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ON THE ANALOGY BETWEEN NEUTRON STAR
MODELS AND ISOTHERMAL GAS SPHERES AND
THEIR GENERAL RELATIVISTIC INSTABILITY

S. Yabushita
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SUMMARY

Investigation is made of the structure of gaseous spheres such that their
equation of state is p = gp, where p and p are pressure and energy-density,
respectively and ¢ is a constant, and the relation is obtained between the
central density and the mass of the gaseous spheres such that they exert the
same pressure at the boundary. It is shown that this relation is very similar
to the corresponding one for neutron star models, and in particular there exist
mass-peaks in the diagram.

Assuming that the adiabatic index y is related to g by the relation y = 1+¢,
equation for radial oscillation about equilibrium is derived. It is shown that
the neutral mode of the oscillation can be expressed in terms of the Emden
function. By making use of the neutral mode solution, the degee of com-
pression needed to make the sphere dynamically unstable is calculated. It
can be shown that if ¢ # o the sphere becomes unstable before the first mass-
peak is reached in the mass-central density diagram, but if ¢ = o, the instability
sets in precisely at the mass-peak.

I. INTRODUCTION

The equation of state p = gp, where p and p are pressure and energy—density
respectively and ¢ is a constant, is sometimes used as a physical property of the
core of a neutron or hyperon star. The value of ¢ is 1/3 for neutron star models,
but it may be close to 1/13 when baryons are present (Ambartsumian & Saakyan
1961). Recently Chandrasekhar (1972) has shown that the structure of the gas
sphere with the equation of state p = ¢p calculated within the framework of
general relativity is very similar to the structure of isothermal gas spheres. Of
particular interest is the existence of the maximum pressure in the relation between
the volume of a gas sphere with a given total mass and the pressure which it exerts
at the boundary (Yabushita 1973a). On the other hand, the relation between the
central density and the mass of gas spheres with a given value of pressure at the
boundary will be shown to exhibit mass peaks very similar to neutron star models.
In this paper it will be shown that these two features stem from the same property
of the Emden equation calculated in general relativity.

The stability of isothermal gas spheres was calculated in Newtonian theory
(Yabushita 1968): it has been shown that when y (ratio of the specific heats) = 1,
those spheres that lie right to the point of maximum pressure are stable, but the
stability is lost precisely at the point of maximum pressure, or at the mass peak in
the mass—central density diagram. On the other hand, the statement is sometimes
made (Misner & Zapolsky 1964) that in neutron star models which exhibit similar
mass peaks, general relativistic instability sets in at the first mass peak. The object
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of the present paper is to investigate whether this is the case for gas spheres such
that p = gp is valid, and are surrounded by an envelope which exerts a constant
pressure. In a recent paper (Yabushita 1¢g773b), the equation for radial pulsation
has been derived for such gaseous spheres by assuming that the adiabatic index y
and ¢ are two independent parameters, and the configurations that are marginally
stable have been calculated. In the relativistic region, however, y and ¢ should be
regarded as connected by the relation y = 1+¢ (see Misner & Zapolsky). When
this relation is used, solutions corresponding to marginal stability can be obtained
in terms of the relativistic Emden function as will be shown. And this solution
enables one to decide when the stability is lost without numerically solving the
equation of radial oscillation. It will be shown that the general relativistic instability
sets in before the configuration of maximum pressure (or maximum mass) is
reached.

2. THE PRESSURE—-VOLUME AND MASS—RADIUS RELATIONS

Let us adopt the form of the metric used by Chandrasekhar and write
r = af, o2 = c4g[4nGpe(1+ )]
p=pec,  MO) = (i) [ prtdr = (o) M), (2.)

where 7 is the coordinate radius and p. is the energy-density at the centre. The
condition that the system is in hydrostatic equilibrium gives that the functions i
and M satisfy the relativistic Emden equation

2qg M\ d _ ’ —
(‘“?:q %)% = M@rerg e, (2.2)
‘%4 _ e,

The value of the pressure p at the boundary and the volume V' of the gas sphere
with a given amount M(R) of total energy are respectively given by Yabushita

