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A B S T R A C T
We present a novel approach to quantifying the morphology of cosmic microwave background
(CMB) anisotropy maps. As morphological descriptors, we use shape parameters known as
Minkowski functionals. Using the mathematical framework provided by the theory of integral
geometry on arbitrary curved supports, we point out the differences in their characterization
and interpretation in the case of flat space. With the restrictions of real data – such as
pixelization and incomplete sky coverage, to mention just a few – in mind, we derive and test
unbiased estimators for all Minkowski functionals. Various examples, among them the
analysis of the four-year COBE DMR data, illustrate the application of our method.
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1 I N T RO D U C T I O N

The oldest signal accessible to mankind is the cosmic microwave
background (CMB) discovered by Penzias & Wilson (1995).
Consisting of photons that have been free-streaming since the
Universe was only 300 000 years old, the CMB provides valuable
information on the early history of our Universe. Above all its
anisotropies mirror the matter fluctuations at the epoch of recom-
bination (at redshift z < 1; 100) and with them the seeds of the
large-scale structure seen today.

Various methods of statistical analysis have been used on CMB
maps. Among them are the two- and three-point correlation func-
tion (Hinshaw et al. 1995, 1996), the power spectrum (Górski et al.
1996), skewness and kurtosis (Luo & Schramm 1993), multifractals
(Pompilio et al. 1995) and the extrema correlation function (Kogut
et al. 1995). Another promising approach is the investigation of the
morphology of hot and cold spots. Being complementary to the
traditional approach via the hierarchy of correlation functions, it
provides alternative methods for determining cosmological para-
meters (Torres et al. 1995). However, above all, morphological
statistics incorporate correlation functions of arbitrary order. Hence
they are sensitive to signatures of non-Gaussianity in the tempera-
ture fluctuations, which would indicate the presence of topological
defects such as strings or textures arising from phase transitions in
the early Universe (Stebbins 1988).

In order to measure the morphology of CMB anisotropies, the
Euler characteristic, or equivalently the genus, was suggested as
long as a decade ago (Coles & Barrow 1987; Coles 1988). Even to

date, most applications are confined to genus statistics, although an
early theoretical study by Gott, III et al. (1990) also considers the
boundary length, but failed to come up with a subsequent analysis
of data. The analysis of the first-year COBE DMR data using genus
statistics was carried out by Smoot et al. (1994); their work also
contains a thorough discussion of the performance of the method
compared to other measures of non-Gaussianity. Further applica-
tions of topological methods on CMB anisotropies come from
Torres (1994) and Torres et al. (1995), and genus calculations of
the four-year COBE DMR data are from Colley, Gott, III & Park
(1996) and Kogut et al. (1996).

The genus can be placed in the wider framework of the Min-
kowski functionals (Minkowski 1903), by natural and compelling
mathematical considerations. Originally introduced to tackle pro-
blems of stochastic geometry, this family of morphological descrip-
tors subsequently set off the development of integral geometry (see
Blaschke 1936 or Hadwiger 1957 for early works, and Schneider
1993 for a comprehensive overview). Recently, the Minkowski
functionals have been introduced into cosmology as descriptors for
the morphological properties of large-scale structure by Mecke et
al. (1994). While their original approach uses a Boolean grain
model applicable to the analysis of point sets, Schmalzing &
Buchert (1997) consider excursion sets and isodensity contours of
smoothed random fields. Applications have so far been restricted to
the morphometry of large-scale structure in redshift catalogues of
galaxies (Kerscher et al. 1998) and clusters of galaxies (Kerscher et
al. 1997).

The promising results in large-scale structure analysis motivate
the application of Minkowski functionals to CMB sky maps. Since
all-sky maps live on a curved support, some formal obstacles will be
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encountered, but the underlying concepts remain the same, and the
central formulae are easily generalized (Santaló 1976). In applica-
tions to data, care must be taken to remove the effects of usually
incomplete sky coverage, while retaining as much information as
possible at the same time.

Our article is organized as follows. Section 2 summarizes the
framework of integral geometry first in flat space, and then on
spaces of non-zero but constant curvature, with special regard to the
different interpretations. Also, we express all Minkowski func-
tionals of the excursion set of a smooth random field as integrals
over purely local invariants formed from derivatives. In Section 3
we use these integration formulae to construct estimators for the
numerical evaluation of the Minkowski functionals for a pixelized
CMB sky map. The important problem of incomplete sky coverage
is addressed, and we find prescriptions for boundary corrected,
unbiased estimators, even for smoothed data. Section 4 is devoted to
examples, among them a study of noise reduction through Gaussian
filtering, and a morphological analysis of the maps constructed
from the COBE DMR four-year data by Bennet et al. (1996).
Finally, we summarize, draw our conclusions and provide an
outlook in Section 5. Two appendices further illuminate the
mathematical aspects of this paper by giving detailed derivations
of important formulae.

