–
2089
.
E. M.
Alissa
, W. H.
Ahmed
, N.
Al-Ama
and G. A.
Ferns
Relationship between indices of iron status and coronary risk factors including diabetes and the metabolic syndrome in Saudi subjects without overt coronary disease
,
J. Trace Elem. Med. Biol.
,
2007
,
21
,
242
–
254
.
N. G.
Forouhi
, A. H.
Harding
, M.
Allison
, M. S.
Sandhu
, A.
Welch
, R.
Luben
, S.
Bingham
, K. T.
Khaw
and N. J.
Wareham
Elevated serum ferritin levels predict new-onset type 2 diabetes: results from the EPIC-Norfolk prospective study
,
Diabetologia
,
2007
,
50
,
949
–
956
.
M. L.
Jehn
, E.
Guallar
, J. M.
Clark
, D.
Couper
, B. B.
Duncan
, C. M.
Ballantyne
, R. C.
Hoogeveen
, Z. L.
Harris
and J. S.
Pankow
A prospective study of plasma ferritin level and incident diabetes: the Atherosclerosis Risk in Communities (ARIC) Study
,
Am. J. Epidemiol.
,
2007
,
165
,
1047
–
1054
.
L.
Sun
, O. H.
Franco
, F. B.
Hu
, L.
Cai
, Z.
Yu
, H.
Li
, X.
Ye
, Q.
Qi
, J.
Wang
, A.
Pan
, Y.
Liu
and X.
Lin
Ferritin concentrations, metabolic syndrome, and type 2 diabetes in middle-aged and elderly chinese
,
J. Clin. Endocrinol. Metab.
,
2008
,
93
,
4690
–
4696
.
J. A.
Kolberg
, T.
Jørgensen
, R. W.
Gerwien
, S.
Hamren
, M. P.
McKenna
, E.
Moler
, M. W.
Rowe
, M. S.
Urdea
, X. M.
Xu
, T.
Hansen
, O.
Pedersen
and K.
Borch-Johnsen
Development of a type 2 diabetes risk model from a panel of serum biomarkers from the Inter99 cohort
,
Diabetes Care
,
2009
,
32
,
1207
–
1212
.
S. N.
Rajpathak
, J. P.
Crandall
, J.
Wylie-Rosett
, G. C.
Kabat
, T. E.
Rohan
and F. B.
Hu
The role of iron in type 2 diabetes in humans
,
Biochim. Biophys. Acta
,
2009
,
1790
,
671
–
681
.
C. H.
Kim
, H. K.
Kim
, S. J.
Bae
, J. Y.
Park
and K. U.
Lee
Association of elevated serum ferritin concentration with insulin resistance and impaired glucose metabolism in Korean men and women
,
Metabolism
,
2011
,
60
,
414
–
420
.
B. K.
Lee
, Y.
Kim
and Y. I.
Kim
Association of serum ferritin with metabolic syndrome and diabetes mellitus in the South Korean general population according to the Korean National Health and Nutrition Examination Survey 2008
,
Metabolism
,
2011
,
60
,
1416
–
1424
.
J. H.
Ryoo
, M. G.
Kim
, D. W.
Lee
and J. Y.
Shin
The relationship between serum ferritin and metabolic syndrome in healthy Korean men
,
Diabetes/Metab. Res. Rev.
,
2011
,
27
,
597
–
603
.
W.
Bao
, Y.
Rong
, S.
Rong
and L.
Liu
Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis
,
BMC Med.
,
2012
,
10
,
119
.
V.
Lyssenko
, T.
Jørgensen
, R. W.
Gerwien
, T.
Hansen
, M. W.
Rowe
, M. P.
McKenna
, J.
Kolberg
, O.
Pedersen
, K.
Borch-Johnsen
and L.
Groop
Validation of a multi-marker model for the prediction of incident type 2 diabetes mellitus: combined results of the Inter99 and Botnia studies
,
Diabet. Vasc. Dis. Res.
,
2012
,
9
,
59
–
67
.
J.
Montonen
, H.
Boeing
, A.
Steffen
, R.
Lehmann
, A.
Fritsche
, H. G.
Joost
, M. B.
Schulze
and T.
Pischon
Body iron stores and risk of type 2 diabetes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study
,
Diabetologia
,
2012
,
55
,
2613
–
2621
.
Z.
Zhao
, S.
Li
, G.
Liu
, F.
Yan
, X.
Ma
, Z.
Huang
and H.
Tian
Body iron stores and heme-iron intake in relation to risk of type 2 diabetes: a systematic review and meta-analysis
,
PLoS One
,
2012
,
7
,
e41641
.
A. O.
Aregbesola
, S.
Voutilainen
, J. K.
Virtanen
, J.
Mursu
and T. P.
Tuomainen
Body Iron Stores and the Risk of Type 2 Diabetes in Middle-Aged Men
,
Eur. J. Endocrinol.
,
2013
,
169
,
247
–
253
.
B.
Batchuluun
, T.
Matsumata
, N.
Erdenebileg
, G.
Tsagaantsooj
, K.
Boldbaatar
and A.
Khasag
Serum ferritin level is higher in poorly controlled patients with Type 2 diabetes and people without diabetes, aged over 55 years
,
Diabetic Med.
,
2013
, DOI:
.
X.
Guo
, D.
Zhou
, P.
An
, Q.
Wu
, H.
Wang
, A.
Wu
, M.
Mu
, D.
Zhang
, Z.
Zhang
, L.
He
, Y.
Liu
and F.
Wang
Associations between serum hepcidin, ferritin and Hb concentrations and type 2 diabetes risks in a Han Chinese population
,
Br. J. Nutr.
,
2013
,
1
–
6
.
C. H.
Jung
, M. J.
Lee
, J. Y.
Hwang
, J. E.
Jang
, J.
Leem
, J. Y.
Park
, J.
Lee
, H. K.
Kim
and W. J.
Lee
Elevated serum ferritin level is associated with the incident type 2 diabetes in healthy korean men: a 4 year longitudinal study
,
PLoS One
,
2013
,
8
,
e75250
.
D.
Kundu
, A.
Roy
, T.
Mandal
, U.
Bandyopadhyay
, E.
Ghosh
and D.
Ray
Relation of iron stores to oxidative stress in type 2 diabetes
,
Niger. J. Clin. Pract.
,
2013
,
16
,
100
–
103
.
S. K.
Kunutsor
, T. A.
Apekey
, J.
Walley
and K.
Kain
Ferritin levels and risk of type 2 diabetes mellitus: an updated systematic review and meta-analysis of prospective evidence
,
Diabetes/Metab. Res. Rev.
,
2013
,
29
,
308
–
318
.
L.
Sun
, G.
Zong
, A.
Pan
, X. W.
Ye
, H. X.
Li
, Z. J.
Yu
, Y.
Zhao
, S. R.
Zou
, D. X.
Yu
, Q. L.
Jin
, F. B.
Hu
and X.
Lin
Elevated Plasma Ferritin Is Associated with Increased Incidence of Type 2 Diabetes in Middle-Aged and Elderly Chinese Adults
,
J. Nutr.
,
2013
,
143
,
1459
–
1465
.
D. L.
White
and A.
Collinson
Red meat, dietary heme iron, and risk of type 2 diabetes: the involvement of advanced lipoxidation endproducts
,
Adv. Nutr.
,
2013
,
4
,
403
–
411
.
N.
Wlazlo
, M. M. J.
van Greevenbroek
, I.
Ferreira
, E. H. J. M.
Jansen
, E. J. M.
Feskens
, C. J. H.
van der Kallen
, C. G.
Schalkwijk
, B.
Bravenboer
and C. D. A.
Stehouwer
Iron metabolism is associated with adipocyte insulin resistance and plasma adiponectin: the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) study
,
Diabetes Care
,
2013
,
36
,
309
–
315
.
A.
Piperno
, P.
Trombini
, M.
Gelosa
, V.
Mauri
, V.
Pecci
, A.
Vergani
, A.
Salvioni
, R.
Mariani
and G.
Mancia
Increased serum ferritin is common in men with essential hypertension
,
J. Hypertens.
,
2002
,
20
,
1513
–
1518
.
E.
Coban
, E.
Alkan
, S.
Altuntas
and Y.
Akar
Serum ferritin levels correlate with hypertensive retinopathy
,
Med. Sci. Monit.
,
2010
,
16
,
CR92
–
CR95
.
K. S.
Houschyar
, R.
Lüdtke
, G. J.
Dobos
, U.
Kalus
, M.
Broecker-Preuss
, T.
Rampp
, B.
Brinkhaus
and A.
Michalsen
Effects of phlebotomy-induced reduction of body iron stores on metabolic syndrome: results from a randomized clinical trial
,
BMC Med.
,
2012
,
10
,.
M. K.
Kim
, K. H.
Baek
, K. H.
Song
, M. I.
Kang
, J. H.
Choi
, J. C.
Bae
, C. Y.
Park
, W. Y.
Lee
and K. W.
Oh
Increased Serum Ferritin Predicts the Development of Hypertension Among Middle-Aged Men
,
Am. J. Hypertens.
,
2012
,
25
,
492
–
497
.
B.
Choi
, K. J.
Yeum
, S. J.
Park
, K. N.
Kim
and N. S.
Joo
Elevated serum ferritin and mercury concentrations are associated with hypertension; analysis of the fourth and fifth Korea national health and nutrition examination survey (KNHANES IV-2, 3, 2008-2009 and V-1, 2010)
,
Environ. Toxicol.
