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A B S T R A C T 

We develop a new machine learning algorithm, VIA MACHINAE , to identify cold stellar streams in data from the Gaia telescope. 
VIA MACHINAE is based on ANODE, a general method that uses conditional density estimation and sideband interpolation to 

detect local o v erdensities in the data in a model agnostic way. By applying ANODE to the positions, proper motions, and 

photometry of stars observed by Gaia , VIA MACHINAE obtains a collection of those stars deemed most likely to belong to a 
stellar stream. We further apply an automated line-finding method based on the Hough transform to search for line-like features 
in patches of the sky. In this paper, we describe the VIA MACHINAE algorithm in detail and demonstrate our approach on the 
prominent stream GD-1. Though some parts of the algorithm are tuned to increase sensitivity to cold streams, the VIA MACHINAE 

technique itself does not rely on astrophysical assumptions, such as the potential of the Milky Way or stellar isochrones. This 
flexibility suggests that it may have further applications in identifying other anomalous structures within the Gaia data set, for 
example debris flow and globular clusters. 

Key words: stars: kinematics and dynamics – galaxy: stellar content – galaxy: structure. 
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 I N T RO D U C T I O N  

tellar streams, the tidally stripped remnants of dwarf galaxies and
lobular clusters, provide a unique window into the properties of the
ilky Way and its formation history. Streams trace the historical

ecord of the mergers that built the Milky Way (Johnston 1998 ;
elmi & White 1999 ; Belokurov et al. 2006 ; Belokurov et al.
018 ; Helmi et al. 2018 ; Malhan et al. 2021a ). Their orbits allow
easurements of the underlying gravitational potential of the Milky
ay (Johnston et al. 1999 ; Ibata et al. 2001 ; Koposov, Rix & Hogg

010 ; Newberg 2010 ; Varghese, Ibata & Lewis 2011 ; Sanders &
inney 2013 ; K ̈upper et al. 2015 ; Malhan & Ibata 2019 ; Reino
t al. 2021 ). The presence of gaps and density perturbations within
treams can inform the population of dark matter substructure, and
ubsequently the properties of dark matter (Carlberg, Grillmair &
etherington 2012 ; Sanders, Bovy & Erkal 2016 ; Erkal, Koposov &
elokurov 2017 ; Banik & Bovy 2019 ; Bonaca et al. 2019 ; Bonaca
t al. 2020 ). They can also be used to empirically track the underlying
istribution of dark matter (Purcell, Zentner & Wang 2012 ; Necib
t al. 2019b ). 

Starting with the Sloan Digital Sky Survey (SDSS) (York et al.
000 ), numerous surv e ys hav e increased the number of catalogued
tellar streams (Odenkirchen et al. 2001 ; Newberg et al. 2002 ; Be-
okurov et al. 2006 ; Grillmair 2006 ; Shipp et al. 2018 ). Most recently,
he Gaia Space Telescope (Gaia Collaboration 2018 ; Lindegren et al.
 E-mail: dshih@physics.rutgers.edu 
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018 ) has opened a new frontier of Galactic kinematics and thus new
pportunities for the disco v ery and study of stellar streams. 
Numerous successful stream-finding techniques have been applied

o the Gaia data (Malhan & Ibata 2018 ; Malhan et al. 2018a ; Yuan
t al. 2018 ; Meingast & Alv es 2019 ; Meingast, Alv es & F ̈urnkranz
019 ; Borsato, Martell & Simpson 2020 ; Ibata et al. 2021 ). In some
ases cross-referencing Gaia with other spectroscopic catalogues can
rovide additional kinematic or spectroscopic information, although
tatistically limiting the sample size (see e.g. STARGO (Yuan et al.
018 ), which identifies streams in the cross match of Gaia DR2
ith LAMOST DR5 (Luo et al. 2015 )). Of the methods relying
 xclusiv ely on Gaia , the STREAMFINDER algorithm (Malhan & Ibata
018 ; Malhan et al. 2018a ) leverages the fact that stars within a stellar
tream would have similar orbits through the Galaxy. By searching
or stars occupying the same ‘hypertubes’ through six-dimensional
osition/velocity space, STREAMFINDER has discovered a number of
ew stellar streams (Malhan, Ibata & Martin 2018b ; Ibata, Malhan &
artin 2019 ; Malhan et al. 2019 ; Ibata et al. 2021 ). In order to

onstruct these orbits, STREAMFINDER must assume a form for the
alactic potential, and search for stars on an isochrone as part of a
inematically cold stream. 
In this paper, we present VIA MACHINAE , a new algorithm for

utomated stellar stream searches with Gaia data (Gaia Collaboration
018 ; Lindegren et al. 2018 ). Based on unsupervised machine
earning techniques, we identify streams as local o v erdensities in
he angular position, proper motion, and photometric space of stars
n Gaia DR2. Importantly, we do not assume the stars in question
ie on a particular orbit or stellar isochrone . In fact, the initial (and

ost computationally intensive) machine learning training steps of
© 2021 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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IA MACHINAE are designed to find all anomalous structures first, in 
n agnostic manner. Only then do we implement selections based 
n prior knowledge of the properties of known stream candidates 
particularly that the stars are distributed in an approximately linear 
tructure o v er small angles on the sky). Such choices can be modified
o target structures with other distributions in stellar photometry and 
roper motion, for example globular clusters or debris flow (Kuhlen, 
isanti & Spergel 2012 ; Lisanti & Spergel 2012 ). 1 This flexibility
ay allow our technique to be sensitive to a wider variety of stellar

treams than previous methods, and can be generalized to other 
nomalous features within the Gaia data set (or other astrophysical 
urv e ys). 

VIA MACHINAE has two main components: an anomaly finding 
lgorithm, and a line finding algorithm. The first component is the 
NODE (ANOmaly detection with Density Estimation) algorithm 

Nachman & Shih ( 2020 ) hereafter referred to as NS20 ). Originally
eveloped to search for new physics at the Large Hadron Collider, 
NODE is a general machine learning algorithm for finding localized 
 v erdensities in an y data set. To accomplish this, ANODE lev erages
ecent advances in density estimation using neural networks, specif- 
cally the idea of normalizing flows (for a recent re vie w and original
eferences, see e.g. Papamakarios et al. 2021 ). In this paper, following 
he original ANODE work ( NS20 ), we use masked autore gressiv e
ows (MAF) (P apamakarios, P avlakou & Murray 2018 ) to estimate

he probability densities of stars in the Gaia data set. 
The ANODE algorithm begins by slicing up the data set into search

egions and their complements, the control regions. As kinematically 
old streams are expected to be fully localized in both proper 
otions, we choose to split the data set into search regions consisting

f slices in one of the proper motion coordinates. Then we use
he MAF to estimate the probability distribution in position/proper 

otion/colour/magnitude space of the stars in each search region in 
wo different ways: (1) directly with the stars in the search region;
nd (2) indirectly with the stars in the control region, followed by
nterpolation into the search region. The interpolation step is a ‘free’
yproduct of the density estimation, because we actually learn a 
onditional probability density conditioned on the proper motion 
sed to define the search region. If the search region contains a stream
hile the control region does not, then (2) can be thought of as a
ata-driven estimate of the probability density of the ‘background’ 
i.e. non-stream) halo stars in the search region. Taking the ratio 
f these two density estimates forms a discriminant R , which is
ensitive to anomalous overdensities (or underdensities) in the search 
egion. By selecting the stars with the largest likelihood ratios, 
e can preferentially enhance the presence of stream stars versus 
ackground stars in any given search region. 
After performing such a selection in each search region, we are 

eft with a much reduced set of stars spread across the sky. Only
ome of these stars will correspond to stellar streams. The rest
ay be other interesting structures (e.g. globular clusters or debris 
ow) or spurious false positive fluctuations of the ANODE algorithm. 
his leads to the second major component of the VIA MACHINAE 

lgorithm: an automated method to search for linear features in a 
ollection of stars in an angular patch of the sky. Simply fitting the
tars to a line using (for example) least-squares regression yields 
xtremely unsatisfactory results, owing to the presence of noise and 
 Debris flow refers to structure localized in velocity space, but incoherent 
n physical space (Helmi & White 1999 ; Kuhlen et al. 2012 ; Lisanti & 

pergel 2012 ). This is usually the case for older mergers, e.g. the Gaia 
ausage/Enceladus (Necib, Lisanti & Belokurov 2019a ). 

s  

i  

2

i

utliers (i.e. in a collection of stars, only a small fraction might belong
o the stream). Instead, we hav e dev eloped a method based on the
ough transform. This is an age-old machine learning technique that 
as originally developed for finding lines and edges in photographs 

Hough 1959 ; Duda & Hart 1972 ), but which we adapt here to
ccomplish the same purpose in scatter plots. 2 The idea of the
ough transform is to convert the problem of line finding to counting

ntersections of curves in an auxiliary parameter space (the Hough 
pace). In this way, one can also give a (rough) figure-of-merit to the
est-fitting line detection, based on the contrast between regions of 
igh and low curve density in Hough space. 
The major steps and key terms of VIA MACHINAE are summarized

n Fig. 1 . Moving from left to right in this figure: 

(i) We divide the sky into o v erlapping patches of stars, each a
ircular region of radius 15 ◦. 