2 T H E O RY

2.1 Integral geometry

Let us first introduce integral geometry in flat space, or, to be more
precise, in d-dimensional Euclidean space Ed . We wish to char-
acterize the morphology of a suitable set Q ⊆ Ed. Hadwiger’s
Theorem (Hadwiger 1957) states that under a few simple require-
ments, any morphological descriptor is a linear combination of only
d þ 1 functionals; these are the so-called Minkowski functionals Vj,
with j ranging from 0 to d. If the set Q has a smooth boundary ∂Q, its
Minkowski functionals – except for the d-dimensional volume V0,
which is of course calculated by volume integration – are given by
simple surface integrals (Schneider 1978). Note that we use qj to
denote the surface area of the j-dimensional unit sphere. Some
special values are q0 ¼ 2, q1 ¼ 2p, q2 ¼ 4p, while in general

qj ¼
2pðjþ1Þ=2

G½ð j þ 1Þ=2ÿ
: ð1Þ

So altogether we have

V0ðQÞ ¼

�
Q

dv;

VjðQÞ ¼
1

qj¹1

d

j

 !�
∂Q

dsSj k1 . . . kd¹1

ÿ �
: ð2Þ

Here dv and ds denote the volume element in Ed and the surface
element on Q, respectively, k1 to kd¹1 are the d¹1 principal
curvatures of the boundary, and Sj is the jth elementary symmetric
function defined by the polynomial expansion

Yd¹1

i¼1

ðx þ kiÞ ¼
Xd

j¼1

xd¹jSj k1 . . . kd¹1

ÿ �
; ð3Þ

hence S1 ¼ 1, S2 ¼ k1 þ . . . þ kd¹1, and so on up to
Sd ¼ k1 . . . kd¹1. Table 1 summarizes geometric interpretations of
the Minkowski functionals in one, two and three dimensions.

2.2 Spaces of constant curvature

Let us now consider the d-dimensional space of constant curvature
kK. The sign k equals þ1, 0 or ¹1, for the spherical space Sd, the
Euclidean space Ed and the hyperbolic spaceHd , respectively. K is a
positive constant of dimension ½lengthÿ¹2, hence its inverse square
root K¹1=2 can be interpreted as the radius of curvature. Santaló
(1976) shows how to obtain an integral geometry on such spaces.
Curvature integrals as in equation (2) can still be defined, if care is
taken to use the geodesic curvatures ki. In the following, we will call
these quantities the Minkowski functionals in curved spaces.

However, some of the geometric interpretations are altered with
respect to the flat case. While in flat space the curvature integral
VdðQÞ is equal to the Euler characteristic xðQÞ, curved spaces
require a generalized Gauss–Bonnet theorem proved for arbitrary
Riemannian manifolds by Allendoerfer & Weil (1943) and Chern
(1944). The theorem states that the Euler characteristic is a linear
combination of all Minkowski functionals as defined by
equation (2),

xðQÞ ¼
Xd

j¼0

cjVjðQÞ; ð4Þ

with the coefficients cj given by

cj ¼
d
j

� �
2ðkKÞðd¹jÞ=2

qd¹j
if d¹j even

0 if d¹j odd

8<: ð5Þ

Note that from the point of view of Hadwiger’s theorem, which is
also valid on curved spaces, all linear combinations of Minkowski
functionals are equally suitable as morphological descriptors, so
one may both use the integrated curvature Vd and the Euler
characteristic x as the last Minkowski functional. In the following,
we will consider both quantities, because the integrated geodesic
curvature is easier to calculate, and the Euler characteristic is easier
to interpret. Obviously, in the case of Euclidean space Ed, k ¼ 0 and
all coefficients apart from cd vanish, so x ¼ Vd and the original
Gauss–Bonnet theorem is recovered.

2.3 Two-dimensional unit sphere

We now focus attention on the supporting space for CMB sky maps,
the sphere S2 of radius R. The parameters introduced in the
previous section now take the values d ¼ 2 for the dimension,
k ¼ þ1 for the curvature sign, and K ¼ R¹2 for the absolute value
of the curvature.
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Table 1. Some of the d þ 1 Minkowski functionals in
d-dimensional Euclidean space may be interpreted as
familiar geometric quantities (apart from numerical
factors). This table summarizes the geometric inter-
pretations of all Minkowski functionals for one, two
and three dimensions. The symbol x denotes the
Euler characteristic, a purely topological quantity;
it measures the connectivity of a set, being equal to
the number of parts minus the number of holes in two
dimensions.

d 1 2 3

V0 length area volume
V1 x circumference surface area
V2 – x total mean curvature
V3 – – x
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Rewriting the definition in equation (2), we obtain the Min-
kowski functionals for a set Q ⊆ S2 with smooth boundary ∂Q by

V0ðQÞ ¼

�
Q

da;

V1ðQÞ ¼
1
4

�
∂Q

d,; V2ðQÞ ¼
1

2p

�
∂Q

d,k; ð6Þ

where da and d, denote the surface element of S2 and the line
element along ∂Q, respectively. Being a linear object, the boundary
∂Q has only one geodesic curvature k.