,
2013
, DOI:
.
M.
Jehn
, J. M.
Clark
and E.
Guallar
Serum ferritin and risk of the metabolic syndrome in U.S. adults
,
Diabetes Care
,
2004
,
27
,
2422
–
2428
.
C.
Bozzini
, D.
Girelli
, O.
Olivieri
, N.
Martinelli
, A.
Bassi
, G.
De Matteis
, I.
Tenuti
, V.
Lotto
, S.
Friso
, F.
Pizzolo
and R.
Corrocher
Prevalence of body iron excess in the metabolic syndrome
,
Diabetes Care
,
2005
,
28
,
2061
–
2063
.
K. M.
Choi
, K. W.
Lee
, H. Y.
Kim
, J. A.
Seo
, S. G.
Kim
, N. H.
Kim
, D. S.
Choi
and S. H.
Baik
Association among serum ferritin, alanine aminotransferase levels, and metabolic syndrome in Korean postmenopausal women
,
Metabolism
,
2005
,
54
,
1510
–
1514
.
A. S.
González
, D. B.
Guerrero
, M. B.
Soto
, S. P.
Diáz
, M.
Martinez-Olmos
and O.
Vidal
Metabolic syndrome, insulin resistance and the inflammation markers C-reactive protein and ferritin
,
Eur. J. Clin. Nutr.
,
2006
,
60
,
802
–
809
.
V.
Tsimihodimos
, I.
Gazi
, R.
Kalaitzidis
, M.
Elisaf
and K. C.
Siamopoulos
Increased serum ferritin concentrations and liver enzyme activities in patients with metabolic syndrome
,
Metab. Syndr. Relat. Disord.
,
2006
,
4
,
196
–
203
.
P.
Trombini
and A.
Piperno
Ferritin, metabolic syndrome and NAFLD: elective attractions and dangerous liaisons
,
J. Hepatol.
,
2007
,
46
,
549
–
552
.
I. S.
Vari
, B.
Balkau
, A.
Kettaneh
, P.
André
, J.
Tichet
, F.
Fumeron
, E.
Caces
, M.
Marre
, B.
Grandchamp
and P.
Ducimetière
Ferritin and transferrin are associated with metabolic syndrome abnormalities and their change over time in a general population: Data from an Epidemiological Study on the Insulin Resistance Syndrome (DESIR)
,
Diabetes Care
,
2007
,
30
,
1795
–
1801
.
S.
Zelber-Sagi
, D.
Nitzan-Kaluski
, Z.
Halpern
and R.
Oren
NAFLD and hyperinsulinemia are major determinants of serum ferritin levels
,
J. Hepatol.
,
2007
,
46
,
700
–
707
.
S.
Tsimikas
, J.
Willeit
, M.
Knoflach
, M.
Mayr
, G.
Egger
, M.
Notdurfter
, J. L.
Witztum
, C. J.
Wiedermann
, Q.
Xu
and S.
Kiechl
Lipoprotein-associated phospholipase A2 activity, ferritin levels, metabolic syndrome, and 10-year cardiovascular and non-cardiovascular mortality: results from the Bruneck study
,
Eur. Heart J.
,
2009
,
30
,
107
–
115
.
L.
Valenti
, P.
Dongiovanni
, B. M.
Motta
, D. W.
Swinkels
, P.
Bonara
, R.
Rametta
, L.
Burdick
, C.
Frugoni
, A. L.
Fracanzani
and S.
Fargion
Serum hepcidin and macrophage iron correlate with MCP-1 release and vascular damage in patients with metabolic syndrome alterations
,
Arterioscler., Thromb., Vasc. Biol.
,
2011
,
31
,
683
–
690
.
P.
Hämäläinen
, J.
Saltevo
, H.
Kautiainen
, P.
Mäntyselkä
and M.
Vanhala
Erythropoietin, ferritin, haptoglobin, hemoglobin and transferrin receptor in metabolic syndrome: a case control study
,
Cardiovasc. Diabetol.
,
2012
,
11
,
116
.
S. K.
Park
, J. H.
Ryoo
, M. G.
Kim
and J. Y.
Shin
Association of serum ferritin and the development of metabolic syndrome in middle-aged Korean men: a 5-year follow-up study
,
Diabetes Care
,
2012
,
35
,
2521
–
2526
.
H. T.
Kang
, J. A.
Linton
and J. Y.
Shim
Serum ferritin level is associated with the prevalence of metabolic syndrome in Korean adults: the 2007-2008 Korean National Health and Nutrition Examination Survey
,
Clin. Chim. Acta
,
2012
,
413
,
636
–
641
.
J. H.
Yoon
, J. A.
Linton
, S. B.
Koh
and H. T.
Kang
Serum ferritin concentrations predict incidence of metabolic syndrome in rural Korean adults
,
Clin. Chem. Lab. Med.
,
2012
,
50
,
2057
–
2059
.
J. S.
Chang
, S. M.
Lin
, T. C.
Huang
, J. C.
Chao
, Y. C.
Chen
, W. H.
Pan
and C. H.
Bai
Serum ferritin and risk of the metabolic syndrome: a population-based study
,
Asia Pac. J. Clin. Nutr.
,
2013
,
22
,
400
–
407
.
C.
Datz
, T. K.
Felder
, D.
Niederseer
and E.
Aigner
Iron homeostasis in the Metabolic Syndrome
,
Eur. J. Clin. Invest.
,
2013
,
43
,
215
–
224
.
L.
Guo
, F.
Jiang
, Y. T.
Tang
, M. Y.
Si
and X. Y.
Jiao
The Association of Serum Vascular Endothelial Growth Factor and Ferritin in Diabetic Microvascular Disease
,
Diabetes Technol. Ther.
,
2013
, DOI:
.
J.
Li
, R.
Wang
, D.
Luo
, S.
Li
and C.
Xiao
Association between Serum Ferritin Levels and Risk of the Metabolic Syndrome in Chinese Adults: A Population Study
,
PLoS One
,
2013
,
8
,
e74168
.
C.
Sfagos
, A. C.
Makis
, A.
Chaidos
, E. C.
Hatzimichael
, A.
Dalamaga
, K.
Kosma
and K. L.
Bourantas
Serum ferritin, transferrin and soluble transferrin receptor levels in multiple sclerosis patients
,
Mult. Scler.
,
2005
,
11
,
272
–
275
.
H.
Orbach
, G.
Zandman-Goddard
, H.
Amital
, V.
Barak
, Z.
Szekanecz
, G.
Szucs
, K.
Danko
, E.
Nagy
, T.
Csepany
, J. F.
Carvalho
, A.
Doria
and Y.
Shoenfeld
Novel biomarkers in autoimmune diseases: prolactin, ferritin, vitamin D, and TPA levels in autoimmune diseases
,
Ann. N. Y. Acad. Sci.
,
2007
,
1109
,
385
–
400
.
G.
Zandman-Goddard
and Y.
Shoenfeld
Hyperferritinemia in autoimmunity
,
Isr. Med. Assoc. J.
,
2008
,
10
,
83
–
84
.
R.
Da Costa
, M.
Szyper-Kravitz
, Z.
Szekanecz
, T.
Csépány
, K.
Dankó
, Y.
Shapira
, G.
Zandman-Goddard
, H.
Orbach
, N.
Agmon-Levin
and Y.
Shoenfeld
Ferritin and Prolactin levels in multiple sclerosis
,
Isr. Med. Assoc. J.
,
2011
,
13
,
91
–
95
.
J. T.
Salonen
, K.
Nyyssonen
, H.
Korpela
, J.
Tuomilehto
, R.
Seppanen
and R.
Salonen
High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men
,
Circulation
,
1992
,
86
,
803
–
811
.
C.
Moroz
, H.
Bessler
, M.
Katz
, I.
Zahavi
, H.
Salman
and M.
Djaldetti
Elevated serum ferritin level in acute myocardial infarction
,
Biomed. Pharmacother.
,
1997
,
51
,
126
–
130
.
T. P.
Tuomainen
, K.
Punnonen
, K.
Nyyssonen
and J. T.
Salonen
Association between body iron stores and the risk of acute myocardial infarction in men
,
Circulation
,
1998
,
97
,
1461
–
1466
.
K.
Klipstein-Grobusch
, J. F.
Koster
, D. E.
Grobbee
, J.
Lindemans
, H.
Boeing
, A.
Hofman
and J. C. M.
Witteman
Serum ferritin and risk of myocardial infarction in the elderly: the Rotterdam Study
,
Am. J. Clin. Nutr.
,
1999
,
69
,
1231
–
1236
.
D.
Claeys
, M.
Walting
, F.
Julmy
, W. A.
Wuillemin
and B. J.
Meyer
Haemochromatosis mutations and ferritin in myocardial infarction: a case-control study
,
Eur. J. Clin. Invest.
,
2002
,
32
,
3
–
8
.
W. D.
Silvia
, S.
Biswas
, S.
Uthappa
and P.
Shetty
Ferritin, a potent threat for acute myocardial infarction?
,
J. Assoc. Physicians India
,
2003
,
51
,
947
–
950
.
X. M.
Yuan
and W.
Li
The iron hypothesis of atherosclerosis and its clinical impact
,
Ann. Med.
,
2003
,
35
,
578
–
591
.
M. P.
Holay
, A. A.
Choudhary
and S. D.
Suryawanshi
Serum ferritin-a novel risk factor in acute myocardial infarction
,
Indian Heart J.
,
2012
,
64
,
173
–
177
.
