COMETS (1958)

Thirteen comets were under observation during 1958, but none of these was brighter than eighth magnitude. In addition to the two comets of small eccentricity which are observed annually, there were two new comets, three periodic comets whose return had been predicted, and six previous discoveries. Reports of observations have been unusually few during the year, the lion's share of the work being done by Dr Elizabeth Roemer, using the 40-inch reflector of the U.S. Naval Observatory at Flagstaff, Arizona. This instrument is very favourably placed for the observation of faint comets, and Miss Roemer's contributions to this work are of the very first importance. Extensive observations are also made by Van Biesbroeck at Yerkes and McDonald Observatories and by Jeffers at Lick, but otherwise comets are very much neglected. There is, however, considerable observational research on comets in the U.S.S.R., and in 1958 positions or physical measurements of seven comets are given for ten observatories in the Russian Astronomical Circulars.

Comet Schwassmann-Wachmann 1925 II was recorded at Flagstaff, Lick and McDonald, and has continued to show fluctuations of structure and brightness. On August 12 it had a sharp nucleus with only a faint coma, but on August 15 the nucleus appeared diffuse with a broad fan extending to 10 " from the nucleus, total magnitude 13.5 . By September 12 the magnitude was near 18, and the coma diffuse, but on September 22 the image was nearly stellar, magnitude 15, with only the faintest trace of coma. There was another outburst at the end of November (Van Biesbroeck), confirmed by a series of photographs at Flagstaff, when the total magnitude reached $14^{\circ} 0$, which is three magnitudes above normal brightness. At the beginning of December the coma was more than I^{\prime} in diameter with a clearly defined nucleus, but by December io the comet had faded noticeably. On December 4 N. U. Mayall obtained a spectrogram of the comet using the Crossley reflector at Lick; the spectrum was of the solar type with no emission features.

Comet Oterma, 1942 VII, has remained as a faint object throughout the present period. It was photographed at McDonald and Flagstaff in January, when it had a short tail, and again in April when it had a well condensed nucleus of magnitude 18; this is confirmed by photographs at Lick in April and May. At the end of the year it was again photographed at Flagstaff and was then of magnitude 18.8 with a trace of a tail to the N.W. Several papers of outstanding interest on the subject of this comet have recently appeared. Dr Liisi Oterma of Turku, Finland, has computed a definitive orbit for this comet (which is the third of three comets which she herself discovered in 1942-1943) and has studied its past history and future behaviour. It appears that the present 8 -year period resulted from a prolonged approach to Jupiter in the period 1936-1939, when the comet's distance from the planet decreased to 0.17 unit. The previous orbit had a period of 18 years, with a perihelion distance of $5.65 \mathrm{a} . \mathrm{u}$. as compared with the present 3.40 a.u. The circumstances will repeat themselves in the years 19621964, and this time the closest approach to Jupiter will be 0.095 a.u. in 1963 April. As a result, the comet's orbit will be enlarged once more, with an
increased eccentricity and a period of 19 years. A paper on the same subject by A. Fokin in Bull. Inst. Theor. Astr. (Leningrad) 7, (2), also gives a definitive orbit and carries the perturbations back to 1936. The original orbit is stated to have had a period of 23 years.

Some idea of the changes in the orbital elements may be gained from the following approximate values, derived from Oterma's papers:

	a	e	π	Ω	i	Period
1934	6.86	0.18	283°	35°	3°	18.0 years
1950	3.97	0.14	150	155	4	$7.9 \quad "$
1965	7.17	0.25	23	333	2	$19.2 \quad "$

Since the perihelion distance in the future orbit will be as much as 5.35 a.u. it is certain that this faint comet will be lost to moderate instruments after 1962. It is to be hoped that the largest telescopes will be able to follow its departure from the present orbit.