Using the generalized Gauss–Bonnet Theorem in equation (4)
with the coefficients for two dimensions substituted, we can
calculate the Euler characteristic xðQÞ from the Minkowski func-
tionals via

xðQÞ ¼ V2ðQÞ þ
1

2pR2 V0ðQÞ: ð7Þ

Note that by inserting the definitions from equation (6), this formula
reproduces the ordinary Gauss–Bonnet theorem for surfaces with a
smooth boundary embedded in three-dimensional flat space.

Let us now consider a smooth scalar field uðxÞ on S2, for example
the temperature anisotropies of the microwave sky. We wish to
calculate the Minkowski functionals of the excursion set Qn over a
given threshold n, defined by

Qn ¼ x [ S2 j uðxÞ > n
� 	

: ð8Þ

The zeroth Minkowski functional V0, i.e. the area, can be evaluated
by integration of a Heaviside step function over the whole sphere

V0ðQnÞ ¼

�
S2

da Qðu ¹ nÞ: ð9Þ

The other Minkowski functionals are actually defined by line
integrals along the isodensity contour in equation (6), but they
can be transformed to surface integrals by inserting a delta function,
and the appropriate Jacobian.

V1ðQnÞ ¼
1
4

�
∂Qn

d,

¼

�
S2

da dðu ¹ nÞjgraduj
1
4
;

V2ðQnÞ ¼
1

2p

�
∂Qn

d, k ð10Þ

¼

�
S2

da dðu ¹ nÞjgraduj
1

2p
k:

Since the integrands can now be written as second-order invariants
(see Appendix A for a detailed calculation of the geodesic curvature
k), we have succeeded in expressing all Minkowski functionals as
surface integrals over the whole sphere S2,

VjðQnÞ ¼

�
S2

da I j; ð11Þ

with integrands I j depending solely on the threshold n, the field
value u and its first- and second-order covariant derivatives. In
summary,

I 0 ¼ Qðu ¹ nÞ;

I 1 ¼
1
4
dðu ¹ nÞ

�����������������
u2

;1 þ u2
;2

q
; ð12Þ

I 2 ¼
1

2p
dðu ¹ nÞ

2u;1u;2u;12 ¹ u2
;1u;22 ¹ u2

;2u;11

u2
;1 þ u2

;2

:

In the following, we will use the surface densities of the Minkowski

functionals, that is we will divide by the area of S2.

vjðnÞ ¼
1

4pR2 VjðQnÞ ¼
1

4pR2

�
S2

da I j: ð13Þ

2.4 Expectation values for a Gaussian random field

Minkowski functionals and other geometric characteristics of
Gaussian random fields are extensively studied by Adler (1981).
Analytical expressions for the average Minkowski functionals of a
Gaussian random field in arbitrary dimensions were derived by
Tomita (1986); in the special case of two dimensions, the results for
the isodensity contour at threshold n are1

v0ðnÞ ¼
1
2

¹
1
2
F

n ¹ m�����
2j

p !
;

v1ðnÞ ¼
t1=2

8j1=2 exp ¹
ðn ¹ mÞ2

2j

� �
; ð14Þ

v2ðnÞ ¼
t

2p3=2j

n ¹ m�����
2j

p exp ¹
ðn ¹ mÞ2

2j

� �
:

Note that these expressions contain only three parameters,
namely m, j, and t. All three are easily estimated from a given
realization of the Gaussian random field, by taking averages of the
field itself, its square, and the sum of its squared derivatives; then

m ¼ uh i

j ¼ u2
 �
¹ m2 ð15Þ

t ¼
1
2

u;iu;i


 �
:

With these relations and the spherical harmonics expansion of u, the
parameters j and t may also be calculated directly from the angular
power spectrum C,, with the results

j ¼
X∞

,¼1

ð2, þ 1ÞC,; ð16Þ

t ¼
X∞

,¼1

ð2, þ 1ÞC,
,ð, þ 1Þ

2
:

3 E S T I M AT I N G M I N K OW S K I F U N C T I O N A L S
O F P I X E L I Z E D C M B S K Y M A P S

Throughout this section, we will illustrate the application of our
method on a particular random field. In order to stick to a simple,
analytically tractable model, we generate a Gaussian random field.
Its angular power spectrum C, is chosen to reproduce the salient
features of the DMR sky maps. Hence, we start from angular
components given by the formula

C,;powerlaw ¼ C2

G , þ
n ¹ 1

2

� �
G

9 ¹ n
2

� �
G , þ

5 ¹ n
2

� �
G

n þ 3
2

� � ; ð17Þ

derived from a power-law spectrum PðkÞ ~ kn by Bond &
Efstathious (1987), and smooth them with a Gaussian filter of 78
FWHM to model the DMR beam. White noise with a fixed rms
fluctuation level of 3mK is then added to this ‘cosmic signal’; this is
in practice performed on the pixels in real space, but for comparison
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1The function FðxÞ is the Gaussian error function given by
FðxÞ ¼ ð2=

����
p

p
Þ
� x

0 dt expð¹t2Þ.
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we may also evaluate the contribution to the angular power
spectrum, which is

C,;noise ¼ ð3mKÞ2 ð18Þ

independent of ,. Finally, a Gaussian smoothing kernel of variance
q2, given by

g,;Gauss ¼ exp ¹
1
2
q2,ð, þ 1Þ

� �
ð19Þ

is applied to reduce the noise level, and to obtain a regular field.
Note that the normalization factor C2 in equation (17) is directly
related to the CMB quadrupole. As pointed out by Górski et al.
(1994) its particular value determined from the COBE DMR sky
maps is highly dependent on the spectral index n; therefore it has
become common usage to quote the multipole C10 < ð7mKÞ2 as a
sufficiently spectrum independent normalization.