M. P.
Iqbal
, N.
Mehboobali
, A. K.
Tareen
, M.
Yakub
, S. P.
Iqbal
, K.
Iqbal
and G.
Haider
Association of body iron status with the risk of premature acute myocardial infarction in a Pakistani population
,
PLoS One
,
2013
,
8
,
e67981
.
S.
Fargion
, M.
Mattioli
, A. L.
Fracanzani
, M.
Sampietro
, D.
Tavazzi
, P.
Fociani
, E.
Taioli
, L.
Valenti
and G.
Fiorelli
Hyperferritinemia, iron overload, and multiple metabolic alterations identify patients at risk for nonalcoholic steatohepatitis
,
Am. J. Gastroenterol.
,
2001
,
96
,
2448
–
2455
.
M.
Koruk
, S.
Tayşi
, M. C.
Savaş
, O.
Yilmaz
, F.
Akçay
and M.
Karakök
Serum levels of acute phase proteins in patients with nonalcoholic steatohepatitis
,
Turk. J. Gastroenterol.
,
2003
,
14
,
12
–
17
.
E.
Bugianesi
, P.
Manzini
, S.
D’Antico
, E.
Vanni
, F.
Longo
, N.
Leone
, P.
Massarenti
, A.
Piga
, G.
Marchesini
and M.
Rizzetto
Relative contribution of iron burden, HFE mutations, and insulin resistance to fibrosis in nonalcoholic fatty liver
,
Hepatology
,
2004
,
39
,
179
–
187
.
T. J.
Hsiao
, J. C.
Chen
and J. D.
Wang
Insulin resistance and ferritin as major determinants of nonalcoholic fatty liver disease in apparently healthy obese patients
,
Int. J. Obes. Relat. Metab. Disord.
,
2004
,
28
,
167
–
172
.
C.
Loguercio
, T.
De Simone
, M. V.
D’Auria
, I.
de Sio
, A.
Federico
, C.
Tuccillo
, A. M.
Abbatecola
, C.
Del Vecchio Blanco
and Italian AISF Clinical Group
Non-alcoholic fatty liver disease: a multicentre clinical study by the Italian Association for the Study of the Liver
,
Dig. Liver Dis.
,
2004
,
36
,
398
–
405
.
G. C.
Farrell
and C. Z.
Larter
Nonalcoholic fatty liver disease: from steatosis to cirrhosis
,
Hepatology
,
2006
,
43
,
S99
–
S112
.
L.
Valenti
, A. L.
Fracanzani
, P.
Dongiovanni
, E.
Bugianesi
, G.
Marchesini
, P.
Manzini
, E.
Vanni
and S.
Fargion
Iron depletion by phlebotomy improves insulin resistance in patients with nonalcoholic fatty liver disease and hyperferritinemia: evidence from a case-control study
,
Am. J. Gastroenterol.
,
2007
,
102
,
1251
–
1258
.
E.
Aigner
and C.
Datz
Iron perturbations in human non-alcoholic fatty liver disease (NAFLD): Clinical relevance and molecular mechanisms
,
Hepatitis Monthly
,
2008
,
8
,
213
–
220
.
L.
Valenti
, D. W.
Swinkels
, L.
Burdick
, P.
Dongiovanni
, H.
Tjalsma
, B. M.
Motta
, C.
Bertelli
, E.
Fatta
, D.
Bignamini
, R.
Rametta
, S.
Fargion
and A. L.
Fracanzani
Serum ferritin levels are associated with vascular damage in patients with nonalcoholic fatty liver disease
,
Nutr., Metab. Cardiovasc. Dis.
,
2010
,
21
,
568
–
575
.
M.
Yoneda
, Y.
Nozaki
, H.
Endo
, H.
Mawatari
, H.
Iida
, K.
Fujita
, K.
Yoneda
, H.
Takahashi
, H.
Kirikoshi
, M.
Inamori
, N.
Kobayashi
, K.
Kubota
, S.
Saito
, S.
Maeyama
, K.
Hotta
and A.
Nakajima
Serum ferritin is a clinical biomarker in Japanese patients with nonalcoholic steatohepatitis (NASH) independent of HFE gene mutation
,
Dig. Dis. Sci.
,
2010
,
55
,
808
–
814
.
K. V.
Kowdley
The role of iron in nonalcoholic fatty liver disease: the story continues
,
Gastroenterology
,
2010
,
138
,
817
–
819
.
P.
Manousou
, G.
Kalambokis
, F.
Grillo
, J.
Watkins
, E.
Xirouchakis
, M.
Pleguezuelo
, G.
Leandro
, V.
Arvaniti
, G.
Germani
, D.
Patch
, V.
Calvaruso
, D. P.
Mikhailidis
, A. P.
Dhillon
and A. K.
Burroughs
Serum ferritin is a discriminant marker for both fibrosis and inflammation in histologically proven non-alcoholic fatty liver disease patients
,
Liver Int.
,
2011
,
31
,
730
–
739
.
Y.
Sumida
, M.
Yoneda
, H.
Hyogo
, K.
Yamaguchi
, M.
Ono
, H.
Fujii
, Y.
Eguchi
, Y.
Suzuki
, S.
Imai
, K.
Kanemasa
, K.
Fujita
, K.
Chayama
, K.
Yasui
, T.
Saibara
, N.
Kawada
, K.
Fujimoto
, Y.
Kohgo
and T.
Okanoue
A simple clinical scoring system using ferritin, fasting insulin, and type IV collagen 7S for predicting steatohepatitis in nonalcoholic fatty liver disease
,
J. Gastroenterol.
,
2011
,
46
,
257
–
268
.
K. V.
Kowdley
, P.
Belt
, L. A.
Wilson
, M. M.
Yeh
, B. A.
Neuschwander-Tetri
, N.
Chalasani
, A. J.
Sanyal
and J. E.
Nelson
Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease
,
Hepatology
,
2012
,
55
,
77
–
85
.
C. W.
Kim
, Y.
Chang
, E.
Sung
, H.
Shin
and S.
Ryu
Serum ferritin levels predict incident non-alcoholic fatty liver disease in healthy Korean men
,
Metabolism
,
2012
,
61
,
1182
–
1188
.
K. M.
Utzschneider
, A.
Largajolli
, A.
Bertoldo
, S.
Marcovina
, J. E.
Nelson
, M. M.
Yeh
, K. V.
Kowdley
and S. E.
Kahn
Serum ferritin is associated with non-alcoholic fatty liver disease and decreased Beta-cell function in non-diabetic men and women
,
J. Diabetes Complications
,
2013
, DOI:
.
S. S.
Entman
, L. D.
Richardson
and A. P.
Killam
Elevated serum ferritin in the altered ferrokinetics of toxemia of pregnancy
,
Am. J. Obstet. Gynecol.
,
1982
,
144
,
418
–
422
.
S. S.
Entman
, L. D.
Richardson
and A. P.
Killam
Altered ferrokinetics in toxemia of pregnancy – a possible indicator of decreased red cell survival
,
Clin. Exp. Hypertens., Part B
,
1983
,
2
,
171
–
178
.
M. P.
Rayman
, J.
Barlis
, R. W.
Evans
, C. W.
Redman
and L. J.
King
Abnormal iron parameters in the pregnancy syndrome preeclampsia
,
Am. J. Obstet. Gynecol.
,
2002
,
187
,
412
–
418
.
C. A.
Hubel
, L. M.
Bodnar
, A.
Many
, G.
Harger
, R. B.
Ness
and J. M.
Roberts
Nonglycosylated ferritin predominates in the circulation of women with preeclampsia but not intrauterine growth restriction
,
Clin. Chem.
,
2004
,
50
,
948
–
951
.
I. A.
Siddiqui
, A.
Jaleel
, H. M.
Kadri
, W. A.
Saeed
and W.
Tamimi
Iron status parameters in preeclamptic women
,
Arch. Gynecol. Obstet.
,
2011
,
284
,
587
–
591
.
D. R.
Blake
, P. A.
Bacon
, E. J.
Eastham
and K.
Brigham
Synovial fluid ferritin in rheumatoid arthritis
,
BMJ
,
1980
,
281
,
715
–
716
.
R. S.
Rothwell
and P.
Davis
Relationship between serum ferritin, anemia, and disease activity in acute and chronic rheumatoid arthritis
,
Rheumatol. Int.
,
1981
,
1
,
65
–
67
.
P.
Biemond
, A. J. G.
Swaak
, H. G.
Vaneijk
and J. F.
Koster
Intraarticular ferritin-bound iron in rheumatoid arthritis – a factor that increases oxygen free radical-induced tissue destruction
,
Arthritis Rheum.
,
1986
,
29
,
1187
–
1193
.
C.
Palermo
, S.
Maddali Bongi
and G.
Bianucci
Relationship between serum ferritin, iron stores and disease activity in rheumatoid arthritis
,
Ric. Clin. Lab.
,
1986
,
16
,
463
–
469
.
P.
Biemond
, A. J. G.
Swaak
, H. G.
Vaneijk
and J. F.
Koster
Superoxide Dependent Iron Release from Ferritin in Inflammatory Diseases
,
Free Radical Biol. Med.
,
1988
,
4
,
185
–
198
.
E.
Abe
and M.
Arai
Synovial fluid ferritin in traumatic hemarthrosis, rheumatoid arthritis and osteoarthritis
,
Tohoku J. Exp. Med.
,
1992
,
168
,
499
–
505
.
K.
Yildirim
, S.
Karatay
, M. A.