(ii) These patches are then divided into o v erlapping search regions
ased on one proper motion coordinate. The estimated probability 
atio R for each star in each search region is obtained by ANODE
raining. We then limit ourselves to the inner 10 ◦ of the patch to a v oid
dge effects (among other fiducial cuts). 

(iii) Each search region is then subdivided into regions of interest 
sing the orthogonal proper motion coordinate which was not used 
o define the search region. In order to further purify signal to noise,
 cut on colour is imposed to focus on old, metal-poor stars that
omprise the majority of known streams. 

(iv) The 100 stars with the highest R values in each region of
nterest are mapped to Hough space and the most line-like feature is
ssigned a significance σ L . 

(v) In o v erlapping re gions of interest, we combine coincident
ines and σ L values to obtain a protocluster for the patch, with an
ccompanying total significance σ tot 

L . 
(vi) Protoclusters in neighbouring patches are combined into a 

tream candidate. 

In this paper, we will use the GD-1 stream to illustrate the steps of
he VIA MACHINAE algorithm. GD-1 (Grillmair & Dionatos 2006 ), is
n exceptionally long and dense stellar stream located at ∼10 kpc,
ost likely originating as a globular cluster of mass ∼2 × 10 4 M �

Koposov et al. 2010 ). When first detected using SDSS, GD-1 was
hought to span ∼60 ◦ in the sky. Using the second data release of
aia ( Gaia DR2), it has been extended by as much as 20 ◦ (Price-
helan & Bonaca 2018b ) (hereafter PWB18 ), and was found to

nclude gaps that could be evidence for dark matter substructure 
Price-Whelan & Bonaca 2018b ; Banik et al. 2019 , 2021 ; Bonaca
t al. 2019 ; Malhan, Valluri & Freese 2021b ). Though most stellar
treams are not nearly as long, dense, narrow, or well-defined as GD-
, it nev ertheless pro vides an e xcellent testbed for VIA MACHINAE , as
tellar membership of the stream has been e xtensiv ely studied (see
.g. Price-Whelan & Bonaca 2018b ; Bonaca et al. 2019 , 2020 ), and
ts distinctiveness allows for clear demonstrations of the utility of the
lgorithm. 

This paper is organized as follows: In Section 2, we introduce
he Gaia data and its processing into inputs that will be used for
nomaly detection. We then present the algorithm in Section 3, with
ach step illustrated by its action on a segment of the GD-1 stream. In
ection 4, we apply VIA MACHINAE to the entire length of the GD-1
tream. Finally, in Section 5 we conclude with a summary and a list of
nteresting future directions moti v ated by this work. In a subsequent
 The Hough transform has also been proposed for stellar stream identification 
n (Pearson et al. 2019 ; Pearson et al. 2021 ) in the context of M31. 

MNRAS 509, 5992–6007 (2022) 
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Figure 1. A schematic showing an o v erview of the VIA MACHINAE algorithm. The bolded and boxed terms are defined in Section 3 (with the exception of 
patches, which are described in Section 2). First we divide up the sky into evenly tiled 15 ◦ patches. Within each patch, we further divide up the stars into search 
regions defined by a window in μλ, one of the proper motion coordinates (the remaining data features for each star are denoted � x ). Then we train the ANODE 

algorithm on the search regions and their complements, to learn a data-driven measure of local o v erdensities R( � x ). To turn this measure into a stream finder, we 
further divide up the SRs into regions of interest based on the orthogonal proper motion coordinate μ∗

φ . We apply an automated line-finding algorithm based 
on the Hough transform to the 100 highest- R stars in each ROI. Finally, we combine ROIs adjacent in proper motion that have concordant best-fitting line 
parameters into protoclusters, and cluster these across adjacent patches of the sky into stream candidates. 
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ork (Shih et al., in preparation), we will apply our technique across
he full Gaia DR2 data set, and demonstrate its ability to detect other
nown streams, and present new stream candidates. 

 DATA  A N D  INPUT  VARIABLES  

efore introducing the VIA MACHINAE algorithm, we must first
escribe the data upon which it will be applied, and the pre-
rocessing required. 
Starting with the Gaia DR2 data set, 3 we limit ourselves to distant

tars with measured parallax less than 1 mas (corresponding to stars
eyond 1 kpc). We do not correct for the Gaia DR2 zero-point
arallax of fset; v arying the parallax cut by ±0.05 results in only a

3 per cent change in the number of stars and so is highly unlikely
o affect our algorithm. We tile the sky with 15 ◦ patches using
EALPY (G ́orski et al. 2005 ; Zonca et al. 2019 ) (with nside = 5).
his patch size was selected to have a tractable number of stars

or the machine learning training step of the algorithm, as will
e described in Section 3.2. The patches are also large enough to
apture significant portions of most known streams if they should
ass through them. As stars in the Galactic disc would o v erwhelm
 As this work was being completed, Gaia EDR3 (Gaia Collaboration 2021 ) 
as released. While our results likely would have been improved by using 

his new data set, re-running the ANODE method on Gaia EDR3 pro v ed 
o be too computationally e xpensiv e (the full-sk y scan of Gaia DR2 took 

(10 5 ) NERSC-hours). We plan to apply our method to Gaia EDR3 in a 
uture publication. 

i  

t  

4

a
t

NRAS 509, 5992–6007 (2022) 
he training, we limit the analysis to high Galactic latitudes | b | >
0 ◦. We also exclude all patches that o v erlap with the LMC or SMC.
he final result is 200 patches in total. 
For stars within a patch, our data consists of two position, two

inematic, and two photometric parameters: the angular position
n the sky (e.g. right ascension [ra, α] and declination [dec, δ]),
he corresponding angular proper motions ( μαcos δ and μδ), the

agnitude of the star in the Gaia G -band ( g ), and the difference
n the G BP and G RP Gaia bands ( b − r ). Throughout this work, we
ill not correct for dust or extinction; especially since we confine
urselves to high Galactic latitudes, these corrections are generally
mall ( � 0.1 for b − r ) and do not vary much across a patch. Since we
re only interested in local o v erdensities in each patch and will select
 wide range of colour for our final analysis, dust and extinction
orrections should not significantly affect our results. 

The ( α, δ) coordinates do not have a Euclidean distance metric
cross the sky, and the resulting distortions across the patch, espe-
ially at high latitudes, could ne gativ ely affect our neural density
stimation. 4 Therefore, for each patch (defined by a circle centred
n ( α, δ) = ( α0 , δ0 ) in angular position), we rotate the positions and
roper motions using ASTROPY (Astropy Collaboration 2013 , 2018 )
nto a new set of centred longitude and latitude coordinates ( φ, λ) so
hat ( α0 , δ0 ) → (0 ◦, 0 ◦). The unit vectors for the rotated coordinate
 Density estimation on spheres and other non-Euclidean manifolds is an 
ctive area of research, see e.g. Rezende et al. ( 2020 ). We do not use these 
echniques in this work. 

art/stab3372_f1.eps
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Figure 2. The positions in Galactic � and b coordinates used for the centres 
for the data sets from the Gaia DR2 used in our full-sky analysis. The 
missing grid centres in the Galactic Southern hemisphere are the patches that 
o v erlapped with the Magellanic Clouds. The 21 centres which contain the 
GD-1 stream are shown in red, and the patch used as the w ork ed example in 
Section 3 is denoted with a star. 
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5 The choice of proper motion coordinate can affect the performance of the 
algorithm through the number of background stars in the SR. For example, 
if the stream stars have small values of μλ but large values of μφ , then 
defining the SR in terms of μλ would lead to more background stars for the 
same number of stream stars, and hence a lower S / B , decreasing the stream 

detection probability. In Shih et al. (in preparation) we will also incorporate 
the results of a scan o v er SRs defined using μφ and sho w ho w this can achieve 
complementary results. 
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ystem, ( ̂  φ, ̂  λ), are aligned with those of the previous unit vectors
 ̂  α, ̂  δ). Within each patch, we will calculate angular distances using
 simple Euclidean metric in ( φ, λ). For notational simplicity, we
ill define the new proper motion coordinate μφcos λ as μ∗

φ for the 
emainder of the work (similarly μ∗

α ≡ μα cos δ). 
The patches defined abo v e will be used as input for the ANODE
ethod, as will be described in Section 3, using the features 

 φ, λ, μ∗
φ, μλ, b − r, g). After training ANODE on each patch, we

mpose a set of additional fiducial cuts on the data. As we will
escribe in more detail in Section 3.2, these cuts are driven by the
imitations of the MAF density estimator. Specifically, to a v oid edge
ffects in the neural network output, the post-ANODE fiducial region 
tudied in this paper is the inner 10 ◦ of each patch with a magnitude
ut of g < 20.2. Abo v e this magnitude cut, the completeness drops
apidly (Boubert & Everall 2020 ); this choice also helps reduce 
but does not completely eliminate) streaking in the data and other 
rtefacts due to incomplete co v erage of the dimmest stars in the Gaia
R2 data (Gaia Collaboration 2018 ). 
As described in the Introduction, in this work we focus on 

emonstrating the VIA MACHINAE algorithm using GD-1 as a w ork ed
 xample. Therefore, we limit ourselv es here to patches of the sk y that
re known to contain portions of the GD-1 stream. We find that 21
atches in our all-sky sample include stars which have been identified 
y PWB18 as possible members of the GD-1 stream, for a total of
985 candidate GD-1 stars. Before (after) the ANODE fiducial cuts, 
he patches containing GD-1 have various numbers of stars, ranging 
rom 8.0 × 10 5 (2.7 × 10 5 ) in the patch with the least number of
tars, to 2.1 × 10 6 (7.0 × 10 5 ) stars in the patch with the most number
f stars. Fig. 2 shows the locations of all 200 patch centres we use to
ile the sky as well as the 21 patches containing GD-1 stars. 