(19732)

_ 47 [G(i+g) M(R)]® €
v =2
_ C4q ng 2 < _

Now the value of ¢ which corresponds to the maximum pressure (P) in the p-V
diagram is given by the following consideration. At P, V' decreases monotanically
with increasing £. Hence the point P is characterized by dp/d¢ = o, or

2L - M@ = o (2-4)

On the other hand, if we consider a family of configurations with a given value of
pressure (po) at the boundary, we have that

po (regarded as given) = p¢ exp [— (£)], (2.5)
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which gives the relation between p. and the value of ¢ at the boundary. By inserting
the relation (2.5) into (2.1), one finds that the central density p. and the mass
M(R) are given by

pe = po exp [H(£)];
M(R) = (47/c?po'/?)[c*q[4mG(1 +q)]3/2 M (€) exp [— LH(£)]- (2.6)
These equations give the required relation between the density and total energy

of gas spheres such that the pressure at the boundary has the same value. For the
sake of illustration, the M-p. relation is shown in Fig. 1 for the case ¢ = 1/3.
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Fi1c. 1. Tke relation between the mass and the central density. The abscissa gives exp [(£)]
which is proportional to the central density and the ordinate gives M (§) exp [ — y(£)/2]
which is proportional to the mass. q = 1/3. The relation for q = o is similar to the case

q = 1/3.

One may note the similarity of the figure to Fig. 1 of Misner & Zapolsky for neutron
star models. Of particular interest is the occurrence of maximum mass at the point
denoted by Q in the figure. Its position is given by

dM(R) dM(R) d¢ _
dpe 3 ;l;(; -

and since d¢/dp. # o, we must have that

dM(¢) dy _
275——‘1—5 M(§) = o,

which is the same as equation (2. 4). This shows that the occurrence of the maximum
pressure in the p—V relation and that of the maximum mass in the density—mass
relation stem from the same property of the Emden equation in both Newtonian
and general relativistic theory. There exist infinitely many values of ¢ for which
equation (2.4) is satisfied. The first one (£1) corresponds to the first mass-peak
(or pressure-peak) and the second one (£2) corresponds to the first mass-valley
and so on.

7
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3. THE PARTICULAR SOLUTION FOR RADIAL MOTION

In a previous paper (Yabushita 1973b) the equation for radial motion of a
gaseous sphere has been derived within the framework of general relativity by
assuming that the motion about equilibrium takes place adiabatically with index y;
the unperturbed equilibrium configuration is such that the equation of state is of
the form p = gp. In relativistic scheme, it is natural to define y by the relation
(Wheeler 1966)

_btp (d_P)
P \dp

as calculated by equation of state, or
y=1+¢g

instead of treating y and ¢ as two independent parameters. When y is connected
to ¢ by this relation, the equation for radial oscillation reads

a%f ( 2, 4 o e**ﬂ”) /R [ 24¢ dl/j]f e (3.1)

dfz £ d¢ d¢ 1+gq df 47Gpe(1+ q) ’
where the energy-density perturbation 6p is given by
_ v 4a
8p 352 & exp (oct)

and where e = 1—2gM(€)/(1+q) &, v = 2qp(€)/(1 +¢). In order to discuss the
stability, a solution to equation (3.1) with ¢2 = o is important since it corresponds
to marginal stability. We show below that such a solution can be constructed from
the Emden functions M (£€) and ().