Melikoglu
, G.
Gureser
, M.
Ugur
and K.
Senel
Associations between acute phase reactant levels and disease activity score (DAS28) in patients with rheumatoid arthritis
,
Ann. Clin. Lab. Sci.
,
2004
,
34
,
423
–
426
.
F.
Lv
, L. J.
Song
and X. F.
Li
Combined measurement of multiple acute phase reactants to predict relapse of rheumatoid arthritis
,
Int. J. Rheum. Dis.
,
2013
, DOI:
.
R. L.
Goldenberg
, B. M.
Mercer
, M.
Miodovnik
, G. R.
Thurnau
, P. J.
Meis
, A.
Moawad
, R. H.
Paul
, S. F.
Bottoms
, A.
Das
, J. M.
Roberts
, D.
McNellis
and T.
Tamura
Plasma ferritin, premature rupture of membranes, and pregnancy outcome
,
Am. J. Obstet. Gynecol.
,
1998
,
179
,
1599
–
1604
.
P. C. R.
Garcia
, F.
Longhi
, R. G.
Branco
, J. P.
Piva
, D.
Lacks
and R. C.
Tasker
Ferritin levels in children with severe sepsis and septic shock
,
Acta Paediatr.
,
2007
,
96
,
1829
–
1831
.
T. D.
Bennett
, K. N.
Hayward
, R. W.
Farris
, S.
Ringold
, C. A.
Wallace
and T. V.
Brogan
Very high serum ferritin levels are associated with increased mortality and critical care in pediatric patients
,
Pediatr. Crit. Care Med.
,
2011
,
12
,
e233
–
e236
.
M.
Suárez-Santamaría
, F.
Santolaria
, A.
Pérez-Ramírez
, M. R.
Aléman-Valls
, A.
Martínez-Riera
, E.
González-Reimers
, M. J.
de la Vega
and A.
Milena
Prognostic value of inflammatory markers (notably cytokines and procalcitonin), nutritional assessment, and organ function in patients with sepsis
,
Eur. Cytokine Network
,
2010
,
21
,
19
–
26
.
A.
Dávalos
, J. M.
Fernandezreal
, W.
Ricart
, S.
Soler
, A.
Molins
, E.
Planas
and D.
Genis
Iron-related damage in acute ischemic stroke
,
Stroke
,
1994
,
25
,
1543
–
1546
.
A. K.
Erdemoglu
and S.
Ozbakir
Serum ferritin levels and early prognosis of stroke
,
Eur. J. Neurol.
,
2002
,
9
,
633
–
637
.
G. M.
Bishop
and S. R.
Robinson
Quantitative analysis of cell death and ferritin expression in response to cortical iron: implications for hypoxia-ischemia and stroke
,
Brain Res.
,
2001
,
907
,
175
–
187
.
A.
Armengou
and A.
Davalos
A review of the state of research into the role of iron in stroke
,
J. Nutr., Health Aging
,
2002
,
6
,
207
–
208
.
E.
Millerot
, A. S.
Prigent-Tessier
, N. M.
Bertrand
, P. J.
Faure
, C. M.
Mossiat
, M. E.
Giroud
, A. G.
Beley
and C.
Marie
Serum ferritin in stroke: a marker of increased body iron stores or stroke severity?
,
J. Cereb. Blood Flow Metab.
,
2005
,
25
,
1386
–
1393
.
D. L.
van der A
, D. E.
Grobbee
, M.
Roest
, J. J. M.
Marx
, H. A.
Voorbij
and Y. T.
van der Schouw
Serum ferritin is a risk factor for stroke in postmenopausal women
,
Stroke
,
2005
,
36
,
1637
–
1641
.
M.
Millan
, T.
Sobrino
, M.
Castellanos
, F.
Nombela
, J. F.
Arenillas
, E.
Riva
, I.
Cristobo
, M. M.
Garcia
, J.
Vivancos
, J.
Serena
, M. A.
Moro
, J.
Castillo
and A.
Dávalos
Increased body iron stores are associated with poor outcome after thrombolytic treatment in acute stroke
,
Stroke
,
2007
,
38
,
90
–
95
.
M.
Mehdiratta
, S.
Kumar
, D.
Hackney
, G.
Schlaug
and M.
Selim
Association between serum ferritin level and perihematoma edema volume in patients with spontaneous intracerebral hemorrhage
,
Stroke
,
2008
,
39
,
1165
–
1170
.
M.
Millán
, T.
Sobrino
, J. F.
Arenillas
, M.
Rodriguez-Yáñez
, M.
Garcia
, F.
Nombela
, M.
Castellanos
, N.
Pérez de la Ossa
, P.
Cuadras
, J.
Serena
, J.
Castillo
and A.
Dávalos
Biological signatures of brain damage associated with high serum ferritin levels in patients with acute ischemic stroke and thrombolytic treatment
,
Dis. Markers
,
2008
,
25
,
181
–
188
.
N. P.
Pérez de la Ossa
, T.
Sobrino
, Y.
Silva
, M.
Blanco
, M.
Millán
, M.
Gomis
, J.
Agulla
, P.
Araya
, S.
Reverté
, J.
Serena
and A.
Dávalos
Iron-related brain damage in patients with intracerebral hemorrhage
,
Stroke
,
2010
,
41
,
810
–
813
.
K. H.
Choi
, M. S.
Park
, J. T.
Kim
, T. S.
Nam
, S. M.
Choi
, B. C.
Kim
, M. K.
Kim
and K. H.
Cho
The serum ferritin level is an important predictor of hemorrhagic transformation in acute ischaemic stroke
,
Eur. J. Neurol.
,
2012
,
19
,
570
–
577
.
I.
García-Yébenes
, M.
Sobrado
, A.
Moraga
, J. G.
Zarruk
, V. G.
Romera
, J. M.
Pradillo
, N.
Perez de la Ossa
, M. A.
Moro
, A.
Dávalos
and I.
Lizasoain
Iron overload, measured as serum ferritin, increases brain damage induced by focal ischemia and early reperfusion
,
Neurochem. Int.
,
2012
,
61
,
1364
–
1369
.
K.
Nishiya
and K.
Hashimoto
Elevation of serum ferritin levels as a marker for active systemic lupus erythematosus
,
Clin. Exp. Rheumatol.
,
1997
,
15
,
39
–
44
.
M. K.
Lim
, C. K.
Lee
, Y. S.
Ju
, Y. S.
Cho
, M. S.
Lee
, B.
Yoo
and H. B.
Moon
Serum ferritin as a serologic marker of activity in systemic lupus erythematosus
,
Rheumatol. Int.
,
2001
,
20
,
89
–
93
.
L. G.
Xu
, M.
Wu
, J. C.
Hu
, Z. H.
Zhai
and H. B.
Shu
Identification of downstream genes up-regulated by the tumor necrosis factor family member TALL-1
,
J. Leukocyte Biol.
,
2002
,
72
,
410
–
416
.
E.
Beyan
, C.
Beyan
, A.
Demirezer
, E.
Ertugrul
and A.
Uzuner
The relationship between serum ferritin levels and disease activity in systemic lupus erythematosus
,
Scand. J. Rheumatol.
,
2003
,
32
,
225
–
228
.
G.
Zandman-Goddard
, H.
Orbach
, H.
Amital
, Z.
Szekanecz
, G.
Szucs
, K.
Danko
, E.
Nagy
, T.
Csepany
and Y.
Shoenfeld
Elevated levels of ferritin in systemic lupus erythematosus and other autoimmune diseases
,
Ann. Rheum. Dis.
,
2007
,
66
,
488
.
A.
Parodi
, S.
Davi
, A. B.
Pringe
, A.
Pistorio
, N.
Ruperto
, S.
Magni-Manzoni
, P.
Miettunen
, B.
Bader-Meunier
, G.
Espada
, G.
Sterba
, S.
Ozen
, D.
Wright
, C. S.
Magalhaes
, R.
Khubchandani
, H.
Michels
, P.
Woo
, A.
Iglesias
, D.
Guseinova
, C.
Bracaglia
, K.
Hayward
, C.
Wouters
, A.
Grom
, M.
Vivarelli
, A.
Fischer
, L.
Breda
, A.
Martini
, A.
Ravelli
and P. R. E.
Soc
Macrophage Activation Syndrome in Juvenile Systemic Lupus Erythematosus A Multinational Multicenter Study of Thirty-Eight Patients
,
Arthritis Rheum.
,
2009
,
60
,
3388
–
3399
.
K.
Vanarsa
, Y.
Ye
, J.
Han
, C.
Xie
, C.
Mohan
and T.
Wu
Inflammation associated anemia and ferritin as disease markers in SLE
,
Arthritis Res. Ther.
,
2012
,
14
,
R182
.
M.
Abbasi
, M.
Sahebari
, A.
Amini
and M.
Saghafi
Hyperferritinemia: A possible marker for diagnosis of systemic lupus erythematosus?
,
Life Sci. J.
,
2013
,
10
,
335
–
337
.
S. Y.
Lee
, S. W.
Lee
and W. T.
Chung
Severe inflammation may be caused by hyperferritinemia of pseudo-pseudo Meigs’ syndrome in lupus patients: two cases reports and a literature review
,
Clin. Rheumatol.
,
2013
,
32
,
1823
–
1826
.
M. A. B.
Lozovoy
, A. N. C.
Simão
, S. R.
Oliveira
, T. M. V.
Iryioda
, C.
Panis
, R.
Cecchini
and I.