We will use the stream membership labels of PWB18 (which 
an be downloaded at Price-Whelan & Bonaca 2018a ) as our point
f comparison throughout this work. These were derived through 
elatively simple means: a visual inspection of the data, combined 
ith polygonal cuts on proper motion, colour and magnitude, and 
 parallel strip cut (the ‘stream track’) in angular position. Thus we
o not take them as ‘absolute truth’ labels – indeed, some level of
ackground contamination within this sample is certainly visible by 
 ye. Nev ertheless, the GD-1 candidate labels of PWB18 still furnish
 very useful and powerful point of comparison. 

In Section 3, we will use one of these 21 patches containing
D-1, centred on ( α0 , δ0 ) = (148.6 ◦, 24.2 ◦), to provide a w ork ed

xample of each stage of VIA MACHINAE . Within this patch’s fiducial
egion, there are 334 376 stars, of which 276 have been identified
s candidate members of GD-1 by PWB18 . The position, proper 
otion, and photometry of these stars is shown in Fig. 3 . In this
atch, the candidate GD-1 stars lie in the range μλ ∈ [ − 14.6,
8.6] mas yr −1 . 

 V I A M AC H I NA E :  T H E  A L G O R I T H M  

.1 ANODE: Defining the search regions 

s described in the Introduction, the first part of VIA MACHINAE is
ased on the ANODE method ( NS20 ). The starting point of ANODE
s the subdivision of the stars within a single patch into search
egions (SRs) which are windows in one feature of the data set. The
omplement of the search region is called the control region (CR).
he feature and the width of the window should be chosen so that, if a
tream is present, there exists (at least) one SR which fully (or nearly
ully) contains the entire stream. As we will explain in the next
ubsection, this is to enable accurate background estimation from 

he CR. Defining the SRs by strips of angular position, for example,
ould not satisfy this requirement, unless the strips coincidentally 

ligned with the direction of the stream within the patch. Ho we ver,
tellar streams are kinematically cold and so are concentrated in both
roper motion coordinates. Thus, we define our SRs using one of
he proper motion coordinates. (Selecting SRs based on both proper 

otion coordinates is possible, but would greatly increase our total 
raining time.) Since streams are localized in both proper motions, 
n principle it should not matter which one we choose; for this study,
e choose μλ to be the proper motion coordinate defining the SRs. 5 

Based on the proper motion properties of known streams, we 
nd that a choice of a window in μλ of width 6 mas yr −1 is
ptimal. Streams like GD-1, located O(10 kpc ) from the Earth, have
roper motion dispersions of ∼2 mas yr −1 . Such streams would be
ompletely contained within our SRs at distances larger than 2–3 kpc
which is more or less commensurate with the parallax cut we placed
n our data set). We also note that the stream does not have to be
ompletely enclosed within a given SR for the algorithm to function.
roper functioning of ANODE requires only that the relative distri- 
ution of stars within the SR differ significantly from that in the CR;
ince the CR contains many more stars than the SR, a leakage of
tream stars into the CR will not typically invalidate our approach. 

Since we do not know a priori which SR contains a stream, we
ust scan o v er all regions. In practice, we define a series of SRs by

tepping in units of μλ = 1 mas yr −1 , with each SR then defined by
he choice of [ μmin 

λ , μmax 
λ ]: 

 μmin 
λ , μmax 

λ ] = . . . , [ −10 , −4] , [ −9 , −3] , . . . , [3 , 9] , [4 , 10] , . . . (1) 

n units of mas yr −1 . The complement of the proper motion window
i.e. all the stars in the same patch that are not in the SR) defines the
ontrol region (CR) for each SR. 

Each of these choices of ( α0 , δ0 , μ
min 
λ ) furnishes a search region

nd control region pair for the ANODE training step. Overlapping 
he SRs in this way allows us to fully capture potential streams in at
east one μλ window when performing a blind search – if the SRs
ere not o v erlapping, then a stream could easily fall at the edge of
MNRAS 509, 5992–6007 (2022) 
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Figure 3. Upper row: Angular position in ( φ, λ) coordinates (left-hand panel), proper motion in ( μ∗
φ, μλ) coordinates (centre), and photometry (right-hand panel) 

of all stars in the patch centred on ( α, δ) = (148 . 6 ◦, 24 . 2 ◦). (Note the streaking in angular position due to non-uniform co v erage in Gaia DR2.) Bottom row: As 
abo v e, with stars identified by PWB18 as likely GD-1 stars shown in red, along with an example search region μλ ∈ [ − 17, −11] mas yr −1 in proper motion. 
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6 Note that this will in general not be the optimal statistic for distinguishing 
any particular signal hypothesis from the background, rather it is the optimal 
test for distinguishing the background-only hypothesis from the data-driven 
probability distribution. For more discussion of the meaning of optimality in 
the context of anomaly detection, see the Appendix to NS20 . 
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wo SRs, diluting the signal in each. By selecting SRs which are
ide enough in proper motion to fully contain a kinematically cold

tream and o v erlapping them by shifts which are smaller than the
roper motion width of a typical stream, we minimize the possibility
f this dilution. 
SRs with fewer than 20 k stars or more than 1 M stars (before

he fiducial cuts) are rejected for ANODE training. The former
equirement is because too few stars in the SR results in poor density
stimation performance, and the latter requirement is to a v oid o v erly
ong training times. In addition, SRs that contained a GC candidate
identified using a simple algorithm described in Appendix B) were
ut from the analysis, as the presence of the GC would completely
 v erwhelm the training (i.e. in an SR containing a GC, the GC
ould correspond to such a large, delta-function-like o v erdensity,

hat ANODE would be unable to identify any other o v erdensity in
he SR, such as one coming from a stream). In the end, we are left with
 total of 545 SRs across the 21 patches of the sky containing GD-1.

To provide an example of an SR, we turn to our sample GD-1
atch defined in the previous section, centred on ( α0 , δ0 ) = (148.6 ◦,
4.2 ◦). We select the SR defined by μλ ∈ [ − 17, −11] mas yr −1 ,
hich encompasses the majority of the GD-1 stars contained within

his patch. This SR is shown in Fig. 3 and contains 34 823 stars in
otal, of which 252 are tagged by PWB18 as possible GD-1 members.

.2 ANODE: Density estimation 

aving defined the search regions, we turn to the probability density
stimation step of the ANODE algorithm. As discussed in Section 2,
NRAS 509, 5992–6007 (2022) 
he stars in our data set are characterized by two position coordinates,
wo proper motion coordinates, colour, and magnitude. Having set
side one of the proper motion coordinates μλ to define the search
egions with, the remaining features ( φ, λ, μ∗

φ, b − r, g) we will refer
o collectively as � x . 

Suppose the stars in a patch consist of ‘signal stars’ coming from
 cold stellar stream, and ‘background stars’ coming from the stellar
alo. Let the conditional probability density of the background stars
e P bg ( � x | μλ), and the conditional density for the data (consisting
f background stars plus signal stream stars) be P data ( � x | μλ) =
1 − α) P bg ( � x | μλ) + αP sig ( � x | μλ), where α is a measure of the signal
trength. Then the optimal test statistic for distinguishing data from
ackground is (Neyman & Pearson 1933 ): 6 

( � x | μλ) = 

P data ( � x | μλ) 

P bg ( � x | μλ) 
. (2) 

f the signal is small ( α 
 1) but sufficiently localized in feature space
i.e. a local o v erdensity), then we e xpect R � 1 where the signal is
ocalized and R ≈ 1 everywhere else. Since R can be computed
ithout knowing α or P sig , selecting data points with high R can
urify signal to background in a model-agnostic way. 
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Figure 4. Left-hand panel: R distribution for the SR μλ = [ − 17, −11] mas yr −1 in the patch centred at ( α, δ) = (148 . 6 ◦, 24 . 2 ◦). Stars identified as likely 
members of GD-1 by PWB18 are shown in red, while the ‘background’ stars (those not tagged as likely GD-1 members by PWB18 ) are in blue. Right-hand 
panel: Significance impro v ement characteristic (SIC) curve for the same SR, showing the signal efficiency εS and the significance impro v ement (signal efficienc y 
o v er square root of background efficiency, εS / 