So the various contributions to the angular power spectrum C, for
our example sum up to

C, ¼ g2
,;Gauss C,;powerlawg2

,;beam þ C,;noise

ÿ �
: ð20Þ

In Fig. 1, the contributions of ‘signal’ and noise are shown
separately, and combined to the full spectrum, all after 38 smoothing.

3.1 Estimators for a pixelized sky map

In order to estimate the Minkowski functionals from a discretized
map we attempt to follow the prescription outlined by Schmalzing
& Buchert (1997) for cubic grids in three-dimensional Euclidean
space. Note that their first approach based on Crofton’s formula and

counting of elementary cells is not viable since a strictly regular
pixelization of the sphere does not exist. However, their second
approach is based on averaging over invariants analogous to
equation (11), and can easily be adapted to the sphere. If the
random field is sampled at N pixels at locations xi on the sphere,
we only need to estimate the values I jðxiÞ of the invariants from
equation (12) at each location.

3.1.1 Covariant derivatives

Using the well-known parametrization of the unit sphere through
azimuth angle c and polar angle J we can express the covariant
derivatives at a point x ¼ ðc;JÞ in terms of the partial derivatives;2

u;c ¼ u
;c;

u;J ¼
1

sin c
u
;J;

u;cc ¼ u
;cc; ð21Þ

u;cJ ¼
1

sin c
u
;cJ ¹

cos c

sin2 c
u
;J;

u;JJ ¼
1

sin2 c
u
;JJ þ

cos c

sin c
u
;c:

The partial derivatives in turn are best calculated from the spherical
harmonics expansion

uðc;JÞ ¼
X∞

,¼0

X,

m¼¹,

a,mY,mðc;JÞ: ð22Þ

This is simply done by replacing the harmonic function Y,m with its
appropriate partial derivative. Since the functions Y,m depend on J

via sine and cosine functions only, the derivatives with respect to J

can be obtained analytically. Partial derivatives with respect to c are
calculated via recursion formulae constructed by differentiating the
recursion for the associated Legendre functions Pm

, , given for
example by Abramowitz & Stegun (1970).

3.1.2 Integrals over invariants

We still have to account for the finite number of sample points. This
is done by replacing the delta function with a bin of finite width D,

dðu ¹ nÞ <
1
D

1½¹D=2;þD=2ÿðu ¹ nÞ; ð23Þ

where 1A is the indicator function of the set A, with 1AðxÞ ¼ 1 for
x [ A, and 1AðxÞ ¼ 0 otherwise. The integrals summarized in
equation (11) are then estimated by summation over all pixels3

vjðnÞ <
1
N

XN

i¼1

wiI jðxiÞ: ð24Þ

For incomplete sky coverage we must restrict the average to the
unmasked pixels. This problem is adressed in detail in Section 3.2.

3.2 Testing the estimators

3.2.1 Complete sky coverage

To begin with, let us look at the example without simulating the
restrictions of incomplete sky coverage. Fig. 2 shows the average
Minkowski functionals of 1000 realizations.
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Figure 1. The angular power spectrum shown in this plot is used for all tests
of the estimators presented in this section. It was chosen as a rough model for
the DMR maps while remaining analytically tractable. The complete power
spectrum, indicated by a solid line, is the sum of two contributions, namely a
Harrison–Zeldovich spectrum normalized to C10 ¼ ð7mKÞ2, convolved
with a 78 FWHM beam to mimick cosmic ‘signal’ (dashed line), and
random pixel noise (dotted line). In order to obtain a regular field and
suppress noise the combined spectrum is smoothed with a Gaussian filter; its
width for this particular example is 38. Although the noise contribution has
not been completely removed, it has been considerably reduced without
affecting the signal too strongly. See Section 4.2 for a broader discussion of
this issue.