Dichi
Relationship between iron metabolism, oxidative stress, and insulin resistance in patients with systemic lupus erythematosus
,
Scand. J. Rheumatol.
,
2013
,
42
,
303
–
310
.
S.
Vilaiyuk
, N.
Sirachainan
, S.
Wanitkun
, K.
Pirojsakul
and J.
Vaewpanich
Recurrent macrophage activation syndrome as the primary manifestation in systemic lupus erythematosus and the benefit of serial ferritin measurements: a case-based review
,
Clin. Rheumatol.
,
2013
,
32
,
899
–
904
.
G.
Zandman-Goddard
, H.
Orbach
, N.
Agmon-Levin
, M.
Boaz
, H.
Amital
, Z.
Szekanecz
, G.
Szucs
, J.
Rovensky
, E.
Kiss
, N.
Corocher
, A.
Doria
, L.
Stojanovich
, F.
Ingegnoli
, P. L.
Meroni
, B.
Rozman
, J.
Gomez-Arbesu
, M.
Blank
and Y.
Shoenfeld
Hyperferritinemia is associated with serologic antiphospholipid syndrome in SLE patients
,
Clin. Rev. Allergy Immunol.
,
2013
,
44
,
23
–
30
.
A.
Undas
, P.
Podolec
, K.
Zawilska
, M.
Pieculewicz
, I.
Jedliński
, E.
Stępień
, E.
Konarska-Kuszewska
, P.
Weglarz
, M.
Duszynska
, E.
Hanschke
, T.
Przewlocki
and W.
Tracz
Altered fibrin clot structure/function in patients with cryptogenic ischemic stroke
,
Stroke
,
2009
,
40
,
1499
–
1501
.
I.
Palka
, J.
Nessler
, B.
Nessler
, W.
Piwowarska
, W.
Tracz
and A.
Undas
Altered fibrin clot properties in patients with chronic heart failure and sinus rhythm: a novel prothrombotic mechanism
,
Heart
,
2010
,
96
,
1114
–
1118
.
A.
Undas
and R. A. S.
Ariëns
Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases
,
Arterioscler., Thromb., Vasc. Biol.
,
2011
,
31
,
e88
–
e99
.
A.
Undas
, M.
Cieśla-Dulb
, T.
Drżkiewiczb
and J.
Sadowski
Altered fibrin clot properties are associated with residual vein obstruction: effects of lipoprotein(a) and apolipoprotein(a) isoform
,
Thromb. Res.
,
2012
,
130
,
e184
–
e187
.
J.
Bester
, A. V.
Buys
, B.
Lipinski
, D. B.
Kell
and E.
Pretorius
High ferritin levels have major effects on the morphology of erythrocytes in Alzheimer’s disease
,
Front. Aging Neurosci.
,
2013
,
5
,
00088
.
E.
Pretorius
and B.
Lipinski
Thromboembolic ischemic stroke changes red blood cell morphology
,
Cardiovasc. Pathol.
,
2013
,
22
,
241
–
242
.
E.
Pretorius
and B.
Lipinski
Iron alters red blood cell morphology
,
Blood
,
2013
,
121
,
9
.
E.
Pretorius
, J.
Bester
, N.
Vermeulen
, B.
Lipinski
, G. S.
Gericke
and D. B.
Kell
Profound morphological changes in the erythrocytes and fibrin networks of patients with hemochromatosis or with hyperferritinemia, and their normalization by iron chelators and other agents
,
PLoS One
,
2014
,
9
,
e85271
.
E.
Pretorius
, N.
Vermeulen
and J.
Bester
Atypical erythrocytes and platelets in a patient with a pro-thrombin mutation
,
Platelets
,
2013
, DOI:
.
E.
Pretorius
, N.
Vermeulen
, J.
Bester
, B.
Lipinski
and D. B.
Kell
A novel method for assessing the role of iron and its functional chelation in fibrin fibril formation: the use of scanning electron microscopy
,
Toxicol. Mech. Methods
,
2013
,
23
,
352
–
359
.
B.
Lipinski
, E.
Pretorius
, H. M.
Oberholzer
and W. J.
van der Spuy
Interaction of fibrin with red blood cells: the role of iron
,
Ultrastruct. Pathol.
,
2012
,
36
,
79
–
84
.
B.
Lipinski
and E.
Pretorius
Novel pathway of iron-induced blood coagulation: implications for diabetes mellitus and its complications
,
Pol. Arch. Med. Wewn.
,
2012
,
122
,
115
–
122
.
E.
Pretorius
, J.
du Plooy
, P.
Soma
and A. Y.
Gasparyan
An ultrastructural analysis of platelets, erythrocytes, white blood cells, and fibrin network in systemic lupus erythematosus
,
Rheumatol. Int.
,
2013
, DOI:
.
A. V.
Buys
, M. J.
Van Rooy
, P.
Soma
, D.
Van Papendorp
, B.
Lipinski
and E.
Pretorius
Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study
,
Cardiovasc. Diabetol.
,
2013
,
12
,
25
.
S.
Gangopadhyay
, V. K.
Vijayan
and S. K.
Bansal
Lipids of erythrocyte membranes of COPD patients: a quantitative and qualitative study
,
COPD
,
2012
,
9
,
322
–
331
.
E.
Pretorius
, J. N.
du Plooy
, P.
Soma
, I.
Keyser
and A. V.
Buys
Smoking and fluidity of erythrocyte membranes: A high resolution scanning electron and atomic force microscopy investigation
,
Nitric Oxide
,
2013
,
35C
,
42
–
46
.
C. J.
Smith
and T. H.
Fischer
Particulate and vapor phase constituents of cigarette mainstream smoke and risk of myocardial infarction
,
Atherosclerosis
,
2001
,
158
,
257
–
267
.
G. J.
Kontoghiorghes
Future chelation monotherapy and combination therapy strategies in thalassemia and other conditions. Comparison of deferiprone, deferoxamine, ICL670, GT56-252, L1NAll and starch deferoxamine polymers
,
Hemoglobin
,
2006
,
30
,
329
–
347
.
H.
Nick
Iron chelation, quo vadis?
,
Curr. Opin. Chem. Biol.
,
2007
,
11
,
419
–
423
.
A.
Maggio
, A.
Filosa
, A.
Vitrano
, G.
Aloj
, A.
Kattamis
, A.
Ceci
, S.
Fucharoen
, P.
Cianciulli
, R. W.
Grady
, L.
Prossomariti
, J. B.
Porter
, A.
Iacono
, M. D.
Cappellini
, F.
Bonifazi
, F.
Cassara
, P.
Harmatz
, J.
Wood
and C.
Gluud
Iron chelation therapy in thalassemia major: a systematic review with meta-analyses of 1520 patients included on randomized clinical trials
,
Blood Cells, Mol., Dis.
,
2011
,
47
,
166
–
175
.
E. A.
Rachmilewitz
and P. J.
Giardina
How I treat thalassemia
,
Blood
,
2011
,
118
,
3479
–
3488
.
Y.
Ma
, T.
Zhou
, X.
Kong
and R. C.
Hider
Chelating agents for the treatment of systemic iron overload
,
Curr. Med. Chem.
,
2012
,
19
,
2816
–
2827
.
T. P.
Chang
and C.
Rangan
Iron poisoning: a literature-based review of epidemiology, diagnosis, and management
,
Pediatr. Emerg. Care
,
2011
,
27
,
978
–
985
.
A. J.
Matthews
, G. M.
Vercellotti
, H. J.
Menchaca
, P. H.
Bloch
, V. N.
Michalek
, P. H.
Marker
, J.
Murar
and H.
Buchwald
Iron and atherosclerosis: inhibition by the iron chelator deferiprone (L1)
,
J. Surg. Res.
,
1997
,
73
,
35
–
40
.
K. M.
Mitchell
, A. L.
Dotson
, K. M.
Cool
, A.
Chakrabarty
, S. H.
Benedict
and S. M.
LeVine
Deferiprone, an orally deliverable iron chelator, ameliorates experimental autoimmune encephalomyelitis
,
Mult. Scler.
,
2007
,
13
,
1118
–
1126
.
R.
Galanello
Deferiprone in the treatment of transfusion-dependent thalassemia: a review and perspective
,
Ther. Clin. Risk Manage.
,
2007
,
3
,
795
–
805
.
W. T.
Lindsey
and B. R.
Olin
Deferasirox for transfusion-related iron overload: a clinical review
,
Clin. Ther.
,
2007
,
29
,
2154
–
2166
.
M. D.
Cappellini
and A.
Taher
Long-term experience with deferasirox (ICL670), a once-daily oral iron chelator, in the treatment of transfusional iron overload
,
Expert Opin. Pharmacother.
,
2008
,
9
,
2391
–
2402
.
C.
McLeod
, N.
Fleeman
, J.
Kirkham
, A.
Bagust
, A.
Boland
, P.
Chu
, R.
Dickson
, Y.
Dundar
, J.
Greenhalgh
, B.
Modell
, A.
Olujohungbe
, P.
Telfer
and T.
Walley
Deferasirox for the treatment of iron overload associated with regular blood transfusions (transfusional haemosiderosis) in patients suffering with chronic anaemia: a systematic review and economic evaluation
,
Health Technol. Assess.
,
2009
,
13
, iii–iv, ix–xi, 1–121.
M. D.
Cappellini
, J.
Porter
, A.
El-Beshlawy
, C. K.
Li
, J. F.
Seymour
, M.
Elalfy
, N.
Gattermann
, S.