√ 

εB ) as the cut on R is varied. The vertical lines in both plots designate the R value that maximizes the SIC curve. 
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Probability density estimation of arbitrary distributions is a diffi- 
ult problem, and so ANODE is only made feasible through recent 
dvances in machine learning. In this paper, as in NS20 , we employ
he MAF architecture (Papamakarios et al. 2018 ) for the density 
stimation task. The MAF uses a specially structured neural network 
o learn a bijective mapping from the original feature space into 
 latent space where the data are described by a unit multi v ariate
ormal distribution. 7 

Although it is relatively straightforward to train the MAF directly 
n the stars in the SR to learn P data ( � x | μλ, μλ ∈ SR ) (the numerator of
he likelihood ratio equation 2), estimating the background density 
 bg ( � x | μλ) takes more consideration. Calculating the denominator 
 bg from first principles often pro v es impossible. Instead, one of the
ey ideas of the ANODE method is to use sideband interpolation 
rom the CR (the complement of the SR) to estimate the background
ensity in the SR. More precisely, we train a second MAF on the CR
o learn P data ( � x | μλ, μλ ∈ CR ). If there is no stream in the CR, then 

 data ( � x | μλ, μλ ∈ CR ) = P bg ( � x | μλ, μλ ∈ CR ) . (3) 

f the background distribution in the CR is a smooth and slowly
arying function of μλ, then the MAF provides an automatic inter- 
olation into the SR and yields an estimate for P bg ( � x | μλ, μλ ∈ SR ),
he denominator of equation (2). 8 

An important point to note is that the MAF (along with most, if not
ll unsupervised density estimators) has difficulty matching rapid or 
iscontinuous changes in the probability density as a function of the 
eatures � x . This is not a problem for the proper motion and b − r
eatures, which smoothly go to zero. Ho we ver, in position-space, the
election of stars within a circular patch on the sky results in a sharp
utoff in density at the edge of the patch. Similarly, at high magnitude
 , the sensitivity of the Gaia satellite drops rapidly. The result is
puriously large R values near the edge of the patch in position space
nd at large g . To a v oid this, we train on a larger data set than the
ducial region in which we perform the subsequent stream-finding 
 Our selection of hyperparameters is described in Appendix A2. 
 If there is signal in the CR, then by assumption it will be a very small 
erturbation to P data ( � x | μλ, μλ ∈ CR ) (i.e. we assume there are many more 
ackground stars than signal stars in the CR). Then equation (3) will still be 
pproximately true, and the signal contamination in the CR should not greatly 
ffect the R statistic in the SR. 

o  

R  

d
 

o  

(  

d  

D  
teps. As previously discussed in Section 2, after running ANODE, 
e define a fiducial region of 10 ◦ around the centre of the patch in

 φ, λ) position space and a magnitude cut of g < 20.2. 
In Fig. 4 (left-hand panel), we show a histogram of the ANODE

robability ratio R for the stars in the μλ ∈ [ − 17, −11] mas yr −1 SR
ithin the GD-1 example patch. We see that the likely GD-1 stars

dentified by PWB18 are disproportionately represented at the high- R 

ail of the ANODE distribution. By cutting on R , the resulting sample
f stars would be enriched with stream stars compared to the full
ample. F or a giv en value of R , the signal efficiency εS is the fraction
f candidate stream stars passing the cut on R , and the background
fficiency εB , is the fraction of non-stream-candidate stars passing 
he threshold. In Fig. 4 (right-hand panel), we show the significance
mpro v ement characteristic (SIC) curve, comparing εS to εS / 

√ 

εB as 
 is varied. We see that cutting on the ANODE output can greatly

mpro v e the purity of the sample and enhance the significance of the
tream detection. For the sake of illustration, we have indicated in
ig. 4 the optimal R cut value, defined to be the cut on R that maximizes

he significance impro v ement in Fig. 4 (right-hand panel). (In more
eneral settings, without stream-labelled stars, the optimal cut on R 

ould not be known, see the next subsection for further discussion
f this.) Starting with 252 stars out of 34 823 identified as candidate
D-1 members by PWB18 , the optimal R cut value (corresponding 

o log 10 R cut = 0.57 for this SR) selects 206 stars, of which 103 are
andidate GD-1 stars (corresponding to εS = 0.41). This nominally 
ncreases the statistical significance of the stream (i.e. S/ 

√ 

B ) by
ore than a factor of 7. We emphasize that the R ratio was learned

n a completely data-driven, unsupervised manner, and at no point in
he training were the stream candidate labels from PWB18 ever used.
ere the labels are just used to illustrate the efficacy of the ANODE
 -ratio in identifying stream stars. 
In Fig. 5 (top), we show all the stars in the μλ ∈ [ − 17,
11] mas yr −1 SR, and (bottom) those stars passing the optimal
 cut. GD-1 is an exceptionally dense and distinct stream: unlike
ther known streams it is visible, albeit barely, before the cut on
 . Performing the cut of R > R cut , as shown in the lower panel,
rastically increases the significance of the stream, as expected. 
Finally, we comment on the issue of streaking that can clearly be

bserved in the position space plots of the stars in many patches
Figs 3 and 5 are prime examples). These streaks are artefacts
ue to Gaia ’s scan pattern and incomplete co v erage of the sky in
R2. They might seem concerning for the ANODE method, as they
MNRAS 509, 5992–6007 (2022) 
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Figure 5. Upper row: Angular position in ( φ, λ) coordinates (left-hand panel), proper motion in ( μ∗
φ, μλ) coordinates (centre), and photometry (right-hand 

panel) of all stars (blue) in the μλ ∈ [ − 17, −11] mas yr −1 SR of our example patch centred on ( α, δ) = (148 . 6 ◦, 24 . 2 ◦). Bottom ro w: As the upper ro w, 
applying the R > R cut cut on the stars in the SR (purple). The GD-1 stream becomes immediately apparent. See the text for details. 
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Figure 6. Normalized histogram of μ∗
φ values for stars in the 10 ◦ patch 

centred on ( α, δ) = (148.6 ◦, 24.2 ◦), requiring 2 < | μλ| < 4 mas yr −1 (blue) 
and | μλ| < 2 mas yr −1 (red). Note that the high density of stars near μ∗

φ ∼ 0 

with | μλ| < 2 mas yr −1 are not represented in the sample which does not 
o v erlap μλ ∼ 0. These very distant stars with near-zero total proper motion 
are absent as a population from search regions which do not include the 
zero-point of proper motion. 
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ppear as line-like o v erdensities in the angular coordinates, just like
tellar streams would. Ho we ver, we find no e vidence that ANODE
s incorrectly selecting for these spurious features. The reason is that
NODE looks for evidence of a local o v erdensity by comparing

he stars in one proper motion slice with the stars outside of it.
he streaking patterns are largely uncorrelated with proper motion;

herefore, the o v erdensity the y correspond to will actually cancel in
he construction of the R ratio, and these streaking stars will not be
elected for by the ANODE algorithm. 

.3 Regions of interest 

p to this point, our method has been largely agnostic to the
strophysics of stellar streams (beyond the choice to use proper
otion as our SR-defining feature). Stars tagged as anomalous by

he ANODE training may be streams, globular clusters, debris flow,
r some other structure localized in the Milky Way’s velocity-space.
he steps in this and subsequent subsections are designed specifically

o find cold stellar streams similar to the ones identified previously
n data; different cuts and/or choices of parameters could be used
o focus on other interesting astrophysical structures. The cuts we
hoose are: 

(i) First, we remo v e all stars within a box around zero proper
otion of width 2 mas yr −1 . That is, we require 

 μλ| > 2 mas yr −1 OR | μ∗
φ | > 2 mas yr −1 . (4) 

ecall that the ANODE training identifies stars within the SR
hat are anomalous compared to the interpolation into the SR of
NRAS 509, 5992–6007 (2022) 
he CR density estimate. Stars with proper motion near zero are
redominantly distant stars; this population is not well-represented
n a CR that does not contain ( μ∗

φ, μλ) ∼ (0 , 0) mas yr −1 . An example
an be seen in Fig. 6 . If the SR contains this zero-point, the distant
tars are (correctly) identified as anomalous relative to the population
n the control regions, but their sheer number completely o v erwhelms

art/stab3372_f5.eps
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Figure 7. Left-hand panel: Angular position in ( φ, λ) coordinates for the 100 highest- R stars (purple) in the μ∗
φ ∈ [ −8 , −2] mas yr −1 , μλ ∈ [ − 17, −11] mas yr −1 

ROI from our example patch. Right-hand panel: Associated curves in Hough space for these stars (black lines). The significance σ L ( θ , ρ) of a line oriented at 
each ( θ , ρ) value is shown in colour. The region around the point of maximum contrast (as identified by the VIA MACHINAE algorithm) is indicated by the inner 
white box, with the region defining the background shown as the outer box. 
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9 Note ρ can take ne gativ e values – there is a periodicity in Hough space of 
the form ( ρ, θ ) ∼ ( − ρ, θ ± π ). 
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ny other signal in the SR, requiring their removal after training is
omplete. 