2Note that we use indices following a semicolon, such as u;i to denote
covariant differentiation of u with respect to the coordinate i, as opposed to
partial derivatives where we write indices following a comma, e.g. u

;i.
3We set the pixel weight factors wi equal to 1, but this may be changed, if
care is taken to preserve

PN
i¼1 wi ¼ N.
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Looking at the general features of all curves, it can be seen that
the area v0 of hot spots decreases monotonically from the value of
one at low threshold, when the whole sphere belongs to the
excursion set, to a value of zero at high thresholds, which are not
passed by any of the pixels. The boundary length v1 starts from a
value of zero for a completely filled sphere. It reaches a maximum at
intermediate thresholds, where the excursion set forms an inter-
connected pattern of patches and holes with a very long boundary.
When the excursion set becomes emptier and emptier, the boundary
length declines back to zero. For the random field shown in our
example, the integrated geodesic curvature v2 behaves largely
similar to the Euler characteristic; the minor differences only
become appreciable for fields with fewer features. Lastly, the
Euler characteristic x at low thresholds has a value of two for a
closed sphere. With increasing threshold, the Euler characteristic
declines to negative values as holes open in the excursion set and
give a negative contribution. This downward trend gradually stops
as individual hot spots emerge, so a minimum develops, and the
Euler characteristic attains positive values. Finally, more and more
hot spots fall below the growing threshold, so their number and
hence the Euler characteristic decreases again, reaching a final
value of zero.

A description of the individual curves can be found in the figure
caption.

3.2.2 Uncertainties through incomplete sky coverage

In practice, a data set will suffer from incomplete sky coverage. In
order to estimate the uncertainties introduced solely by the galactic

cut, we first construct a single realization of the random field on the
whole sky. The Minkowski functionals for this random field are
calculated and roughly fit the analytical expectations, with fluctua-
tions consistent with the areas shown in Fig. 2. Then, we apply a
series of straight galactic cuts with varying direction, but with
constant width of 308; this value reduces the number of pixels to
exactly half the original value. Fig. 3 shows a comparison of the true
values for one field and the fluctuations introduced by the sample
variance of the rotating cuts. Note that the smaller number of pixels
does increase the uncertainties, but the average is not affected – the
estimator remains unbiased.

3.2.3 Boundary effects

The previous subsection dealt with a random field that was first
realized on the whole sky, then smoothed with a Gaussian filter, and
cut afterwards. In order to determine whether the galactic cut affects
the estimators derived above, we use the COBE DMR pixels and the
customized cut from the four-year data (Bennett et al. 1996). This
time, we remove the pixels within the galactic cut before the
smoothing kernel is applied.

It turns out that by using this procedure, which is actually the
correct one for mimicking real data, the galactic cut severely affects
the estimators, and leads to a systematic bias of as much as 1j. Fig. 4
shows the unbiased results from all-sky maps already displayed in
Fig. 2, in comparison the biased result obtained with the naively
applied estimator.

A straightforward procedure to remove these biases from the
estimators is to further restrict the number of pixels to the ones that
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Figure 2. Minkowski functionals for the example used throughout this
Section. The areas indicate the averages and 1j fluctuations of an ensemble
of 1000 realizations computed on all 6144 pixels of the DMR sky cube. The
analytical expectation values in equation (14) with parameters determined
from the theoretical power spectrum via equation (16) are almost exactly
reproduced by the mean values (central lines). Fluctuations indicated by the
shaded area are a result of uncertainties in the parameter determination from
a single map via equation (15). They account for a large part of the overall
fluctuations (empty area).

Figure 3. This plot shows the uncertainties owing to a galactic cut. In order
to separate them from fluctuations between different realizations in an
ensemble (see Fig. 2), we chose a single all-sky realization (central line) of
the random field, and applied 1000 straight cuts up to 308 latitude with
randomly varying orientation of the equatorial plane. It turns out that the
uncertainties caused by this deterioration of statistics are at least as strong as
ensemble fluctuation. However, the correct mean value is still reproduced
(the mean and the true value conincide in the central line of the jagged area),
so the estimator remains unbiased.
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lie ‘far away’ from the cut. In order to find them, we consider the
indicator function of the cut itself, smooth it with the Gaussian filter,
and consider the values at pixels outside the cut as their level of
‘contamination’. Now the sums from equation (24) can be restricted
to the pixels where the smoothed cut lies below a certain threshold.
Fig. 5 shows the results for an allowed level of 1 per cent; in
practice, even as much as 5 per cent produces sufficiently unbiased
estimates. Note that while the mean values agree completely after
applying the correction, the variance of the estimators has
increased, simply because fewer data points result in poorer
statistics.

Apart from the galactic cut, point source contamination is
another important source of incomplete sky coverage. Fig. 6
shows the bias introduced by omitting 200 randomly scattered
pixels. Obviously, the effect is much less pronounced compared to
the realizations excluding the galactic cut; in fact the differences
between the all-sky realizations and the restricted realizations are
barely visible. Both the galactic cut and the random point cut affect
roughly 3000 of the 6144 DMR pixels with a contribution of 1per
cent or above, so at first sight our findings appear inconsistent.
However, they can be explained with the prominent geometric
features – namely, almost straight edges – in the galactic cut. These
are missing in a random point distribution, so the errors remain
smaller and average out.

4 E X A M P L E S

4.1 The Earth

In order to provide a familiar example that does not look like a

Gaussian random field even at DMR resolution, Fig. 7 shows the
Minkowski functionals of the earth’s topography. The map (see
Fig. 8) was constructed by binning the Etopo5 data4 into the DMR
pixels.