1954 k, Haro-Chavira, was under observation at Flagstaff from February to May. On May 15 the comet was near opposition, at a heliocentric distance of 7.7 a.u., and appeared on $90-\mathrm{min}$ exposures as a weak nearly stellar nucleus of magnitude 20.9; there was a very faint nebulosity about $0^{\prime} .5$ diameter.
(Observations 1954 December 17 to 1958 May 15)
1956 c, Wirtanen, continued to show a double nucleus throughout the year. In January (McDonald) and February (Flagstaff) the nuclei were separated by about $20^{\prime \prime}$ and were of magnitudes $16 \cdot 5$ and 18 . At both stations and at Lick a faint tail was reported in April and this continued to be present until the end of July. In April and May there seems to have been an emission of material from the sunward side of the primary nucleus. By the end of the year the nuclei had separated to about $25^{\prime \prime}$, and were last photographed at Flagstaff on December in at low altitude, magnitudes 18.5 and 19.0 . The comet should be observable in the spring of 1959 after conjunction.
(Observations 1956 March 16 to end of 1958, continuing)
1956 h, Arend-Roland, was photographed on January 25 by Van Biesbroeck, using the 82 -inch reflector at McDonald Observatory. The comet was estimated at magnitude 20 and showed a faint coma. Photographs at Flagstaff in January and March were made under conditions of poor seeing, but on April II exposures of 90 -mins gave measurable images of magnitude 21.0 .
(Observations 1956 November 8 to 1958 April II)
1957 d, Mrkos, was well south of the equator, and observations in the northern hemisphere were difficult. In such circumstances reports from southern observatories are always welcome, and in this connection it is gratifying to be able to correct an error in last year's report on this comet. Observations were made at the Perth Observatory from 1957 August 30 to October 21, and the positions obtained appear in UAIC 1629 . These accurate positions will be most valuable, and it is to be hoped that the observers at Perth will be able to continue with such work.

Comet Mrkos was observed at Johannesburg on 1958 February 21 and March 2, but all other reports come from Van Biesbroeck (McDonald, January 27), Jeffers (Lick, April 26), or Miss Roemer (Flagstaff, February 17-July 19). The comet faded from about magnitude 16 at the beginning of the year. In April and May it had a well-condensed nucleus (magnitude 18) with an unsymmetrical coma of about $0^{\prime} \cdot 2$ diameter. Conditions for observation, with the comet in declination $-3 \mathrm{I}^{\circ}$, were far from ideal; the last photographs were taken on July 9 , when the magnitude on $60-$ min exposures was estimated at 19.0 .
(Observations 1957 fuly 29 to 1958 ffuly 9)

1957 e, P/Reinmuth (r), was photographed at Flagstaff and McDonald in January; it then appeared as a somewhat diffuse coma about $O^{\prime} \cdot 1$ diameter, magnitude 18. In April (Lick) the appearance was that of a diffuse spot of magnitude 18.5 ; there was still a faint trace of coma surrounding a nearly stellar nucleus, magnitude 18•8, on May 15 (Flagstaff).
(Observations 1957 September 20 to 1958 May 15)
$1957 \mathrm{~g}, \mathrm{P} /$ Harrington (1), was again observed after perihelion passage in August. At McDonald the comet had a faint narrow tail I^{\prime} long on the west side of a diffuse nucleus. At Flagstaff the nùcleus appeared more strongly condensed, but the tail was also reported and the same general appearance continued during succeeding months, as the comet faded from magnitude 16.5 to about 18.6.
(Observations 1957 November 18 to end of 1958, continuing)

1958 a was discovered by Robert Burnham Jr., an amateur of Prescott, Arizona, on February 21-22, as mentioned in last year's report. Burnham was using a new 8 -inch reflector at his home, and at once notified the Lowell Observatory, whose co-operation enabled Miss Roemer to photograph the comet within two hours of the discovery.

