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A B STR ACT
We show that radiation-dominated accretion discs are likely to suffer from a ‘photon
bubble’ instability similar to that described by Arons in the context of accretion on
to neutron star polar caps. The instability requires a magnetic field for its existence.
In an asymptotic regime appropriate to accretion discs, we find that the overstable
modes obey the remarkably simple dispersion relation

w 2\ÐigkF(B, k).

Here g is the vertical gravitational acceleration, B is the magnetic field, and F is a
geometric factor of order unity that depends on the relative orientation of the
magnetic field and the wavevector. In the non-linear outcome it seems likely that the
instability will enhance vertical energy transport and thereby change the structure of
the innermost parts of relativistic accretion discs.
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1 INTRODUCTION

Compact objects such as black holes and neutron stars are
among the most interesting objects in astrophysics because
of their exotic strong-field gravitational physics and because
they are likely at the centre of some of the most luminous
and energetic objects in the Universe. Since it is mainly their
accretion flows, and not the compact objects themselves,
that are readily observed, the dynamics and radiative
properties of the accretion flows are the focus of much
theoretical attention.

One of the most important models for accretion flows is
the thin disc (Shakura & Sunyaev 1973; Lynden-Bell &
Pringle 1974). This model predicts that for rapidly accreting
objects the inner parts of the disc are radiation-pressure-
dominated. It was realized soon after the model was first
proposed, however, that radiation-pressure-dominated
discs are unstable, both viscously (Lightman & Eardley
1974) and thermally (Shakura & Sunyaev 1975). This sug-
gests that the standard thin-disc model is not self-consistent,
and so attention has turned to other models such as advec-
tion-dominated flows (see Narayan 1997 for a review).

Despite theoretical arguments that the thin disc is
unstable, thin-disc spectra are widely used to fit observa-
tions of black hole candidates. Indeed, there is indirect
evidence for (theoretically unstable) thin discs in that some

observations are well fitted by thin-disc spectra. For
example, some Galactic black hole candidates such as Nova
Muscae have X-ray spectra that are well fitted by multi-
temperature thin-disc models (R. Narayan, private com-
munication).

One can stabilize radiation-pressure-dominated discs by
modifying the usual prescription for the shear stress tr f1ap
so that trf1apg (pg=gas pressure) or some combination of
gas an radiation pressure (e.g. Lightman & Eardley 1974;
Piran 1978). Arguments have been advanced in favour of
such a modification by Eardley & Lightman (1975), Coro-
niti (1981), Sakimoto & Coroniti (1981, 1989) and Stella &
Rosner (1984). These arguments rely on the thermo-
dynamic peculiarities of magnetic buoyancy in a radiation-
dominated plasma. More recent work has vastly increased
our understanding of magnetically driven angular momen-
tum diffusion in discs (see the review by Balbus & Hawley
1998). Numerical experiments suggest that trf is limited by
Lorentz forces rather than by buoyant escape of magnetic
fields (Stone et al. 1996), although these experiments do not
include radiation pressure and radiative diffusion.

An alternative route to viscous stability (e.g. Liang 1977)
is to modify the disc cooling law using convection, although
this is not successful in eliminating the thermal instability
(Piran 1978). Modification of the disc cooling rate has not
seemed a promising approach.
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Recently, however, while investigating neutron star polar
cap accretion, Klein & Arons (1989, 1991) noticed the
development of evacuated regions, or ‘photon bubbles’1 in
their radiation hydrodynamics simulations. A subsequent
linear analysis (Arons 1992) revealed that the source of the
photon bubbles was an overstable mode present in radia-
tion-dominated, magnetized atmospheres. Earlier incarna-
tions of the photon bubble instability in an unmagnetized
plasma have turned out to be flawed; Marzec (1978) gives a
full discussion of this point. Later numerical studies of the
non-linear evolution of the photon bubble instability (Hsu,
Arons & Klein 1997) showed that vertical transport of
energy is enhanced in the non-linear outcome.

One is naturally led to inquire whether this same photon
bubble instability is present in the radiation-dominated
parts of accretion discs and, if so, what the consequences
might be for disc structure. Unfortunately, Aron’s (1992)
analysis is not immediately applicable to discs. It considers
physical parameters relevant to neutron star polar cap
accretion: a thermal time-scale long compared to the
dynamical time-scale, negligible gas pressure, and super-
thermal magnetic field. Our purpose in this paper is to
generalize Aron’s work to the regime appropriate to discs.