Giraudier
, J. W.
Lee
, L. L.
Chan
, K. H.
Lin
, C.
Rose
, A.
Taher
, S. L.
Thein
, V.
Viprakasit
, D.
Habr
, G.
Domokos
, B.
Roubert
and A.
Kattamis
Tailoring iron chelation by iron intake and serum ferritin: the prospective EPIC study of deferasirox in 1744 patients with transfusion-dependent anemias
,
Haematologica
,
2010
,
95
,
557
–
566
.
J. A.
Joseph
, N. A.
Denisova
, D.
Bielinski
, D. R.
Fisher
and B.
Shukitt-Hale
Oxidative stress protection and vulnerability in aging: putative nutritional implications for intervention
,
Mech. Ageing Dev.
,
2000
,
116
,
141
–
153
.
K. E.
Heim
, A. R.
Tagliaferro
and D. J.
Bobilya
Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships
,
J. Nutr. Biochem.
,
2002
,
13
,
572
–
584
.
S. R.
McAnulty
, L. S.
McAnulty
, D. C.
Nieman
, C. L.
Dumke
, J. D.
Morrow
, A. C.
Utter
, D. A.
Henson
, W. R.
Proulx
and G. L.
George
Consumption of blueberry polyphenols reduces exercise-induced oxidative stress compared to vitamin C
,
Nutr. Res.
,
2004
,
24
,
209
–
221
.
P.
Velayutham
, A.
Babu
and D. M.
Liu
Green tea catechins and cardiovascular health: an update
,
Curr. Med. Chem.
,
2008
,
15
,
1840
–
1850
.
M.
Akhlaghi
and B.
Bandy
Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury
,
J. Mol. Cell. Cardiol.
,
2009
,
46
,
309
–
317
.
N. R.
Perron
and J. L.
Brumaghim
A review of the antioxidant mechanisms of polyphenol compounds related to iron binding
,
Cell Biochem. Biophys.
,
2009
,
53
,
75
–
100
.
N. R.
Perron
, H. C.
Wang
, S. N.
Deguire
, M.
Jenkins
, M.
Lawson
and J. L.
Brumaghim
Kinetics of iron oxidation upon polyphenol binding
,
Dalton Trans.
,
2010
,
39
,
9982
–
9987
.
N. R.
Perron
, C. R.
Garcia
, J. R.
Pinzon
, M. N.
Chaur
and J. L.
Brumaghim
Antioxidant and prooxidant effects of polyphenol compounds on copper-mediated DNA damage
,
J. Inorg. Biochem.
,
2011
,
105
,
745
–
753
.
R. A.
Jacob
, H. H.
Sandstead
, L. M.
Klevay
and L. K.
Johnson
Utility of serum ferritin as a measure of iron deficiency in normal males undergoing repetitive phlebotomy
,
Blood
,
1980
,
56
,
786
–
791
.
C. A.
Finch
, V.
Bellotti
, S.
Stray
, D. A.
Lipschitz
, J. D.
Cook
, M. J.
Pippard
and H. A.
Huebers
Plasma ferritin determination as a diagnostic tool
,
West. J. Med.
,
1986
,
145
,
657
–
663
.
J. D.
Cook
, C. H.
Flowers
and B. S.
Skikne
The quantitative assessment of body iron
,
Blood
,
2003
,
101
,
3359
–
3364
.
A.
Kolnagou
, D.
Yazman
, C.
Economides
, E.
Eracleous
and G. J.
Kontoghiorghes
Uses and limitations of serum ferritin, magnetic resonance imaging T2 and T2* in the diagnosis of iron overload and in the ferrikinetics of normalization of the iron stores in thalassemia using the International Committee on Chelation deferiprone/deferoxamine combination protocol
,
Hemoglobin
,
2009
,
33
,
312
–
322
.
B. D.
Maliken
, W. F.
Avrin
, J. E.
Nelson
, J.
Mooney
, S.
Kumar
and K. V.
Kowdley
Room-temperature susceptometry predicts biopsy-determined hepatic iron in patients with elevated serum ferritin
,
Ann. Hepatol.
,
2012
,
11
,
77
–
84
.
M.
Worwood
, S. J.
Cragg
, M.
Wagstaff
and A.
Jacobs
Binding of human serum ferritin to concanavalin A
,
Clin. Sci.
,
1979
,
56
,
83
–
87
.
N. C.
Andrews
Forging a field: the golden age of iron biology
,
Blood
,
2008
,
112
,
219
–
230
.
A. E.
Hamburger
, A. P.
West
, Z. A.
Hamburger
, P.
Hamburger
and P. J.
Bjorkman
Crystal structure of a secreted insect ferritin reveals a symmetrical arrangement of heavy and light chains
,
J. Mol. Biol.
,
2005
,
349
,
558
–
569
.
S.
Ghosh
, S.
Hevi
and S. L.
Chuck
Regulated secretion of glycosylated human ferritin from hepatocytes
,
Blood
,
2004
,
103
,
2369
–
2376
.
T. N.
Tran
, S. K.
Eubanks
, K. J.
Schaffer
, C. Y. J.
Zhou
and M. C.
Linder
Secretion of ferritin by rat hepatoma cells and its regulation by inflammatory cytokines and iron
,
Blood
,
1997
,
90
,
4979
–
4986
.
J. Y.
Li
, N.
Paragas
, R. M.
Ned
, A.
Qiu
, M.
Viltard
, T.
Leete
, I. R.
Drexler
, X.
Chen
, S.
Sanna-Cherchi
, F.
Mohammed
, D.
Williams
, C. S.
Lin
, K. M.
Schmidt-Ott
, N. C.
Andrews
and J.
Barasch
Scara5 is a ferritin receptor mediating non-transferrin iron delivery
,
Dev. Cell
,
2009
,
16
,
35
–
46
.
L.
Li
, C. J.
Fang
, J. C.
Ryan
, E. C.
Niemi
, J. A.
Lebrón
, P. J.
Björkman
, H.
Arase
, F. M.
Torti
, S. V.
Torti
, M. C.
Nakamura
and W. E.
Seaman
Binding and uptake of H-ferritin are mediated by human transferrin receptor-1
,
Proc. Natl. Acad. Sci. U. S. A.
,
2010
,
107
,
3505
–
3510
.
J.
Han
, W. E.
Seaman
, X. M.
Di
, W.
Wang
, M.
Willingham
, F. M.
Torti
and S. V.
Torti
Iron Uptake Mediated by Binding of H-Ferritin to the TIM-2 Receptor in Mouse Cells
,
PLoS One
,
2011
,
6
,.
J. C.
Sibille
, H.
Kondo
and P.
Aisen
Interactions between Isolated Hepatocytes and Kupffer Cells in Iron Metabolism – a Possible Role for Ferritin as an Iron Carrier Protein
,
Hepatology
,
1988
,
8
,
296
–
301
.
L. A.
Cohen
, L.
Gutierrez
, A.
Weiss
, Y.
Leichtmann-Bardoogo
, D. L.
Zhang
, D. R.
Crooks
, R.
Sougrat
, A.
Morgenstern
, B.
Galy
, M. W.
Hentze
, F. J.
Lazaro
, T. A.
Rouault
and E. G.
Meyron-Holtz
Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway
,
Blood
,
2010
,
116
,
1574
–
1584
.
R.
Wilkinson
and K.
Pickett
The spirit level: why equality is better for everyone
,
Penguin Books
,
London
,
2009
.
R. W. G.
Chapman
, A.
Gorman
, M.
Laulicht
, M. A.
Hussain
, S.
Sherlock
and A. V.
Hoffbrand
Binding of Serum Ferritin to Concanavalin-a in Patients with Iron Overload and with Chronic Liver-Disease
,
J. Clin. Pathol.
,
1982
,
35
,
481
–
486
.
T. V.
Adamkiewicz
, M. R.
Abboud
, C.
Paley
, N.
Olivieri
, M.
Kirby-Allen
, E.
Vichinsky
, J. F.
Casella
, O. A.
Alvarez
, J. C.
Barredo
, M. T.
Lee
, R. V.
Iyer
, A.
Kutlar
, K. M.
McKie
, V.
McKie
, N.
Odo
, B.
Gee
, J. L.
Kwiatkowski
, G. M.
Woods
, T.
Coates
, W.
Wang
and R. J.
Adams
Serum ferritin level changes in children with sickle cell disease on chronic blood transfusion are nonlinear and are associated with iron load and liver injury
,
Blood
,
2009
,
114
,
4632
–
4638
.
T.
Takikawa
, H.
Hayashi
, N.
Nishimura
, M.
Yano
, T.
Isomura
and N.
Sakamoto
Correlation between serum levels of alanine aminotransferase and ferritin in male blood donors with antibody to hepatitis C virus
,
J. Gastroenterol.
,
1994
,
29
,
593
–
597
.
C.
Caramelo
, M.
Albalate
, T.
Bermejillo
, S.
Navas
, A.
Ortiz
, P.
de Sequera
, S.
Casado
and V.
Carreño
Relationships between plasma ferritin and aminotransferase profile in haemodialysis patients with hepatitis C virus
,
Nephrol., Dial., Transplant.
,
1996
,
11
,
1792
–
1796
.
B.
Dubern
, J. P.
Girardet
and P.
Tounian
Insulin resistance and ferritin as major determinants of abnormal serum aminotransferase in severely obese children
,
Int. J. Pediatr. Obes.
,
2006
,
1
,
77
–
82
.
T.
Nakagawa
, Y.