The curves reveal a number of characteristic features. All
functionals experience a fairly sharp change at a depth between
6000 and 5000 m, which is roughly the average depth of the
seafloor. A peak of several 1000 m width and almost constant
height of the boundary length v1, and a corresponding minimum
in the Euler characteristic x indicate the rise of the oceanic ridges.
From 3000 m below sea level to slightly positive elevations, the
boundary length remains largely constant, as the continental shelfs
rise from the oceans; meanwhile, the Euler characteristic fluctuates
with the disappearance of the oceanic ridges, and the opening of
shallower, marginal parts of the oceans such as the Mediterranean,
the Carribean sea or the Arctic sea. Most of the land mass does not
rise beyond 1000 m, so all Minkowski functionals gradually decline
after this height; a few small peaks in the Euler characteristic may
be – cautiously – identified with Antarctica, the Rocky Mountains,
the Andes and the Himalayas.

4.2 How smoothing leads to noise reduction

In order to obtain a regular field, and to reduce the level of the
additive noise present in the data, it is necessary to apply a
smoothing kernel to the data before calculating the Minkowski
functionals. Usually, the choice of a particular width is largely
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Figure 4. If the galactic cut is applied beforesmoothing the random field, as
it should be done for real data, pixels in the vicinity of the galactic cut suffer
from severe contamination. This leads to a visible bias in the estimated
Minkowski functionals, particularly the integrated curvaturev2 and the
Euler characteristicx, although the areav0 and the circumferencev1 are also
affected. The shaded area shows average and fluctuations for the all-sky map
already presented in Fig. 2, while the empty area with thicker contour and
central line indicates the same quantities for the maps biased through the cut.

Figure 5. The biases demonstrated in Fig. 4 can be removed by also
smoothing the cut, and excluding points where the smoothed cut still reaches
a certain level. In the example shown, this threshold was set to a very
restrictive 1 per cent; obviously the mean values agree completely. In
practice, a level as high as 5 per cent might still produce reliable results.
Note that fluctuations have increased in comparison with the results obtained
from all-sky maps, as already demonstrated in Fig. 3.

4The Etopo5 data base gives elevations on a cylindrical grid of 5-arcmin
spacing. The data files may be obtained from the net via ftp://walrus.
wr.usgs.gov/pub/data/; see also NOAA (1988).
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arbitrary. Here we show the example introduced in Section 4 with
different degrees of smoothing applied to illustrate the behaviour of
Minkowski functionals in the presence of noise.

The situation for 28 smoothing, where noise still makes an
appreciable contribution, is shown in Fig. 9. The surface area v0

is much less affected than the other Minkowski functionals; this is
because of the fact that noise is incoherent and forms comparatively
small hot and cold spots. However, these spots are almost as intense
as the signal contribution, as can be seen from the almost equal
width of all curves, and far more numerous – the Euler character-
istic for the noise field alone reaches a maximum of the order of 200.
Even though the extrema in the pure noise maps are spread out over
the whole range of thresholds when added to the signal, and hence
their number at a specific threshold decreases, their contribution is
still sufficiently high to make the signal appear completely different
compared to the combination of signal and noise.

In Fig. 10, where the results for 88 smoothing are displayed, noise
is almost completely invisible in comparison to the signal. Only
about two dozen extrema of either kind (compare the extrema of the
Euler characteristic) remain, but since they have become extremely
shallow, their contribution is not significant any more; the pure
signal and the combination of signal and noise differ only margin-
ally. Unfortunately, at a resolution of 88 the remaining signal does
not carry too much cosmological information.

With this example, the behaviour of Minkowski functionals
under filtering at different scales has only been hinted at. The two
filter widths of 28 and 88 are chosen to show two extremal
possibilities, namely total dominance of noise and total reduction
of noise. In practice, the intermediate value of 38 turns out to give
good enhancement of signal, while preserving small-scale informa-
tion as well.

4.3 Analysis of the COBE DMR four-year data

As a last example, let us take a look at data that are both real and
cosmologically relevant. Fig. 11 shows a map of the microwave sky
as seen at 53 GHz by the COBE satellite after four years of
observing (Bennett et al. 1996). The data are restricted to 3189
pixels receiving less than 1 per cent from a smoothed galactic cut,
when a Gaussian filter of 38 width is applied. Fig. 12 displays the
corresponding Minkowski functionals. Obviously, the analysis
carried out on all 6144 pixels is dominated by galactic emission,
while the field with the galactic cut applied is consistent with the
assumption of a stationary Gaussian random field. However, this
result should be considered a illustration of the method rather than
conclusive evidence, since our brief analysis probes a scale of
roughly 48 (given by the squared sum of 2.68 pixel size and 38
Gaussian filter width).

As stated above, considerable uncertainties are introduced
through the estimates of the parameters m, j and t entering the
analytical expectation values for the Minkowski functionals of a
Gaussian random field. In order to make this statement more
quantitative, Fig. 13 summarizes the parameters determined from
the 1000 mock realizations used for the shaded area in Fig. 12.
Relative errors for the relevant parameters lie in the range of five to
ten per cent, which is not too bad considering that little more than
3000 data points enter our analysis.