For this purpose, denote the differential operator on the left of the above
equation by L. By differentiating equation (2.1), one finds that

d2M s
— == -10 2 —1/’
pr 2fe I3 7 ©
2dM  ,, _ (M ~ )( 2q M)—l
=" —8e V| HgbteV)|1- L —
tae VT \pTE 1+q €
or
d2M 2dM amMm
L2 —+A 227 —yr+A =
dE £ d +gée P +e M = o,
whence follows the relation
d¢ dM zqf dys B
LM it 0t YA _

In order to show that a similar relation exists for £3 eV, we first note the
relation
2M dz//( v 24 M

L e ¥ = [—-__ -+ e—l/’-{-
1 1+q €2

2 pr: —qé e‘@”)] (3-3)
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which follows from equation (2.2). We also have that

= e—¢{ &3 (fzgf £ j‘;wf e~y (352 Z—‘;)}. (3-4)

By adding £3 e~2/+ (di/d€) 2¢€/(1 +¢) to the above equation and by making use
of (3.3), one readily finds that

d§2

~ dpdM  2¢¢ ,_ difs
L(&3 A5 Ay
(€)= dé¢ dé¢ 1+¢ Mdf (3-5)
Equations (3.5) and (3.2) show that the function
g=M-8eV (3.6)

is a particular solution of the pulsational equation (3.1) with o2 put equal to zero.
Moreover, when £ <1, g oc £3 so that §p remains finite at £ = o, and it follows that
for g to be the solution of the eigenvalue problem, it has to satisfy the condition
imposed at the boundary. It should be pointed out that in the limit ¢ — o, equation
(3.1) reduces to the corresponding one in Newtonian theory with y = 1 (Yabushita
1968), so that the particular solution (3.6) is valid both in Newtonian and relativistic
theory.

4. MARGINALLY STABLE CONFIGURATIONS

Let us contend that during the motion about an equilibrium the outer medium
exerts a constant pressure at the boundary so that the Lagrangian change of the
pressure vanishes at the boundary. This condition is more physically admissible
than the one adopted in the previous paper, namely that the Eulerian change of
pressure be zero at the boundary. The vanishing of the Lagrangian change of
pressure (see equation (2.16) of Yabushita 1973b) gives the condition

40 S =0 at the boundary. (4.1)

For the g defined by (3.6), we now calculate the value of

dg dfp g
d¢ d¢ 1+q

at the values of £(&,, say) for which the equation (2.20) holds, that is dp/dV = o
or dM/dp; = o. It is easy to calculate that

dg  dp g q {d¢ g e }

+__ = f € 2// M .2

S et e, (42

and when g = o, this expression vanishes. When ¢ is non-zero, this is not generally

the case. We have thus established that in Newtonian theory (¢ = o) the gas

sphere becomes dynamically unstable when it is compressed to the configuration P

in the p—V diagram and at this point, the first eigenvalue o2 changes from negative

to positive value. This conclusion had been reached earlier (Yabushita 1968) by

numerical means. Since the curve left to the maximum mass in the M—p. diagram
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corresponds to the portion of the curve right to the point P in the p—V diagram,
this is equivalent to the statement that configurations left to the point Q in the
M-pc diagram are dynamically stable. Again, since there are infinitely many values
of £ for which equation (2.4) is satisfied, it follows that when the gas sphere is
compressed to the second value &> of (2.4), the second eigenvalue o2 changes from
negative to positive value, and so on.

The above statement is valid only when ¢ = o, namely in the Newtonian
theory. For non-zero values of g, the function 2dM|d¢ — M dij/d¢ has been calcu-
lated to obtain the values of ¢ for which the function vanishes. In Table I below,
these values are tabulated, together with the values of £3 e~¥ — M at these points.

TaBLE I
The values £1, &3, . . . for which the function 2dM|d¢ — M di/d¢ vanishes. ¢ = 1/3
3 & 2 €3
3-36 19-27 1237
BeVv-M 0-88 —1°04 178

Now dij/d¢ and eV are everywhere positive, so that from the above Table it
follows that there is a value of £ in éi<é<é1 (6 = 1, 2) such that

dgldt+g(1+q)t dijjd¢

vanishes. That this function is negative when £ <1 follows from the behaviours of
M (€) and (€) namely

$(é) = 3+9) 2+..., M(¢) = 8/3+...,

Hence, as £ increases from zero, the function dg/d¢+g(1 +q)~ dij/d¢ vanishes at
a value less than £, or in other words, the first eigenvalue o2 changes from negative
to positive value before the point of maximum pressure is reached in the p-V
diagram. In a similar manner, the second eigenvalue changes from negative to
positive value before the point & is reached and so on.