Muramoto
, M.
Hori
, S.
Mihara
, T.
Marubayashi
and K.
Nakagawa
A preliminary investigation of the association between haptoglobin polymorphism, serum ferritin concentration and fatty liver disease
,
Clin. Chim. Acta
,
2008
,
398
,
34
–
38
.
M.
Iwasa
, N.
Hara
, K.
Iwata
, M.
Ishidome
, R.
Sugimoto
, H.
Tanaka
, N.
Fujita
, Y.
Kobayashi
and Y.
Takei
Restriction of calorie and iron intake results in reduction of visceral fat and serum alanine aminotransferase and ferritin levels in patients with chronic liver disease
,
Hepatol. Res.
,
2010
,
40
,
1188
–
1194
.
E.
Ozawa
, S.
Abiru
, S.
Nagaoka
, K.
Yano
, A.
Komori
, K.
Migita
, H.
Yatsuhashi
, N.
Taura
, T.
Ichikawa
, H.
Ishibashi
and K.
Nakao
Ferritin/alanine aminotransferase ratio as a possible marker for predicting the prognosis of acute liver injury
,
J. Gastroenterol. Hepatol.
,
2011
,
26
,
1326
–
1332
.
P. C.
Adams
and J. C.
Barton
A diagnostic approach to hyperferritinemia with a non-elevated transferrin saturation
,
J. Hepatol.
,
2011
,
55
,
453
–
458
.
S.
Uysal
, F.
Armutcu
, T.
Aydogan
, K.
Akin
, M.
Ikizek
and M. R.
Yigitoglu
Some inflammatory cytokine levels, iron metabolism and oxidan stress markers in subjects with nonalcoholic steatohepatitis
,
Clin. Biochem.
,
2011
,
44
,
1375
–
1379
.
A.
Oguz
, A. E.
Atay
, A.
Tas
, G.
Seven
and M.
Koruk
Predictive role of acute phase reactants in the response to therapy in patients with chronic hepatitis C virus infection
,
Gut Liver
,
2013
,
7
,
82
–
88
.
J. C.
Waterlow
, P. J.
Garlick
and D. J.
Millward
Protein Turnover in Mammalian Tissues and in the Whole Body
,
Elsevier/North-Holland
,
Amsterdam
,
1978
.
H. A.
Johnson
, R. L.
Baldwin
, J.
France
and C. C.
Calvert
A model of whole-body protein turnover based on leucine kinetics in rodents
,
J. Nutr.
,
1999
,
129
,
728
–
739
.
J.
Pellettieri
and A.
Sanchez Alvarado
Cell turnover and adult tissue homeostasis: from humans to planarians
,
Annu. Rev. Genet.
,
2007
,
41
,
83
–
105
.
A. J.
Claydon
and R. J.
Beynon
Proteome dynamics: revisiting turnover with a global perspective
,
Mol. Cell. Proteomics
,
2012
,
11
,
1551
–
1565
.
G.
Balla
, H. S.
Jacob
, J.
Balla
, M.
Rosenberg
, K.
Nath
, F.
Apple
, J. W.
Eaton
and G. M.
Vercellotti
Ferritin: a cytoprotective antioxidant strategem of endothelium
,
J. Biol. Chem.
,
1992
,
267
,
18148
–
18153
.
K.
Orino
, L.
Lehman
, Y.
Tsuji
, H.
Ayaki
, S. V.
Torti
and F. M.
Torti
Ferritin and the response to oxidative stress
,
Biochem. J.
,
2001
,
357
,
241
–
247
.
Y.
Tsuji
, H.
Ayaki
, S. P.
Whitman
, C. S.
Morrow
, S. V.
Torti
and F. M.
Torti
Coordinate transcriptional and translational regulation of ferritin in response to oxidative stress
,
Mol. Cell. Biol.
,
2000
,
20
,
5818
–
5827
.
K.
Hailemariam
, K.
Iwasaki
, B. W.
Huang
, K.
Sakamoto
and Y.
Tsuji
Transcriptional regulation of ferritin and antioxidant genes by HIPK2 under genotoxic stress
,
J. Cell Sci.
,
2010
,
123
,
3863
–
3871
.
B. W.
Huang
, P. D.
Ray
, K.
Iwasaki
and Y.
Tsuji
Transcriptional regulation of the human ferritin gene by coordinated regulation of Nrf2 and protein arginine methyltransferases PRMT1 and PRMT4
,
FASEB J.
,
2013
,
27
,
3763
–
3774
.
M.
Nakano
, Y.
Kawanishi
, S.
Kamohara
, Y.
Uchida
, M.
Shiota
, Y.
Inatomi
, T.
Komori
, K.
Miyazawa
, K.
Gondo
and I.
Yamasawa
Oxidative DNA damage (8-hydroxydeoxyguanosine) and body iron status: a study on 2507 healthy people
,
Free Radical Biol. Med.
,
2003
,
35
,
826
–
832
.
Y.
Maruyama
, M.
Nakayama
, K.
Yoshimura
, H.
Nakano
, H.
Yamamoto
, K.
Yokoyama
and B.
Lindholm
Effect of repeated intravenous iron administration in haemodialysis patients on serum 8-hydroxy-2′-deoxyguanosine levels
,
Nephrol., Dial., Transplant.
,
2007
,
22
,
1407
–
1412
.
T. P.
Tuomainen
, S.
Loft
, K.
Nyyssonen
, K.
Punnonen
, J. T.
Salonen
and H. E.
Poulsen
Body iron is a contributor to oxidative damage of DNA
,
Free Radical Res.
,
2007
,
41
,
324
–
328
.
N.
Fujita
, R.
Sugimoto
, N.
Ma
, H.
Tanaka
, M.
Iwasa
, Y.
Kobayashi
, S.
Kawanishi
, S.
Watanabe
, M.
Kaito
and Y.
Takei
Comparison of hepatic oxidative DNA damage in patients with chronic hepatitis B and C
,
J. Viral Hepat.
,
2008
,
15
,
498
–
507
.
K. L.
Kuo
, S. C.
Hung
, Y. H.
Wei
and D. C.
Tarng
Intravenous iron exacerbates oxidative DNA damage in peripheral blood lymphocytes in chronic hemodialysis patients
,
J. Am. Soc. Nephrol.
,
2008
,
19
,
1817
–
1826
.
K.
Broedbaek
, H. E.
Poulsen
, A.
Weimann
, G. D.
Kom
, E.
Schwedhelm
, P.
Nielsen
and R. H.
Boger
Urinary excretion of biomarkers of oxidatively damaged DNA and RNA in hereditary hemochromatosis
,
Free Radical Biol. Med.
,
2009
,
47
,
1230
–
1233
.
A.
Hori
, T.
Mizoue
, H.
Kasai
, K.
Kawai
, Y.
Matsushita
, A.
Nanri
, M.
Sato
and M.
Ohta
Body iron store as a predictor of oxidative DNA damage in healthy men and women
,
Cancer Sci.
,
2010
,
101
,
517
–
522
.
K.
Broedbaek
, V.
Siersma
, J. T.
Andersen
, M.
Petersen
, S.
Afzal
, B.
Hjelvang
, A.
Weimann
, R. D.
Semba
, L.
Ferrucci
and H. E.
Poulsen
The association between low-grade inflammation, iron status and nucleic acid oxidation in the elderly
,
Free Radical Res.
,
2011
,
45
,
409
–
416
.
T. P.
Tuomainen
, U.
Diczfalusy
, J.
Kaikkonen
, K.
Nyyssonen
and J. T.
Salonen
Serum ferritin concentration is associated with plasma levels of cholesterol oxidation products in man
,
Free Radical Biol. Med.
,
2003
,
35
,
922
–
928
.
S.
Yeoh-Ellerton
and M. C.
Stacey
Iron and 8-isoprostane levels in acute and chronic wounds
,
J. Invest. Dermatol.
,
2003
,
121
,
918
–
925
.
C.
Matayatsuk
, C. Y.
Lee
, R. W.
Kalpravidh
, P.
Sirankapracha
, P.
Wilairat
, S.
Fucharoen
and B.
Halliwell
Elevated F2-isoprostanes in thalassemic patients
,
Free Radical Biol. Med.
,
2007
,
43
,
1649
–
1655
.
A. P.
Jewell
and R. E.
Marcus
Platelet Derived Malonyldialdehyde Production in Patients with Thalassemia Major
,
J. Clin. Pathol.
,
1984
,
37
,
1043
–
1045
.
F.
Farinati
, R.
Cardin
, N.
Demaria
, G.
Dellalibera
, C.
Marafin
, E.
Lecis
, P.
Burra
, A.
Floreani
, A.
Cecchetto
and R.
Naccarato
Iron storage, lipid peroxidation and glutathione turnover in chronic anti-HCV positive hepatitis
,
J. Hepatol.
,
1995
,
22
,
449
–
456
.
J.
Mimić-Oka
, A.
Savić-Radojević
, M.
Plješa-Ercegovac
, M.
Opačić
, T.
Simić
, N.
Dimković
and D. V.
Simić
Evaluation of oxidative stress after repeated intravenous iron supplementation
,
Renal Failure
,
2005
,
27
,
345
–
351
.
A. S.
De Vriese
, D.
Borrey
, E.
Mahieu
, I.
Claeys
, L.
Stevens
, A.
Vanhaeverbeke
, M.
Roelens
and M. R.
Langlois
Oral vitamin C administration increases lipid peroxidation in hemodialysis patients
,
Nephron Clin. Pract.