5 S U M M A RY A N D O U T L O O K

We have introduced Minkowski functionals of isotemperature
contours as a novel tool to characterize the morphology of CMB
sky maps.

Using the framework of integral geometry in curved spaces, we
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Figure 6. The same quantities as in Fig. 4 are compared in this plot, but with
200 random pixels excluded instead of the galactic cut. Contamination
affects more pixels than in the case of a galactic cut – if a residue of 1 per
cent is allowed, 2842 out of the original 6144 pixels remain, compared to
3189 for a galactic cut. However, the estimated Minkowski functionals are
more robust.

Figure 7. Minkowski functionals of the earth’s topography from the map in
Fig. 8 with a 18 Gaussian filter applied. The resulting Minkowski functionals
(jagged lines) look decidedly non-Gaussian; compare the analytical expec-
tation values (smooth lines). Pronounced features in the Minkowski func-
tional curves can be identified as corresponding to the main features of the
Earth’s topography, such as oceanic ridges, continents and mountain ranges.
See the main text for details.
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were able to clarify the geometric interpretations of all Minkowski
functionals in two dimensions. Writing all Minkowski functionals
as spatial averages over invariants formed from covariant deriva-
tives, lead to simple formulae for estimators applicable to pixelized
sky maps, including a straightforward prescription for dealing with
incomplete sky coverage. Finally, analytical formulae for all
Minkowski functionals of the excursion sets of a Gaussian
random field could be provided.

The study of a simplified yet realistic model served to test the
theoretically derived estimators in their application to simulated
CMB sky maps. Among other tests, we checked whether the
estimators remain unbiased when incomplete data is smoothed
over the edge of a galactic cut, and found a prescription to deal
with this problem while preserving as much information as
possible.

A number of examples provided further illustrations of the
application of our method, and showed how to interpret the
calculated Minkowski functionals in close touch with the analysed
data sets. The analysis of the Earth’s topography using Minkowski
functionals explained how to cast the bridge from the behaviour of
the Minkowski functional curves to outstanding features in the
underlying random field. As a more serious application, we showed
the successive reduction of noise through Gaussian smoothing with
increasing filter width – in the end, a complete removal of the noise
effects from the Minkowski functionals is obtained. The final
example briefly analysed a COBE DMR map, with the not particu-
larly surprising result that the field is consistent with a Gaussian
random field on degree scales.

Minkowski functionals combine the benefits of a sound mathe-
matical framework and well-understood analytical possibilities
with intuitive interpretations and easy applicability to real data.
Hence they qualify as a method suited to study the microwave sky at
higher resolution, where the obstacle of poor statistics should not be
an issue. While experiments to obtain high-resolution maps of large
regions of the sky are still under development (Bennett et al. 1995;
Bersanelli et al. 1996), testing the Minkowski functionals on

simulations is an important task for the future. In particular, we
need to assess their power to detect non-Gaussianity, and find the
possibilities to estimate cosmological parameters from Minkowski
functionals in an approach complementary to the power spectrum
analysis.
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Figure 8. This map shows the Earth’s topography at DMR resolution. The corresponding Minkowski functionals are displayed in Fig. 7.

Figure 9. Signal (shallow curves, empty area), noise (sharply peaked curves,
empty area) and combination of both (shaded area) at 28 smoothing. At this
scale, the noise contribution contains far more features than the signal.
Moreover, they are strong enough to persist when distributed over the whole
range of the signal. Hence the combination of signal and noise displays a
completely different morphology from the pure signal contribution.
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Figure 10. Signal (shallow curves, empty area), noise (sharply peaked
curves, empty area) and combination of both (shaded area) of the same
random field as in Fig. 9, but at 88 smoothing. Although the pure noise map
still features roughly two dozen extrema, their amplitude has been reduced
to such extent that the pure signal is hardly affected when combined with the
noise.

Figure 11. This panel shows the four-year data from the COBE DMR 53-GHz channel, with a customized galactic cut and a smoothing filter of 38 width applied.
Fig. 12 displays the corresponding Minkowski functionals calculated both from this map, and from the all-sky map with galactic signal dominating.

Figure 12. Minkowski functionals of the four-year COBE DMR map in the
53-GHz channel. As expected, the full map of 6144 pixels (dashed line) is
severely affected by galactic emission; this results in long tails for all
Minkowski functionals. Using a galactic cut, the functionals determined
from the map (solid line) become consistent with a stationary Gaussian
random field. The shaded area indicates the mean and variance of 1000
realizations of a Gaussian random field with Harrison–Zel’dovich spectrum
and pixel noise; normalizations were chosen to reproduce the parameters m,
j and t determined from the data via equation (15).
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Springer Verlag, Berlin
Hinshaw G., Banday A. J., Bennett C. L., Górski K. M., Kogut A., 1995,
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A P P E N D I X A : G E O D E S I C C U RVAT U R E O F A N
I S O D E N S I T Y C O N T O U R