Although this argument is sufficient to show that the general relativistic
instability sets in at a configuration less compressed than the one at P or Q, the
first value of ¢ where dg/df+g(1+q)~ dij/d¢ vanishes has been computed for
various values of ¢, and is shown in Table II. For the sake of comparison, we give

TaBLE II

The value of £ for which dg|dé + (di[d€) f/(x + q) vanishes. This value gives the gas sphere which
is marginally stable. Compare the value with Table III. Note that each value is less than the
value of ¢ given by Yabushita (1973a) which corresponds to maximum pressure.
0°1 0°2 0°3 o4 0'5 06 07 o-8 0'9 1°0
450 3°68 323 294 2'75 261 2-50 242 2°34 229

n

q
¢

in Table III the configurations of marginal stability calculated with the boundary
condition (4.1) and by regarding ¢ and y as two independent parameters. These
values have been computed by the same procedure as in the previous paper, where
a somewhat artificial boundary condition has been adopted.

The configurations of marginal stability are marked on the mass-density dia-
grams of Figs 1 and 2. As one may easily see, these configurations lie left to the
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TasLe III

The values of &b such that gas spheres with boundary values of ¢ greater than &b are unstable.

Boundary condition (4.1) is used and q and y are regarded as two independent parameters. Note

that the underlined value is less than the value that corresponds to the mass-peak in the mass—
central density relation, or the pressure-peak in the pressure—volume relation

=0'I 1/3 10
10 3:02 249 1-58
11 4°49 268 1°65
12 5°25 2-86 1°72
1°3 636 3°05 180
4/3 3'12
1°4 8:25 326 1-87
15 350 1°94
16 376 2-01
17 4-06 2-08
1-8 2°15
19 2°22
2°0 2°29
06— ~
$=280
04— -
o N
{ -
} - §=|5.9
I UNSTABLE
1
02 ! _
|
I
i
|
1
!
o HE | ]
1 10 100 1000

Fic. 2. The mass—central density relation for ¢ = 1-0.

mass peak. Thus, general relativistic instability sets in before the mass peak (or
pressure peak) is reached.

5. DISCUSSIONS

A core for which is the equation of state p = gp s valid, surrounded by an
envelope is sometimes used as a model of neutron stars. The model adopted by
Misner & Zapolsky (1964) is one of them; it has a core in whichp = ¢gp (¢ = 1, 1/3,
1/5, 1/13) and a relatively thin envelope. All such models show mass—density
relations similar to the one shown in Fig. 1. Adopting Chandrasekhar’s (1964)
variational principle for investigating the stability of the neutron star model,
Misner & Zapolsky claim to have found that the neutron star model becomes
unstable precisely at the mass-peak, and this statement appears to be widely
accepted in the literature (see, for instance, Wheeler 1966).
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In the previous section we have shown that only in the Newtonian theory, the
gas sphere loses stability at the mass peak and that the second eigenmode becomes
unstable at the mass valley and the third one becomes unstable at the second mass
peak and so on. But in general relativity we have found that this is not the case and
indeed dynamical stability is lost before the first mass-peak is reached. This
conclusion is different from Misner & Zapolsky’s finding. The gas spheres investi-
gated in the present paper have envelopes which exert constant pressure, whereas
Misner & Zapolsky’s neutron star model has a more realistic envelope in which the
equation of state has a physically admissible form. To what extent the difference
in the conclusions depends upon the difference in the models used is not easy to
decide.

The critical mass which is marginally stable is only a few per cent less than the
mass that corresponds to the mass peak and this amount of uncertainty is always
involved in neutron star model calculations. However, that the marginally stable
mass is less than the maximum mass is a genuine effect of relativity and as such its
significance should be appreciated.

Department of Applied Mathematics and Physics, Kyoto University, fapan
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