,
2008
,
108
,
c28
–
c34
.
S. M.
King
, C. M.
Donangelo
, M. D.
Knutson
, P. B.
Walter
, B. N.
Ames
, F. E.
Viteri
and J. C.
King
Daily supplementation with iron increases lipid peroxidation in young women with low iron stores
,
Exp. Biol. Med.
,
2008
,
233
,
701
–
707
.
J. F. R.
Mendes
, S. F.
Arruda
, E. M.
de Almeida Siqueira
, M. K.
Ito
and E. F.
da Silva
Iron status and oxidative stress biomarkers in adults: a preliminary study
,
Nutrition
,
2009
,
25
,
379
–
384
.
A. I.
Alsultan
, M. A.
Seif
, T. T.
Amin
, M.
Naboli
and A. M.
Alsuliman
Relationship between oxidative stress, ferritin and insulin resistance in sickle cell disease
,
Eur. Rev. Med. Pharmacol. Sci.
,
2010
,
14
,
527
–
538
.
T. E.
de Jesus dos Santos
, G. F.
de Sousa
, M. C.
Barbosa
and R. P.
Goncalves
The role of iron overload on oxidative stress in sickle cell anemia
,
Biomarkers Med.
,
2012
,
6
,
813
–
819
.
M. S.
Elalfy
, A. A.
Adly
, A. A.
Attia
, F. A.
Ibrahim
, A. S.
Mohammed
and A. M.
Sayed
Effect of antioxidant therapy on hepatic fibrosis and liver iron concentrations in beta-thalassemia major patients
,
Hemoglobin
,
2013
,
37
,
257
–
276
.
E. A.
Decker
and B.
Welch
Role of ferritin as a lipid oxidation catalyst in muscle food
,
J. Agric. Food Chem.
,
1990
,
38
,
674
–
677
.
J. I.
Gray
, E. A.
Gomaa
and D. J.
Buckley
Oxidative quality and shelf life of meats
,
Meat Sci.
,
1996
,
43
,
S111
–
S123
.
D. U.
Ahn
and S. M.
Kim
Prooxidant effects of ferrous iron, hemoglobin, and ferritin in oil emulsion and cooked-meat homogenates are different from those in raw-meat homogenates
,
Poult. Sci.
,
1998
,
77
,
348
–
355
.
D. U.
Ahn
, F. H.
Wolfe
and J. S.
Sim
The Effect of Metal Chelators, Hydroxyl Radical Scavengers, and Enzyme-Systems on the Lipid-Peroxidation of Raw Turkey Meat
,
Poult. Sci.
,
1993
,
72
,
1972
–
1980
.
T.
Wang
, R.
Jónsdóttir
and G.
Ólafsdóttir
Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds
,
Food Chem.
,
2009
,
116
,
240
–
248
.
F.
Lang
, E.
Lang
and M.
Foller
Physiology and pathophysiology of eryptosis
,
Transfus. Med. Hemother.
,
2012
,
39
,
308
–
314
.
M. M.
Aleman
, C.
Gardiner
, P.
Harrison
and A. S.
Wolberg
Differential contributions of monocyte- and platelet-derived microparticles towards thrombin generation and fibrin formation and stability
,
J. Thromb. Haemostasis
,
2011
,
9
,
2251
–
2261
.
C. T.
Nielsen
, O.
Østergaard
, C.
Johnsen
, S.
Jacobsen
and N. H. H.
Heegaard
Distinct features of circulating microparticles and their relationship to clinical manifestations in Systemic Lupus Erythematosus
,
Arthritis Rheum.
,
2011
,
63
,
3067
–
3077
.
C. T.
Nielsen
Circulating microparticles in systemic Lupus Erythematosus
,
Dan. Med. J.
,
2012
,
59
,
B4548
.
C. T.
Nielsen
, O.
Østergaard
, L.
Stener
, L. V.
Iversen
, L.
Truedsson
, B.
Gullstrand
, S.
Jacobsen
and N. H. H.
Heegaard
Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation
,
Arthritis Rheum.
,
2012
,
64
,
1227
–
1236
.
L. V.
Iversen
, O.
Østergaard
, C. T.
Nielsen
, S.
Jacobsen
and N. H. H.
Heegaard
A heparin-based method for flow cytometric analysis of microparticles directly from platelet-poor plasma in calcium containing buffer
,
J. Immunol. Methods
,
2013
,
388
,
49
–
59
.
L.
Iversen
, O.
Østergaard
, S.
Ullman
, C. T.
Nielsen
, P.
Halberg
, T.
Karlsmark
, N. H. H.
Heegaard
and S.
Jacobsen
Circulating microparticles and plasma levels of soluble E- and P-selectins in patients with systemic sclerosis
,
Scand. J. Rheumatol.
,
2013
,
42
,
473
–
482
.
O.
Østergaard
, C. T.
Nielsen
, L. V.
Iversen
, J. T.
Tanassi
, S.
Knudsen
, S.
Jacobsen
and N. H. H.
Heegaard
Unique protein signature of circulating microparticles in systemic lupus erythematosus
,
Arthritis Rheum.
,
2013
,
65
,
2680
–
2690
.
B.
Parker
, A.
Al-Husain
, P.
Pemberton
, A. P.
Yates
, P.
Ho
, R.
Gorodkin
, L. S.
Teh
, M. Y.
Alexander
and I. N.
Bruce
Suppression of inflammation reduces endothelial microparticles in active systemic lupus erythematosus
,
Ann. Rheum. Dis.
,
2013
, DOI:
.
J.
Pereira
, G.
Alfaro
, M.
Goycoolea
, T.
Quiroga
, M.
Ocqueteau
, L.
Massardo
, C.
Pérez
, C.
Sáez
, O.
Panes
, V.
Matus
and D.
Mezzano
Circulating platelet-derived microparticles in systemic lupus erythematosus. Association with increased thrombin generation and procoagulant state
,
Thromb. Haemostasis
,
2006
,
95
,
94
–
99
.
A. A. G.
Tantawy
, A. A. M.
Adly
, E. A. R.
Ismail
and N. M.
Habeeb
Flow cytometric assessment of circulating platelet and erythrocytes microparticles in young thalassemia major patients: relation to pulmonary hypertension and aortic wall stiffness
,
Eur. J. Haematol.
,
2013
,
90
,
508
–
518
.
A. A. G.
Tantawy
, A. A. M.
Adly
, E. A. R.
Ismail
, N. M.
Habeeb
and A.
Farouk
Circulating platelet and erythrocyte microparticles in young children and adolescents with sickle cell disease: Relation to cardiovascular complications
,
Platelets
,
2013
,
24
,
605
–
614
.
I.
Porto
, G. L.
De Maria
, L.
Di Vito
, C.
Camaioni
, M.
Gustapane
and L. M.
Biasucci
Microparticles in health and disease: small mediators, large role?
,
Curr. Vasc. Pharmacol.
,
2011
,
9
,
490
–
500
.
P. E.
Spronk
, H.
Bootsma
and C. G. M.
Kallenberg
Anti-DNA antibodies as early predictor for disease exacerbations in SLE – Guideline for treatment?
,
Clin. Rev. Allergy Immunol.
,
1998
,
16
,
211
–
218
.
N.
Agmon-Levin
, C.
Rosário
, B. S.
Katz
, G.
Zandman-Goddard
, P.
Meroni
, R.
Cervera
, L.
Stojanovich
, M.
Blank
, S.
Pierangeli
, S.
Praprotnik
, E.
Meis
, L. P.
Seguro
, A.
Ruffatti
, V.
Pengo
, A.
Tincani
, A.
Doria
and Y.
Shoenfeld
Ferritin in the antiphospholipid syndrome and its catastrophic variant (cAPS)
,
Lupus
,
2013
,
22
,
1327
–
1335
.
C.
Rosário
, G.
Zandman-Goddard
, E. G.
Meyron-Holtz
, D. P.
D’Cruz
and Y.
Shoenfeld
The Hyperferritinemic Syndrome: macrophage activation syndrome, Still’s disease, septic shock and catastrophic antiphospholipid syndrome
,
BMC Med.
,
2013
,
11
,
185
.
D. B.
Kell
and R.
Goodacre
Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery
,
Drug Discovery Today
,
2014
,
19
,
171
–
182
.

Douglas Kell is Research Professor in Bioanalytical Science at the University of Manchester, UK. His interests lie in systems biology, iron metabolism and dysregulation, cellular drug transporters, synthetic biology, e-science, chemometrics and cheminformatics. He was Director of the Manchester Centre for Integrative Systems Biology prior to a 5-year secondment (2008–2013) as Chief Executive of the UK Biotechnology and Biological Sciences Research Council. He is a Fellow of the Learned Society of Wales and of the American Association for the Advancement of Science, and was awarded a CBE for services to Science and Research in the New Year 2014 Honours list.

Resia Pretorius is a Research Professor in the Department of Physiology, Faculty of Health Sciences at the University of Pretoria, South Africa. Her interests lie in the ultrastructure and regulation of the human coagulation system, with particular focus on erythrocytes and fibrin networks, the role of iron metabolism and changes to the coagulation system due to inflammation. She is also Director of the Applied Morphology Research Centre of the University of Pretoria. She was chosen as the winner in 2011 of the African Union Kwame Nkrumah Scientific Awards Program: Women Scientist Regional Awards in the category Basic Science and Technology.
© The Royal Society of Chemistry 2014
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (
http://creativecommons.org/licenses/by/3.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
[email protected]