The visual magnitude of the comet at the time of discovery was about 9 , but it was much fainter than this photographically. Observations were widely made in Europe and the U.S.A. At Heidelberg, Richter gave the total brightness as magnitude $9 \cdot \mathrm{r}$ in March, 8.5 to 8.8 in April, and this agrees with the customary careful observations of Max Beyer at Hamburg-Bergedorf. Using a law of the type $m=H_{0}+2 \cdot 5 n \log r+5 \log \Delta$, Beyer finds from 25 observations over the period April 6 to June 18 that $H_{0}=6.72 \pm 0.27$ and $n=7.36 \pm 0.74$. Thus even a sixth-power law would be inadequate to represent the changing brightness of this comet. We seem to be as far as ever from a solution of the problem of the luminosity of comets, and this is undoubtedly due to a lack of observational material.

The comet was followed at Flagstaff until September. In its early stages (March 10) it had a centrally condensed coma about $2^{\prime} \cdot 5$ diameter with a narrow straight tail 12 ' long directed eastwards. The tail was still visible in mid-May, when the total brightness reached magnitude 8.2 and the well-defined nucleus was surrounded by a coma of 4^{\prime} diameter (Van Biesbroeck). The comet faded rapidly after this and had reached magnitude 17 on August 20 (McDonald) and 19 on September 15 (Flagstaff).

A Sonneberg Sky Patrol plate taken on February io was found to contain a pre-discovery image.
(Observations February io to September 15)
1958 b, periodic comet Arend-Rigaux, was recovered by Dr Roemer on January 29 on the second of a series of search plates centred at $\Delta T=+2^{\mathrm{d}}$ and $+5^{\text {d }}$ from Candy's ephemeris in the B.A.A. Handbook. The stellar image was confirmed on later plates, and the faint comet (magnitude 19 at recovery) was followed until June 7 . The magnitude was then 20.5 , and the comet was not found on a 90 -min exposure on July 8. The comet at the time of recovery was well past perihelion, and observations indicate that Haségawa's predicted orbit in UAIC 1566 was in error by only $\Delta T=-1 \cdot 5$ days.
(Observations fanuary 29 to fyune 7)
1958 c , periodic comet Wolf (I), is the object of continuous research by Kamienski, and its recovery on June 13 is particularly gratifying. Exposures of 90 mins at Flagstaff during May had failed to locate the comet, but at the suggestion of Dr Roemer, a pair of plates was taken by W. A. Baum with the 200 -inch telescope at Palomar, centred on positions computed by Roemer. Both plates showed the stellar image of the comet, magnitude 20.4 , and subsequent plates at Flagstaff confirmed the recovery. In September the comet was in a rich star-field, but plates taken in October show probable images of the comet. Two good exposures of $90-$ mins on November 9, using io3a-D plates developed in metol sulphite showed no trace of the comet, which was then moving clear of the Milky Way. Kamienski's ephemeris of P/Wolf (r) was in error by only $\circ^{8 .} 3$ and $\mathrm{I}^{\prime \prime}$, and it is hoped to locate it again in the autumn of 1959.
(Observations fune 13 to October I4 (?))

1958 d, periodic comet Kopff, was recovered on the nights of June $25-26$ by Dr Roemer at Flagstaff. The comet, photographed at low altitude through the branches of a tree, showed a diffuse image not fainter than apparent magnitude 18.8. It was photographed in July (Flagstaff), August (McDonald and Lick) and September (Lick), and displayed a round coma $0^{\prime} \cdot 3$ in diameter, magnitude 18.5. By October it had faded below 20th magnitude and the images on plates taken in November and December at Flagstaff were very diffuse and nearly at the plate limit; the estimated magnitude was 21.6 .