(ii) Cold stellar streams, produced by tidally stripped globular 
lusters or dwarf galaxies, are predominantly composed of old, low 

etallicity stars. Man y e xisting stream-finding algorithms lev erage 
his by fitting stars in the stream candidate to isochrones appropriate 
o this assumption (see e.g. Malhan & Ibata 2018 ). Although the
NODE training is agnostic to such assumptions, in this work we 

re specifically interested in identifying cold streams, and not all 
nomalous o v erdensities. To that purpose, we now select stars in a
pecific colour range in order to further purify signal to background. 
e require our stream candidates to lie in the broad range of

olours ( b − r ) ∈ [0.5, 1]. This range of colours was chosen so
hat it will contain (nearly) all of GD-1 and every stream found
y STREAMFINDER in Malhan et al. ( 2018b ), Ibata et al. ( 2019 ).
 STREAMFINDER targeted globular cluster streams composed of stars 
ith ages ∼10 Gyr and metallicities −2 dex � [Fe/H] � −1 dex). But
eing broader and more general than fitting to specific isochrones, we 
ope it will also enable the disco v ery of new streams. There may be
nteresting anomalous structures outside of this colour range, which 
ill be investigated in a future work. 
(iii) To further isolate any potential streams, we subdivide the 

Rs defined by windows of μλ into o v erlapping windows of μ∗
φ , with

idth 6 mas yr −1 and a stride of 1 mas yr −1 . We call these windows re-
ions of interest (ROIs) and they are labelled by ( α0 , δ0 , μ

min 
λ , μ∗min 

φ ).
e exclude any ROI that has fewer than 200 stars as we need larger

tatistics to determine the presence of a stream. 

Applying these cuts and further subdivision of the data to the 21
atches of the sky containing GD-1, we obtain 17 563 ROIs in total.
W ithin each R OI, we must decide how to apply the cut on the

NODE o v erdensity function R( � x | μλ). Man y different types of cuts
re possible, for instance setting a threshold as a percentile cut in
ach ROI, or a fixed value of R across all ROIs. We have empirically
ound that selecting the 100 highest R stars in each ROI is ef fecti ve
t finding known streams (more on this in Shih et al., in preparation).
n example of this is shown in the left-hand panel of Fig. 7 . It is
ossible that another cut (e.g. the 1000 highest R stars in an ROI)
ould also be ef fecti ve or would find other, qualitatively different

treams. This would be interesting to explore in future work. 
.4 Line-finding and stream detection 

ver large angles on the sky, most streams form arcs in ( α, δ) rather
han lines (and streams with large line-of-sight velocities may not 
ppear to form lines at all). Ho we ver, the de viation from a line for
he stars in the stream is small across a 10 ◦ radius circle on the sky. 

Given the large number of ROIs – O(10 4 ) for the 21 patches of
he sky containing GD-1 alone – we need an automated procedure 
or line finding. To do so, we adapt a long-standing technique from
he field of computer vision based on the Hough transform (Hough
959 ; Duda & Hart 1972 ). A line passing through a point on the
lane ( φ, λ) can be expressed in terms of the distance ρ of closest
pproach to the origin, and the angle θ between the φ axis and the
erpendicular from the line to the origin: 9 

= φ sin θ − λ cos θ. (5) 

iewing this equation another way leads to the idea of the Hough
ransform for line finding: for a single point, the collection of lines
hat pass through it will form a sinusoidal curve in the ( θ , ρ) Hough
pace described by equation (5). If we consider two points in the
lane, then their curves in Hough space will intersect for the values
f θ and ρ that define a line passing through both points. For a set of
oints in the plane, a subset of points on a line will manifest itself as
 v erdensity in the ( θ , ρ) space as many such curves intersect. 
In Fig. 7 , we show an example of the Hough transform on position

ata (left-hand panel) of the 100 highest- R stars in the ROI with μ∗
φ ∈

 −8 , −2] mas yr −1 , μλ ∈ [ − 17, −11] mas yr −1 from our example
atch. As can be seen in the right-hand panel, the Hough curves for
he stars on the line all cross at the same point, corresponding to
he θ and ρ values of the line on which the stream falls. The Hough
ransform therefore converts the problem of finding a line among a
et of 2D points to the problem of finding the point with the highest
ensity of curves in a 2D plane. Although this overdensity is obvious
y eye in the example shown in Fig. 7 , this is an extreme case and
ost o v erdensities will not be as clear-cut. 
We automate the line-finding by identifying the region in Hough 

pace with the highest contrast in density compared to the region
MNRAS 509, 5992–6007 (2022) 
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Figure 8. Line significance σ L versus the central μ∗
φ value for each ROI 

with μλ ∈ [ − 17, −11] mas yr −1 in our example patch. The vertical red lines 
indicate the minimum and maximum μ∗

φ values for the candidate GD-1 stars 
of PWB18 . 
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11 To be precise, we require the line parameters to be within θ = π /10 and 
ρ = 2 ◦ of each other. 
12 We are careful not to interpret σ tot 

L as a meaningful statistical significance 
in this work; rather we think of it more loosely as a figure of merit or an 
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urrounding it. We define a filter function which is applied to a box
entred on a location ( θ , ρ) of width w θ and height w ρ . The filter
ounts the number of stars whose Hough curves pass through the
ox, allowing us to define a number of curves at each point n ( θ , ρ).
e then redo the filtering with a larger box (subtracting the curves
hich also pass through the initial box) to estimate the ‘background’

urve count, n̄ ( θ, ρ) (being careful to renormalize the counts for the
ifferent areas of the patch co v ered by the two regions in Hough
pace). Examples of these two filtering regions are shown in Fig. 7 .
he large and small box dimensions are ‘hyperparameters’ of the
ough transform line detection method and must be tuned based on
nown stellar streams to maximize detection efficiency. In this work,
e will specialize to w θ = 5.4 ◦ and w ρ = 1 ◦ for the inner box,

nd an outer box five times larger. This was found to be optimal for
etecting relati vely narro w streams such as GD-1. In Shih et al. (in
reparation) we will also explore other hyperparameters for the line
nder that are sensitive to wider streams. 
From the filter function count of Hough curves and background

stimate at each point ( θ , ρ), we define the line detection significance
o be 

L ( θ, ρ) = 

n ( θ, ρ) − n̄ ( θ, ρ) √ 

n̄ ( θ, ρ) 
(6) 

e search in Hough space for the parameters that maximize this
ignificance. Concretely, we bin the ( θ − ρ) plane in two dimensions,
sing a grid of 100 bins for 0 ≤ θ ≤ π and 100 bins for −10 ◦ ≤ ρ ≤
0 ◦. We then select the bin that maximizes σ L and return this as our
ine detection in each ROI. 10 

When a stream is present in the SR and within the proper motion
ange of an ROI, we expect the resulting σ L value to be much larger
han those of ROIs without linear structures. As an example of this,
n Fig. 8 we show the σ L values for every ROI in the SR as a function
f the central μ∗

φ value defining each ROI, with vertical red lines
ndicating the maximum and minimum ROIs which contain any GD-
0 We are implicitly assuming here that each ROI will contain at most one 
tream. We believe this is a safe assumption, since ROIs are fully localized 
n both proper motions and angular position. 
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 stars. As can be seen, the high-significance lines fall only in the
OIs containing GD-1 stars. By cutting on σ L , we are to be able

o distinguish ROIs that contain an actual stream in the high- R stars
rom those without. 

.5 Final merging and clustering 

fter selecting the 100 highest R stars in each ROI and applying the
ough transform line finder, we obtain the line parameters ( θ , ρ)
ith the highest significance σ L in each ROI. We wish to use the

ignificances of these lines to select only the most promising stream
andidates. Ho we ver, cutting on the raw σ L of an individual ROI
s not ef fecti ve in identifying a tractable number of likely stream
andidates, because of the large trials factor (the so-called ‘look
lse where ef fect’). Across only the 21 patches containing GD-1 there
re already O(10 4 ) ROIs, and random fluctuations could result in
purious line-like features in the background stars. This essentially
ilutes the significance of a individual line detection by a correction
actor, which may not be entirely trivial to estimate in the presence
f correlations between ROIs. 
To obtain a meaningful line detection, we use the fact that a stream

s likely to be found in multiple ROIs – since the SRs are highly
 v erlapping, each star generally has more than one R value attached
o it. Therefore, we aim to cluster the ROIs that have concordant
est-fitting line parameters, across proper motions in a given patch,
nd across patches. 