Consider a scalar field u on a two-dimensional differentiable
manifold M. We wish to calculate the geodesic curvature of the
isodensity contour passing through a point x0 [ M. To do this, we
use a procedure outlined by ter Haar Romeny et al. (1991). In a
sufficiently small neighbourhood we can always find an explicit
parametrization xðtÞ of the isodensity contour, with xðt ¼ 0Þ ¼ x0.
The corresponding threshold is n ¼ uðx0Þ, and therefore the contour
is implicitly described by
uðxðtÞÞ ¼ n: ðA1Þ

It follows by covariant differentiation with respect to the parameter
t that5

u;iẋi ¼ 0 ðA2Þ

must hold. So we can choose the tangent vector6

ẋi ¼ eiju;j: ðA3Þ

Actually this choice is not unique and reflects the freedom of
parametrization; however, care must be taken to orient the tangent
vector towards regions of lower values of u. Differentiating
equation (A1) a second time we obtain

u;ijẋiẋj þ u;kẍk ¼ 0 ðA4Þ

whence we can now evaluate the geodesic curvature k of the
isodensity contour via the well-known formula

k ¼
ẋieijẍj

ðẋkẋkÞ
3=2 : ðA5Þ
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Figure 13. Uncertainties in the parameter estimates. Parameters were
determined from each of the 1000 simulated DMR maps, and binned into
histograms. In order to give an idea of the amount of uncertainty, the range is
extended to include zero in all plots. Obviously, the fluctuations are still
fairly large in comparison to the mean value; to be precise, the relative rms
fluctuation is roughly 8 per cent for m, almost 6 per cent for t, and more than 9
per cent for

���
j

p
.

5The overdot ˙ denotes differentiation with respect to the parameter t, and
summation over pairwise indices is understood.
6eij is the totally antisymmetric second-rank tensor normalized to e12=1.
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As our final result we obtain

k ¼
2u;1u;2u;12 ¹ u2

;1u;22 ¹ u2
;2u;11

ðu2
;1 þ u2

;2Þ
3=2 : ðA6Þ

Note that this formula contains the covariant derivatives of u and
therefore holds for any manifold M, regardless of the metric.

A P P E N D I X B : AV E R AG E M I N K OW S K I
F U N C T I O N A L S F O R A G AU S S I A N R A N D O M
F I E L D

Isodensity contours of a Gaussian random field have been exces-
sively studied ever since the works of Doroshkevich (1970) on the
genus. Comprehensive overviews can be found in the book by Adler
(1981) or the famous BBKS paper (Bardeen et al. 1986). A highly
instructive derivation of the average values for all Minkowski
functionals in arbitrary dimension can be found in (Tomita 1990).
Nevertheless, we will outline a calculation directly related to our
approach to the numerical evaluation.

A homogeneous Gaussian random field u with zero mean on a
two-dimensional manifold M is fully described by its correlation
function yðrÞ. We wish to calculate the average Minkowski func-
tionals vjðnÞ of an isodensity contour to the threshold n. Because of
equations (11) and (12) it is sufficient to know the joint probability
distribution of the field’s value itself and the derivatives up to
second order at some fixed point.

According to Adler (1981) these six variables are jointly Gaus-
sian distributed. Hence their probability distribution function can be
written in concise form by arranging them into a vector
u ¼ u; u;1; u;2; u;11; u;22; u;12

ÿ �
; we have

PðuÞ ¼
1���������������������

ð2pÞd det j
p exp ¹

1
2

uTj¹1u
� �

; ðB1Þ

with the covariance matrix j taken from Tomita (1990)

j ¼

j 0 0 ¹t ¹t 0
0 t 0 0 0 0
0 0 t 0 0 0

¹t 0 0 u=3 0
¹t 0 0 u=3 0
0 0 0 0 0 u=3

0BBBBBB@

1CCCCCCA: ðB2Þ

Note that the parameters j ¼ yð0Þ, t ¼ jy00ð0Þj and u ¼ y0000ð0Þ all
depend on the correlation function yðrÞ.

Now we can perform the averages

v0ðnÞ ¼

�
duPðuÞQðu ¹ nÞ

v1ðnÞ ¼

�
duPðuÞdðu ¹ nÞ

�����������������
u2

;1 þ u2
;2

q
ðB3Þ

v2ðnÞ ¼

�
duPðuÞdðu ¹ nÞ

2u;1u;2u;12 ¹ u2
;1u;22 ¹ u2

;2u;11

u2
;1 þ u2

;2

by straightforward integration, and have recovered the results of
Tomita (1990) in two dimensions

v0ðnÞ ¼ 1
2 ¹ 1

2F
n�����
2j

p !
;

v1ðnÞ ¼ p=4
l������
2p

p exp ¹
n2

2j

� �
; ðB4Þ

v2ðnÞ ¼
l2n���������
2pj

p exp ¹
n2

2j

� �
:

As stated in the main text, the result depends on only two
parameters, namely

j ¼ yð0Þ; l ¼

��������������
jy00ð0Þj

2pyð0Þ

s
: ðB5Þ

This paper has been typeset from a TEX=LATEX file prepared by the author.
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