The recovery of this comet is a matter of some importance. The close approach to Jupiter in 1954 caused serious changes in the orbit, the line of nodes being moved through 130°, so that the orientation of the plane of the orbit is completely altered. Although the orbit remains of the same size and shape, and the longitude of perihelion is little changed, the new orbit is inclined at nearly $I^{\circ}{ }^{\circ}$ to the old one. Kepinski's careful work on this comet has been rewarding, and emphasises once again the necessity of using accurate initial elements in such cases of close approach to Jupiter. It is also clear that a suitable perturbation method must be used; Kepinski's prediction was within 10^{8} and r^{\prime} of the observed position of the comet, and this can only be due to the particular care with which he computed the perturbations. He writes that he proposes to recompute them,
using intervals decreasing to $1 \cdot 25$ days in a Jovicentric system, in order to link the three apparitions of 1945, 195I and 1958.
(Observations fune 25 to December 4)
1958 e was the second new comet of the year, and was discovered by Robert Burnham Jr. and Charles D. Slaughter on a plate taken on September 7 with the ${ }^{13}$-inch telescope at Lowell Observatory in the course of a systematic survey of proper motions in the northern hemisphere. The first plates of this survey were made in the autumn of 1929, forming part of the programme for the discovery of Pluto in 1930, and continuing so as to cover the entire sky with this instrument. It is to be noted that the first cometary discovery of 1959 was also due to these two young astronomers working on the same proper-motion survey.

Comet 1958 e was a diffuse object of magnitude 14 at the time of discovery; it had a well condensed nucleus with a coma $0^{\prime} \cdot 7$ diameter and a short tail pointing south of east. The tail was also visible in October, but by November io the comet had merely a strong nuclear condensation set off-centre in a round coma. The comet was brighter in December, with a nucleus of magnitude 15.8 (Roemer) and total brightness (Van Biesbroeck) 13.5 , the observations being made at low altitude. Systematic observations of position were also made during this period by observers at Skalnaté Pleso.
(Observations September 7 to end of year, continuing)
Unsuccessful searches were made during 1958 for the following comets :
P/du Toit-Neujmin-Delporte. Skalnaté Pleso (July II, 12 to magnitude 17); McDonald (10 -inch Cooke lens, August, to magnitude 16); Palomar (48 -inch Schmidt, April 13); Lowell (13 -inch, July, September to magnitude 16); Johannesburg (May, June, July, October).
1957 f, Latyshev-Wild-Burnham. Flagstaff (January, February to magnitude 19); McDonald (January, February); Johannesburg (February).

P/Harrington-Wilson. Flagstaff (February to magnitude 19); Palomar (48-inch Schmidt, April $12-13$ to magnitude 20).
$\mathrm{P} /$ Ashbrook-Jackson. Flagstaff (February II to magnitude 20-2I).
P/du Toit (I). Flagstaff (December and in 1959, continuing).
The numerical designation of comets (in order of perihelion passage) has been extended by the I.A.U. Bureau (UAIC 1662). The list that follows continues that given in M.N. 118, 399, 1958. The perihelion dates (T) are from orbits noted in these annual reports.

Comet	T		Name \quad Y	Year and letter
1955 I	Feb.	$27 \cdot 1$	P/Schwassmann- Wachmann (2)	1954 g
II	Mar.	$4 \cdot 6$	P/Faye	1954 e
III	June	4.2	Mrkos	1955 e
IV	July	11.5	Bakharev-MacfarlaneKrienke	- 1955 f
V	Aug.	$4 \cdot 1$	Honda	1955 g
VI	Aug.	13.2	Baade	1954 h
VII	Sept.	$27 \cdot 4$	P/Perrine-Mrkos	1955 i
YIII	Nov.	$29 \cdot 8$	P/Whipple	1955 d