To perform this combination of o v erlapping ROIs, we have
eveloped a three-step clustering algorithm (see Fig. 1 for a graphical
llustration of these steps): 

(i) In a given patch, we consider all ROIs with the same value of
∗
φ . We group together ROIs adjacent in μλ which have concordant

ine parameters. 11 In this way, all ROIs in a patch are clustered into
eeds which have the same μ∗

φ and consecutive values of μλ. For
ach seed, we add the line significances of its ROIs in quadrature to
orm a combined line significance σ tot 

L . 12 

(ii) Next, we group together seeds at adjacent μ∗
φ based on

he same criteria for concordance of line parameters. This forms
rotoclusters, as shown in the second-to-last step of Fig. 1 . 
(iii) Finally, we merge together protoclusters across adjacent

atches using the same criteria for concordance of line parameters.
his produces our final stream candidates, as shown in the final step
f Fig. 1 . 

A schematic of steps (i)–(ii) is shown in Fig. 9 . There we see 12
ypothetical ROIs that are coloured by seed. Neighbouring seeds are
ombined into protoclusters which are denoted by dashed boxes. The
umber of signal regions, N SR , in each protocluster is the number of
OIs in its largest seed. 
In step (i), the rationale for grouping in μλ and not μ∗

φ is that
n a given patch, ROIs with the same μλ but different μ∗

φ represent
ifferent, highly o v erlapping slices of the same SR, with each star that
ppears in multiple ROIs having the same R values from ANODE.
nomaly score for stream detection. At best, σ tot 
L would be a local significance 

i.e. ignoring an enormous and difficult-to-quantify look-elsewhere-effect), 
nd would be based on the assumption (probably not completely true) that 
eparate ANODE runs in neighbouring SRs return completely uncorrelated, 
andom values of R on background-only stars. 
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Figure 9. A schematic showing how regions of interest (ROIs) are combined 
into different protoclusters. The different colours denote different seeds, i.e. 
clusters of ROIs with adjacent μλ and the same μ∗

φ values. The boxes show 

how adjacent seeds are combined into protoclusters with different N SR . 
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Figure 10. Histograms of the fraction of stars in the best-fitting line of each 
ROI that were identified as likely GD-1 stars by PWB18 , for ROIs which are 
part of protoclusters with N SR = 1 (black, dashed), N SR = 2 (blue, dotted) 
and N SR ≥ 3 (red,solid). We see that requiring N SR ≥ 3 greatly increases the 
fraction of candidate GD-1 stars in the best-fitting line. 

Figure 11. Histogram of the σ tot 
L values of protoclusters with N SR ≥ 3, with 

each protocluster weighted by the number of ROIs it contains. 
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n the other hand, ROIs with the same μ∗
φ and different μλ represent 

ifferent SRs, and each SR represents an independent ANODE 

raining. Although the SRs are highly o v erlapping, the ANODE 

raining is sufficiently stochastic that we take the outcome in different 
Rs to be quasi-independent. This moti v ates the adding in quadrature
f the line significances of the ROIs in each seed. 
In step (ii), for each protocluster, we characterize its significance 

y the seed with the highest σ tot 
L that it contains. The size of this

eed we will call N SR and is another measure of the significance of
he protocluster. Note that we do not add the σ tot 

L values of different
eeds in a protocluster together in quadrature, since these are highly 
orrelated. 

Applying the final merging and clustering steps to the 21 patches 
ontaining GD-1, we find that the 17 563 ROIs are clustered into
0,955 protoclusters. Of these, 10 267 have N SR = 1; 606 have N SR =
; and 82 have N SR ≥ 3. 
All else being equal, we expect real streams to have higher values

f σ tot 
L and N SR . We show in Fig. 10 histograms of the fraction

f stars within the best-fitting line of each ROI that have been
dentified as candidate GD-1 stars by PWB18 , for ROIs that belong
ith protoclusters with different values of N SR . As can be seen, the

raction of candidate GD-1 stars (i.e. the ‘purity’ of the best-fitting
ine) is significantly impro v ed when we require N SR ≥ 3. 

In Fig. 11 , we show the distributions of σ tot 
L values across the

OIs (the total line significance is for the protocluster that the ROI
as been clustered into), for N SR ≥ 3. We see that there is clearly
 b ulk distrib ution at low σ tot 

L and then a tail of outliers, with the
eparation occurring around σ tot 

L = 8. It is reasonable to suppose that 
he majority of these low- σ tot 

L corresponds to false positives, while 
he tail could correspond to real stream detections that should be 
ubjected to more in-depth investigation. 

 DEMONSTRATING  T H E  FULL  V I A M AC H I NA E 

L G O R I T H M  WITH  GD-1  

aving described all the steps of the VIA MACHINAE algorithm, we 
ow demonstrate the full algorithm on the 21 patches of the sky
hat contain GD-1. For the first step of the algorithm (ANODE), we
sed the ‘Haswell’ processors at NERSC, for a total of approximately
0 000 CPU-hours to analyse all 21 patches. For the subsequent steps
f VIA MACHINAE (line finding, forming protoclusters, and forming 
tream candidates), we used the local HEP cluster at Rutgers, for a
otal of approximately 50 CPU-hours. 

Moti v ated by the discussion in the previous subsection, we focus
n only those protoclusters with N SR ≥ 3 and σ tot 

L ≥ 8. This leaves
nly 16 protoclusters. Merging these results in only two stream 

andidates, shown in Fig. 12 . One might have expected far more
tream candidates, given the enormous trials factors involved (e.g. 
(10 4 ) ROIs that we started with). This is a sign that the cuts on
 SR and σ tot 

L that we have chosen are indeed ef fecti ve at reducing the
alse positive rate. 

The less prominent stream candidate, shown in blue, is built 
rom a single protocluster representing 16 ROIs with σ tot 

L = 9 . 5. It
omes from the patch centred at ( α, δ) = (138 . 8 ◦, 25 . 1 ◦). The stream
MNRAS 509, 5992–6007 (2022) 
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Figure 12. The two stream candidates built out of protoclusters with N SR ≥
3 and σ tot 

L ≥ 7 . 5. 
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andidate does not correspond to any known stream, and a priori it
ay be a real stream or a spurious detection. Closer inspection reveals

hat all of the high- R stars identified by ANODE are tightly clustered
t the edge of the circular patch, almost perfectly aligned with the
irection of the Galactic disc (and on the same side of the patch as
he disc). Although this patch is � 30 ◦ off the Galactic plane, we still
bserve a strong density gradient towards and aligned with the disc.
herefore, we suspect that ANODE has identified disc stars in this
ase, and not a stellar stream. We discuss this further in Appendix C.

The second, more prominent stream shown in red in Fig. 12 ,
s composed of 15 protoclusters representing 518 ROIs, and is
learly GD-1. In Fig. 13 we show the positions, proper motions,
nd photometry of the 1688 stars in this stream candidate, o v erlaid
n the locations of the stars tagged as likely GD-1 stream members
y PWB18 . In Fig. 14 , we present another look at the comparison
etween VIA MACHINAE and PWB18 , this time using the coordinate
ystem aligned with the GD-1 stream (Koposov et al. 2010 ). 13 

Broadly speaking, we see that VIA MACHINAE has done an excellent
ob finding the GD-1 stars across the 21 patches of the sky considered
n this work. Some notable features and caveats which deserve
onsideration are as follows: 

(i) Fig. 14 shows that VIA MACHINAE has successfully reproduced
ome famous features of GD-1, including both gaps, the possible
rogenitor, and the ‘spur’ ( PWB18 ). 
(ii) We see that VIA MACHINAE confirms most of the additional

0 ◦ of GD-1 disco v ered in PWB18 (corresponding to α � −220 ◦, or
1 � −60 ◦). The left-most end of GD-1 ( α � −235 ◦, φ1 � −80 ◦)

s missing from our stream candidate; this is because those patches
ere not included in our analysis as they were deemed too close to

he disc ( | b | < 30 ◦). 
(iii) On the right-hand side of GD-1, we see that we are also
issing stars compared to PWB18 . Closer inspection of this missing

e gion rev eals that this se gment of the stream was captured by only
 single patch, centred on ( α, δ) = (212.7 ◦, 55.2 ◦), and the proper
otion of GD-1 on this end of the stream is closer to μλ = 0,
3 To allow for direct comparison of our results with PWB18 in this section, 
e show the stars of the latter without correction for extinction, and apply 

he same cuts on their (uncorrected) magnitudes and colours of g < 20.2 and 
.5 < b − r < 1 as we do for our fiducial sample. 
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s  

l  

p  

c  

s
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ncreasing the number of background stars in the rele v ant SRs. We
ill return to this point and elaborate on it further below. 
(iv) The feature protruding from the stream at α ∼ −215 ◦ and
∼ 40 ◦ (see Fig. 13 ) is most likely an artefact of our line finding

rocedure. 
(v) Of the 1985 stars identified as likely members of GD-1 from

WB18 , 1519 are in our fiducial (colour and magnitude) region,
nd 738 (49 per cent) o v erlap with the membership of our stream
andidate. 

(vi) The remaining 950 stars in our stream candidate were not
agged by PWB18 . Some of these may very well be additional mem-
ers of GD-1. Ho we ver, the proper motion and colour–magnitude
lots of Fig. 13 make clear that our method also picks up a significant
umber of non-stream stars, see e.g. the group of bright stars that are
learly not associated with the main GD-1 isochrone. 

Regarding the stars missing from the right-most end ( α � −160 ◦

r φ1 � −10 ◦) of GD-1, it is notable that this side of the stream has
alues of μλ closest to zero (this is apparent in Fig. 13 after taking into
ccount that μλ ≈ μδ for these patches). Hence, this segment of GD-
 falls primarily in SRs with an increased number of background
tars compared to the rest of the stream. The fact that we do not
eco v er this part of GD-1 strongly suggests that successful stream-
nding with VIA MACHINAE may require a minimum admixture of
tream stars in the SR. In Fig. 15 , we use the stream candidates
rom PWB18 as a proxy for the GD-1 stars, and plot the fraction of
WB18 -tagged stars which are also identified as stream candidates
y VIA MACHINAE (in each SR) versus the fraction of stars in each
R which are tagged by PWB18 . As can be seen, the fraction of
WB18 stars also identified as stream members by VIA MACHINAE

s strongly correlated with the fraction of stream stars in the SR. In
articular, the o v erlap fraction drops precipitously when the stream
akes up � 0 . 1 per cent of the total stars in the SR. All of the SRs

hrough which the missing right-hand side of the GD-1 stream pass
ave a low fraction of stream stars. We believe this goes a long way
oward explaining why VIA MACHINAE missed these members of GD-
. Further work is needed (including a study of other streams beyond
D-1) to determine if this threshold is a more general requirement
f ANODE and VIA MACHINAE for stream detection. 
Apart from the apparent required minimum S / B detection thresh-

lds for ANODE and VIA MACHINAE , the fact remains that our
tream candidate does not include all of the likely GD-1 stars tagged
y PWB18 (completeness), and appears to include a substantial
umber of non-GD-1 stars (purity). Ho we ver, this is not necessarily
 drawback of the method. Rather, it reflects the emphasis placed by
IA MACHINAE on stream disco v ery rather than stream membership.
hen designing our algorithm, our choices were moti v ated to iden-

ify stream candidates at a sufficiently high statistical significance to
 v ercome the random background. Decisions such as the number of
igh- R stars to include in each ROI and the line width in the Hough
ransform were made with this in mind, rather than maximizing
ccurate stream membership of the candidate. Loosening these
riteria w ould lik ely reco v er more of the tagged stream stars than the
9 per cent identified here – this would have to be weighed against
ncreasing the number of false-positive stream candidates identified
cross the full sky. Thus, the resulting stream candidates should be
aken as signs for disco v ery, rather than an accurate membership
tudy of particular stars and whether they belong to a stream. After
tream disco v ery , the candidate must be considered individually ,
oosening or eliminating some of the algorithmic choices that are
art of VIA MACHINAE . The density estimates from ANODE may
ontinue to aid in this a posteriori analysis, but this is beyond the
cope of this paper. 
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Figure 13. Scatter plots of the angular positions, proper motions, and colour/magnitudes of the 1688 stars in the more prominent of the two stream candidates 
identified by VIA MACHINAE , o v erlaid on the likely GD-1 stars tagged by PWB18 (grey) in the same region of g and b − r space. The VIA MACHINAE stars are 
colour-coded by position in α, to facilitate cross referencing between the three individual scatter plots. 
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 C O N C L U S I O N S  

n this work, we described a new machine learning-based algorithm 

alled VIA MACHINAE for stellar stream detection using Gaia DR2 
ata, and applied this technique to identify the GD-1 stream. As
 particularly distinct stream with readily available membership 
atalogues to use for detailed comparisons, GD-1 is an excellent 
estbed for our algorithm. 

The core of our technique is ANODE, a data-driven, unsupervised 
achine-learning algorithm that uses conditional probability density 

stimation to identify anomalous data points in a search region 
ithout having to explicitly model the background distribution. 
his approach is made possible by advances in deep learning that 
pproximate the probability densities in an unsupervised way. We 
ake as input for the ANODE training the angular position, proper 

otion, and photometry of the stars in Gaia DR2. No astrophysical 
nowledge is embedded into ANODE, other than in our choice to 
ondition the probability estimation on one of the proper motion 
oordinates μλ – which is also used to define the search regions. This
llows us to identify potential anomalies while remaining agnostic to 
he Galactic potential, orbits, or stellar composition of the streams. 
m  
The output of ANODE is a likelihood ratio R , with large R
alues corresponding to stars whose phase space density in the 
earch region is larger than expected based on interpolation from 

he control regions. To turn these anomalies into stream detection, 
IA MACHINAE engages in a number of additional steps. Some of

hese steps – concentrating on old, metal-poor stars (identified with 
 cut on b − r , without requiring the stars to lie on an isochrone),
urther slicing the data into regions of interest based on the other
roper motion coordinate μ∗

φ – are designed to impro v e signal-to- 
oise of stream detection, without sacrificing too much of the model-
ndependence. Other steps – automated line finding using the Hough 
ransform, merging concordant best-fitting lines in adjacent ROIs 
nd patches of the sky – are intended to build a stronger case for a
tream detection (as opposed to some other anomalous structure or 
purious false positive). The upshot is that VIA MACHINAE produces a
ist of stream candidates that have been found in multiple o v erlapping
earch regions with high significance. 

Using this method, we reco v er the GD-1 stream across the 21
atches in our full-sky scan that include it. Although GD-1 is an
typically dense, cold and narrow stream, it is still non-trivial that our
ethod is able to reco v er it in an unsupervised and fully automated
MNRAS 509, 5992–6007 (2022) 
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Figure 14. Comparison of the likely GD-1 stars from PWB18 (top, black) and the stream candidate stars identified by VIA MACHINAE (middle, red), in the 
GD-1 stream-aligned coordinate system ( φ1 , φ2 ) (Koposov et al. 2010 ). The location of previously identified features of GD-1 (two gaps, the possible progenitor 
location, and the spur) are indicated. Bottom ro w sho ws the number of candidate stream stars identified by PWB18 (black) and VIA MACHINAE (red) in φ1 bins 
of width 2 ◦; the error bars are purely statistical (Poissonian). In top and bottom panels, a cut on g < 20.2 and 0.5 < b − r < 1 has been applied to the stars from 

PWB18 so that a direct comparison can be made with the stars in this analysis. 

Figure 15. For each SR, we plot the fraction of total stars N total in an SR 

which are identified as likely members of GD-1 by PWB18 ( N PWB ), compared 
to the fraction of N PWB which are also identified by VIA MACHINAE as likely 
members of GD-1 ( N o v erlap ). The SRs which lie in the patch centred on ( α, 
δ) = (212.7 ◦, 55.2 ◦) are shown in red. This patch contains the majority of the 
right-hand side of GD-1 which is not identified in our analysis. 
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ay. Moreo v er, we chose to focus on GD-1 in this paper as it provides
 clear, step-by-step introduction to our algorithm. The application
f VIA MACHINAE to other known streams and to the full-sky data set
ill be discussed in a forthcoming paper Shih et al. (in preparation).
This initial application of unsupervised density estimators for

tellar stream disco v ery, suggests other potentially interesting di-
ections which recent advances in deep learning have made possible.

ost obviously, our method can in principle be adapted to look
or other interesting cold objects in the Milky Way, such as debris
ow, tidal tails, and other stellar substructure (Johnston, Hernquist &
olte 1996 ; Johnston 1998 ; Robertson et al. 2005 ; Font et al. 2006 ,
NRAS 509, 5992–6007 (2022) 
011 ; Helmi 2020 ). Other methods of density estimation beside the
AF may also pro v e to be useful: we used the MAF because it is

easonably fast and easy to train and was demonstrated to perform
ell in the ANODE anomaly detection task in NS20 . Ho we ver,
eural autore gressiv e flows (Huang et al. 2018 ), neural spline flows
Durkan et al. 2019 ), and mixture density networks (Bishop 1994 )
ay possibly have improved performance in some or all contexts. 
Having data-driven measures of ‘signal’ and ‘background’ densi-

ies may pro v e to be useful for problems be yond disco v ery. Sampling
rom these density estimators is possible, and might be a way to
onstruct mock catalogues. The density estimates themselves might
e useful for answer questions of stream membership. This could
elp in going beyond the VIA MACHINAE disco v ery steps outlined
n this paper, and further establish the validity and accuracy of the
roposed stream candidates. 
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PPENDI X  A :  DETA I LS  O F  T H E  M A F  

1 Training and model selection 

or each SR – defined by a patch of the sky and a slice in μλ – we
rain two separate MAFs, one on the stars μλ ∈ [ μmin 

λ , μmax 
λ ] in the SR

nd one on the stars in its complement (the CR), μλ / ∈ [ μmin 
λ , μmax 

λ ].
efore training, the data are standardized by shifting the mean in
ach feature to zero and normalizing the standard deviation to unity.