Ref.	Comet	T (U.T.)	q	e
(I)	193I II P/Encke	193I June 3.1136E	0.331867	0.849786
(I)	1934 III P/Encke	1934 Sept. 15.2816E	0.331861	0.849806
(I)	1937 VI P/Encke	1937 Dec. $27 \cdot 7538 E$	$0 \cdot 332391$	0.849604
(I)	194 I V P/Encke	1941 Apr. 17.1513E	$0 \cdot 341369$	0.846175
(2)	194I VII P/du Toit-NeujminDelporte	194I July 2I.2208E	1.305008	0.582987
(3)	1942 VII P/Oterma	1942 Aug. $22 \cdot 1947$	$3 \cdot 389461$	0.14443 I
(4)	1945 V P/Kopff	1945 Aug. II.2676	I.495674	0.556076
(1)	1947 XI P/Encke	1947 Nov. $26 \cdot 3263 E$	0.341026	0.846290
(5)	1948 VIII P/Forbes	1948 Sept. 16•1212E	I.545253	0.552716
(6)	1948 XII P/Honda-MrkosPajdušǎková	1948 Nov. 17.7086E	0.559024	0.814293
(7)	1949 V P/Väisälä	1949 Nov. 11.2782	1.75205 ${ }^{\text {P }}$	0.635232
(8)	1953 I Harrington	1953 Jan. 5.4170	I 664975	0.995947
(9)	1953 VI P/Harrington (2)	1953 Sept. 22.1628	I.69408 I	0.536031
(6)	1954 III P/Honda-MrkosPajdušáková	1954 Feb. 5•1067E	0.555646	0.815126
(10)	1954 IV P/Van Biesbroeck	1954 Feb. 20•8099 E	$2 \cdot 414935$	0.550031
(11)	1955 VIII P/Whipple	1955 Nov. 29.6926	2.449952	0.355800
(12)	1956 b Mrkos	1956 Apr. 13.6092E	0.842240	
(13)	1956 c Wirtanen	1957 Sept. 2.338	4.44611	1.00086
(14)	1958 b P/Arend-Rigaux	1957 Sept. 8-29p	1.38539	0.61070
(15)	1958 d P/Kopff	1958 Jan. 20.077p	I•519199	0.556223
(16)	1958 a Burnham	1958 Apr. $16 \cdot 304 \mathrm{I} E$	I. 322625	I
(17)	1957 g P/Harrington (r)	1958 Aug. in 830 p	I. 604438	0.53988I
(18)	1958 e Burnham-Slaughter	1959 Mar. II•527E	I. 628380	I
(19)	1958 c P/Wolf (1)	1959 Mar. 2I•824P	$2 \cdot 506895$	$\bigcirc \cdot 394754$
(20)	Predicted orbit P/Encke	1961 Feb. 5.583p	$0 \cdot 339017$	$0 \cdot 847056$

References and Notes to Table of Elements
(1) P/Encke. S. Y. Luchich, Bull. Inst. Theor. Astr. (Leningrad), 7, (2), 1958. Definitive elements.
(2) P / du Toit-Neujmin-Delporte. B. G. Marsden, UAIC 1652 . From 24 Uccle observations 1941 August 19-October 12, confirming the definitive elements of N. F. Boeva (M.N., III, 242, 195I)
(3) P/Oterma. A. V. Fokin, A.F. (U.S.S.R.), 35, 675, 1958. From 127 observations 1943-1950 at 7 oppositions, Jupiter and Saturn perturbations included. See also Bull. Inst. Theor. Astr. (Leningrad), 7, (2), 1958.
(4) P/Kopff. F. Kepinski, Acta Astr., 7, (2), 1957. Definitive.
(5) P/Forbes. B. G. Marsden, MS. From 13 observations 1948 May 4 to October 2 in 5 normals, assuming the period given by Cripps; Jupiter perturbations included.
(6) P/Honda-Mrkos-Pajdušáková. B. G. Marsden, MS. From 19 observations 1948 December 7 to 1949 January 10 and 28 observations 1954 January 28 to April i.
(7) P/Väisälä. L. Oterma, $M S$.
(8) 1953 I, Harrington. J. E. Forbes, H. Spinrad and D. B. Wood, A.7., 63, 5 10, 1958. Improved orbit from 3 observations, comparison with 15 others; arc of 292 days, Jupiter perturbations.
(9) P/Harrington (2). C. Dinwoodie, MS. Improved orbit, using 5 observations 1953 August 15 to December io,