We opt not to divide the data up into training and validation sets, as
oing so would dilute the significance of any stream detection. Based
n direct inspection, we do not find any evidence for o v erfitting. F or
he density estimation, o v erfitting would typically correspond to p ( x )
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Figure A1. Left-hand panel: SIC curve of signal efficiency εS to εS / 
√ 

εB (for 
a background efficiency εB ) as a cut is placed on log R , for all hyperparameters 
tested on the GD-1 example data set. Right-hand panel: Density plot of log p bg 

versus log R for stars in the signal region of the GD-1 data set used for 
hyperparameter optimization, trained using the neural network parameters 
that maximize the true-positive over root false-positive rate. 
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egenerating into a set of delta functions centred on each point in the
raining data. This is generally not a concern for the MAF, and in fact
t generally has the opposite problem (not being able to fit extremely
harp distributions). Also, the lower bound on data set size (SRs
ust have at least 20 000 stars, otherwise they are rejected) should

e sufficient to mitigate o v erfitting for the dimensionality of the
eature space. 

For each MAF, we train for 150 epochs using the Adam optimizer
Kingma & Ba 2017 ). The learning rate is a hyperparameter that
ill be included in the scan to be described in Section A2. This
umber of epochs seemed to be sufficient for convergence, and
raining for significantly longer is computationally prohibitive. To
mooth out fluctuations in the MAF from epoch to epoch arising
rom stochastic gradient descent, we calculate a running average
or each star’s probability density o v er the output of 20 consecutive
raining epochs. 

To select the best model for each MAF, we employ the following
pproach. On general grounds, we expect the log R distribution
o be roughly symmetric around 0 in the absence of any signal;
ny deviation from R = 1 is due to random fluctuations in the
AFs estimating the numerator or the denominator of the likelihood

atio. The better the performance of the density estimation, the
ore sharply peaked the R distribution should be around R = 1.
urthermore, we expect astrophysical signals (such as streams) to

ypically correspond to o v erdensities, not underdensities. Putting all
his together, we select the ‘best’ epoch by considering the log R
istribution for log R < 0, reflecting this across 0, and choosing
he epoch with the smallest standard deviation in this symmetrized
istribution. Strictly speaking, we only perform this for the MAF
rained on the CR; for the MAF trained on the SR, we take the last
0 epochs, as we found this led to the best performance on tests with
he labelled GD-1 stars. 

2 Hyperparameter optimization 

ere we describe the hyperparameter optimization for the MAF
eural network used for density estimation in this work. For the MAF
rchitecture, these hyperparameters include the number of blocks
n the neural network that make up the affine transformations, the
umber of hidden layers in the network, and the number of nodes in
ach hidden layer. Then there are the usual hyperparameters involved
n training (mini-batch size, learning rate, etc.). The optimal values
or these hyperparameters are not deri v able from first principles;
nstead, we must perform a scan o v er the hyperparameters and
elect the configuration that maximizes the performance of the
NRAS 509, 5992–6007 (2022) 
eural network. To measure performance, we will use the GD-
 labelled stars from PWB18 and quantify the signal/background
iscrimination power of the ANODE method as in Section 3.2. 
To optimize the hyperparameters, we used a 15 ◦ patch of the sky

entred on ( α, δ) = (140 ◦, 30 ◦), which contains a segment of the
D-1 stream (this patch was hand-selected, and is not one of the 200

entres described in Section 2). The patch contains 1.2 × 10 6 stars,
f which 574 were tagged as stream stars by PWB18 . The inner 10 ◦

ducial region has 4.3 × 10 5 stars, 374 of which are stream-tagged. 
Using these tagged stars, we hand-pick an SR defined by μ∗

α ∈
 −8 . 75 , −15] mas yr −1 , which contains all the stream stars and
.7 × 10 5 total stars (6.4 × 10 4 in the fiducial region). 
We varied the hyperparameters o v er batch size, number of epochs,

earning rates, number of blocks, and number of hidden layers with: 

batch size = [256 , 512 , 1024] 

num . blocks = [16 , 18 , 20 , 25] 

num . hidden = [16 , 32 , 64] 

num . epochs = [125 , 150 , 175] 

earning rate = [5 × 10 −5 , 7 × 10 −5 , 2 × 10 −5 , 4 × 10 −5 ] . (A1) 

e train the MAF for each combination of these five parameters. For
ach hyperparameter set in the scan, we calculate a log R value for
ach star in the fiducial (inner 10 ◦) region. After training, we use the
ast epoch to construct the significance impro v ement characteristic
SIC) curve by varying a cut on log R . The SIC curves for each
yperparameter configuration in the scan are plotted in the left-hand
anel of Fig. A1 , with the optimal choice that maximizes εS / 

√ 

εB 

ighlighted in red. On the right-hand panel of Fig. A1 , we show the
istribution of log p bg versus log R for stars in the SR for the optimal
et of hyperparameters. The optimal hyperparameters – 150 epochs,
 batch size of 512, 20 blocks, 64 hidden blocks, and a learning rate
f 7 × 10 −5 – are then used for all MAF trainings in this work. 

PPENDI X  B:  G L O BU L A R  CLUSTER  

ETECTI ON  

ere we describe the simple algorithm we use to remo v e SRs
hat contain a suspected globular cluster. The presence of such
 v erdensities in an SR is enough to distort the density estimation;
he MAF cannot fit the delta function that is a globular cluster while
imultaneously accurately describing the rest of the patch. 

Based upon inspecting many patches pre- and post-ANODE, we
nd that the GCs that spoil the MAF are usually visible as a single
right pixel in a simple 2D density plot of the stars’ positions in an
R. Given that there are thousands of SRs to sift through, we make
 2D histogram of the latitude and longitude of all the stars in an
R (recall, the patch size is 15 ◦). With some tuning, we find that
 good resolution is 120 × 120 bins across the 15 ◦ × 15 ◦ region.
e then compute the mean number of counts N̄ , the max number of

ounts N max , and the standard deviation of the number of counts (as
easured by the interquartile range) σ . We declare the SR to contain
 likely GC if 

N max − N̄ 

σ
> 4 and N max > 25 . (B1) 

n other words, the bin with the maximum number of stars had to
ave at least 25 stars, and had to be at least ‘4 σ ’ significant o v er the
ackground stellar distribution. 
Using these simple criteria, we find 1381 (out of 6117) SRs in the

ull-sky data set contain a GC candidate. We have visually inspected

art/stab3372_fa1.eps
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Figure C1. Scatter plots of the angular positions, proper motions, and colour/magnitudes of the stars in the second, less prominent stream candidate identified 
by VIA MACHINAE , o v erlaid on 2D histograms of all the stars in the circular patch that contains this stream candidate (darker pixels indicate higher density of 
stars). As in Fig. 13 , the VIA MACHINAE stars are colour-coded by position in α, to facilitate cross referencing between the three individual scatter plots. 
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ll of the SRs containing GC candidates and confirmed that the 
elections appear to be reasonable. 

PPENDIX  C :  C O M M E N T S  O N  STREAM  2  A N D  

ISC  STARS  

ere we elaborate further on the second, less prominent stream 

andidate tagged by the full VIA MACHINAE algorithm in the 21 
atches containing GD-1. As described in Section 4, this stream 

andidate is contained completely in a single patch (centred on 
 α, δ) = (138 . 8 ◦, 25 . 1 ◦)), and all of the high- R stars follow tightly
he edge of the circular patch, aligned and on the same side as the
alactic disc. We illustrate this further in Fig. C1 , which show the

tars of the stream candidates in angular position, proper motion, 
nd colour/magnitude space, o v erlaid on top of density plots of all
he stars in the patch containing the stream candidate. This shows
learly how the stream candidate is aligned with the density gradient 
n the patch (which in turn is aligned with the Galactic disc, which
ne can check by transforming to Galactic coordinates ( � , b )). We
lso see that the stream candidate is clustered in proper motion space
lose to μ∗

α, μδ ∼ 0, which as we have noted in Section 3.3 is a
ignificant source of false positives for the ANODE method. Finally, 
e note that (unlike for GD-1 and other known streams), there is no
oticeable correlation between the position along the stream and the 
roper motion. Taken together, we view this as strong evidence that 
his second stream candidate is likely to be a false positive. 
More generally, we observe a strong gradient in stellar density 
owards the Galactic disc in many patches and SRs. There is also
ikely a strong correlation between disc stars and proper motion 
ithin a patch. 14 Therefore, it is potentially concerning that VIA 

ACHINAE could systematically misidentify disc stars as stream stars. 
A conserv ati ve approach to a v oid this misidentification is to reject

ll ROIs where the line-finder returned best-fitting parameters that 
re at the edge of the patch closest to the Galactic disc and parallel
o it. Specifically, we propose to cut out all ROIs whose best-fitting
ine radius has | ρ| > 9.5 ◦, slope less than 0.2 radians in Galactic � ,
 coordinates (that is, aligned with the disc), and are localized on
he side of the patch nearest to the disc. This requirement remo v es
nly 91 ROIs (out of ≈ 17 000) from our sample. Such cut would
liminate the second stream that we find in Section 4, but it would
ot affect the GD-1 stream candidate at all. 

4 Understanding this correlation requires modelling stellar orbits in the Milky 
ay, and a detailed understanding of projection and line-of-sight effects. This

s beyond the scope of the present work. 
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