Cometary Orbits

Period (years)	ω	Ω	i	Equinox	Epoch	Ref.
$3 \cdot 28$	184*9133	$334 \cdot \stackrel{\circ}{8974}$	12.5633	$1950 \cdot 0$	I93I June $28 \cdot 0$ E.T.	(I)
$3 \cdot 28$	184.9452	334.8823	12.5604	19500	I934 July 22.0 E.T.	(1)
$3 \cdot 29$	184.9393	334.8810	12.5488	1950.0	1937 Nov. 30.0 E.T.	(I)
$3 \cdot 31$	185•1599	334.7634	$12 \cdot 3505$	$1950 \cdot 0$	1941 Feb. 15*0E.T.	(1)
5.54	69.3394	229.6123	$3 \cdot 2604$	19500	...	(2)
$7 \cdot 89$	354.7883	155•1679	$3 \cdot 9898$	$1950{ }^{\circ}$	1943 Oct. 3.0 U.T.	(3)
6.18	31.5393	253.1185	7-2228	$1950 \cdot 0$	1945 July 4.0 U.T.	(4)
$3 \cdot 30$	$185 \cdot 1820$	334.7502	12.3524	$1950 \cdot 0$	1947 Oct. 22.0 E.T.	(1)
$6 \cdot 42$	259.7387	25.4443	4.6207	$1950 \cdot 0$	1948 Sept. 6.0 E.T.	(5)
$5 \cdot 22$	I84•1047	233.0918	13.1632	$1950 \cdot 0$	1948 Nov. 25•0 E.T.	(6)
10.53	44.3340	135.4651	I 1.2804	$1950 \cdot 0$	1949 Feb. 13.0 U.T.	(7)
$8326 \cdot 5$	191.6307	$220 \cdot 7322$	59•1201	1953.0	1953 Jan. 23.0 U.T.	(8)
$6 \cdot 98$	219.3820	$136 \cdot 6205$	I I 60009	$1950{ }^{\circ}$		(9)
$5 \cdot 2 \mathrm{I}$	184.1410	$233 \cdot 0836$	13.1950	$1950 \cdot 0$	1954 Jan. r8•oE.T.	(6)
12.43	I 34.3373	$148 \cdot 9757$	$6 \cdot 5905$	$1950 \cdot 0$	1954 Sept. 25.0 E.T.	(10)
$7 \cdot 42$	$190 \cdot 4345$	188.5091	10.2507	$1950{ }^{\circ}$	as T	(II)
...	8I.0098	226.108I	147.4555	1956*	\ldots	(12)
	13.263	$232 \cdot 944$	33.200	$1950 \cdot 0$		(13)
$6 \cdot 71$	326.405	124.648	17.200	$1950 \cdot 0$	1957 June 15.0 U.T.	(14)
$6 \cdot 32$	16I•7203	120.9975	47078	$1950 \cdot 0$	1957 Jan. 2.0 U.T.	(15)
$6 \cdot 51$	$\begin{array}{r}16.4596 \\ \hline 87.0288\end{array}$	${ }^{150 \cdot 6178}$	15.7920	$1958 \cdot 0$		(16)
$6 \cdot 51$	187.0288	$254 \cdot 2266$	18.4790	$1950 \cdot 0$	1958 Sept. 24.0 U.T.	(r7)
	100.7334	323.2066	6I•2598	$1959{ }^{\circ}$		(18)
$8 \cdot 43$	16I•0780	203.9045	27-2975	19500	1959 Mar. 13.0 U.T.	(19)
$3 \cdot 30$	185.227I	334*7214	12.3597	$1950{ }^{\circ}$	1960 Dec. 12.0 U.T.	(20)

(io) P/Van Biesbroeck. G. Van Biesbroeck, A.F., 63, 500, 1958. Definitive, with predicted elements for 1966.
(ir) P/Whipple. C. Dinwoodie, MS. Improved orbit, using 6 observations, 1955, comparison with 22 others.
(12) 1956 b, Mrkos, B. G. Marsden, B.A.A.F., 68, 124, 1958. From 32 observations 1956 March ${ }_{3} 3$ to May 5 in 4 normals.
(13) 1956 c, Wirtanen. I. Haségawa, UAIC 1665. Observations 1956 March to 1958 November; no perturbations.
(14) $\mathrm{P} /$ Arend-Rigaux. I. Haségawa, UAIC 1566 . Observations suggest $\Delta T=-1 \cdot 5$ days.
(15) P/Kopff. F. Kepinski, Acta Astr., 8, (4), 1958. Predicted elements derived from the 1951 orbit with perturbations by six planets.
(16) 1958 a, Burnham. B. G. Marsden, UAIC 165 I . From 3 observations, arc of 31 days.
(17) P/Harrington (I). J. Kordylewski, Acta Astr., 8, (2), 1958; perturbations by Jupiter and Saturn.
(18) 1958 e , Burnham-Slaughter. M. P. Candy, UAIC 166i. From 3 observations September 7, October 4, November 4.
(19) P/Wolf (1). M. Kamienski, Acta Astr., 7, (1), 1957.
(20) P/Encke. S. G. Makower, MS. Based on the elements of B.A.A. Handbook 1957 with perturbations Mercury to Saturn.

The elements of cometary orbits recently computed are tabulated on pp . 442/443 in order of perihelion passage T. Ephemeris Time has been used in those cases marked E; all other times are in U.T. The symbol p indicates predicted elements only.

Additional Notes

Individual Comets

P/Halley. M. Kamienski, Acta Astr. Vol. 8. The past history of the comet is considered in relation to historical references.
P/Wolf (r). M. Kamienski, Ibid.
P/Oterma, 1942 VII. A. V. Fokin, Bull. Inst. Theor. Astr. (Leningrad), 7, (2), and A. F. (U.S.S.R.), 35, (4). The references to the papers of L. Oterma were given in last year's report.
P/Schwassmann-Wachmann (1). E. Roemer, P.A.S.P., 70, 272, 1958. An account of the outbursts of this comet.
P/Encke. S. Y. Luchich, Bull. Inst. Theor. Astr. (Leningrad), 7, (2). The author shows that the secular acceleration of Comet Encke cannot be explained on Mokhach's hypothesis that it may be due to systematic errors of observation.
P/du Toit-Neujmin-Delporte. A. S. Sochilina, Bull. Inst. Theor. Astr. (Leningrad), 6, (9). See M.N., 118, 397, 1958, reference (ı6).
1956 h, Arend-Roland. G. Larssen-Leander, Ark. für Astr. Bd 2, (23), 259, 1958. (Stockholm Medd. III). Physical observations of the comet with some excellent photographs and bibliography.

General

Computers of the Warsaw and Cracow observatories, under the direction of Kamienski, are investigating the orbits of periodic comets Perrine-Mrkos, Harrington (1) 1952 II, Grigg-Skjellerup and Giacobini-Zinner. In the U.S.S.R., Galibina has investigated the original and future orbits of some long-period comets: Bull. Inst. Theor. Astr. (Leningrad) 6, (9). Both Vsessviatsky and Orlov have published books on comets (in Russian) during the year. Vsessviatsky, Babuch and Kazutinsky discuss the capture theory of the origin of short-period comets in A. F. (U.S.S.R.) 35, (3); they conclude that the hypothesis is inconsistent with the observed distribution of orbits. Steins has derived criteria governing the capture of comets from a parabolic orbit, assuming plane motion: A. \mathcal{F}. (U.S.S.R.), 35, (1)
J. G. PORTER.