First, we evaluate conditions inside accretion discs using a
standard a model (Section 2). Then we write down a set of
governing equations appropriate to these conditions (Sec-
tion 3). In Section 4 we construct a model equilibrium to
perturb about, and in Sections 5 and 6 we work out the
linear theory in the WKB limit. The astrophysical implica-
tions of the result depend on the non-linear outcome, about
which we speculate in Section 7. Section 8 contains a
summary.

2 CONDITIONS  IN  ACCR ETION  DISC S

What conditions are relevant to a study of the photon
bubble instability in accretion discs? Consider accretion on
to a black hole of mass m M> at a rate ṁLeddc 2, where
Ledd=4pGMc/kes, and kes is the electron scattering opacity.
Using the standard thin-disc, one-zone model (Shakura &
Sunyaev 1973), assuming that radiation pressure is domi-
nant and k3kes30.4 g cmÐ2, we find that at radius
rGM/c 2

S30.37aÐ1 ṁ Ð1 r 3/2 g cmÐ2, (1)

T32.4Å107 a Ð1/4 m Ð1/4 r Ð3/8 K, (2)

r34.2Å10Ð7 aÐ1 m Ð1 ṁ Ð2 r 3/2 g cmÐ3. (3)

Here and throughout we ignore corrections due to general
relativity and the inner boundary of the disc. Radiation-
dominated accretion discs have entropy profiles that suggest
convective instability (e.g. Bisnovatyi-Kogan & Blinnikov
1977). Calculations of disc vertical structure using mixing-
length theory (Shakura, Sunyaev & Zilitinkevich 1978)
show, however, that the vertical radiative flux of energy
always dominates the vertical advective flux, and so the
mean structure of the disc is not likely to be very different
from the values calculated above.

The electron scattering optical depth is

ts3Skes/2\0.074aÐ1 ṁ Ð1 r 3/2, (4)

while the ‘true’ optical depth, which measures the extent to
which radiation is thermalized inside the disc, depends on
the absorption opacity ka:

t*\SZkeska/2. (5)

The absorption opacity is a complicated function of density,
temperature, metallicity and the radiation spectrum. Taking
ka3kP, the Planck mean opacity, and evaluating kP from
tables for a solar-composition gas (Magee et al. 1995), we
find that t* ranges from x1 to aa1. For example, at r\50
from a 10-M> black hole accreting at ṁ\1, and taking
a\0.1, we find t*314.8. Discs around supermassive black
holes have somewhat higher effective optical depths, since
they are cooler and the Planck mean opacity increases
sharply below 3Å106 K due to bound–free absorption by
metals. All this implies that the true optical depth of pertur-
bations that are smaller than the scaleheight can be small,
and so the radiation field must be treated using an approxi-
mation that is valid in this regime.

The ratio of gas pressure pg to total pressure P is

br=pg/P\1.6Å10Ð6 a Ð1/4 m Ð1/4 ṁ Ð2 r 21/8, (6)

so the boundary of the radiation-dominated region lies at

rc3160a 2/21 m 2/21 ṁ 16/21. (7)

Also the sound speed cs is

cs/c\3.0 ṁr Ð3/2. (8)

The radiative diffusivity is D0=c/(kr). In dimensionless
form,

M0=
D0

cs H
34.5a, (9)

where H=disc scaleheight. Thus M011, while in neutron
star polar cap accretion M0ss1. This difference changes the
character of the instability significantly, and is the most
important difference between our work and Aron’s work.

We also need an estimate for the magnetic field strength.
We use the prescription bM=c 2

i /v
2
A\(4a)Ð1 (c 2

i =P/r is the
isothermal sound speed; vA=Alfvén speed), consistent with
the simulations of Hawley, Gammie & Balbus (1995). So if
a\0.1, bM\2.5. For reasonable values of a, then, bM11.
Arons (1992) focused on the case bMss1, but developed a
more general analysis in an appendix.

Finally, heat conduction, radiative viscosity, ordinary vis-
cosity and ordinary resistivity are all completely negligible.

To summarize the results of this section, accretion discs
have approximately thermal magnetic fields, so bM=c 2

i /
v2

A11. In their inner region radiation pressure dominates,
so brss1. The thermal time-scale is comparable to the
dynamical time-scale (to within a factor of a), so the dimen-
sionless radiative diffusion rate M0=[c/(kr)]/(ci H)11.
Finally, the thermalization length, l*=(rZkka)

Ð1, varies
widely, but can be 1H. Since we will consider perturbations
on scales small compard to the scaleheight, the perturba-
tions can also have a scale small compared to the thermal-
ization length. Thus it is not clear a priori that it is

930 C. F. Gammie

© 1998 RAS, MNRAS 297, 929–935

1Bubble is something of a misnomer, since surface tension plays no
role. The phenomenon is really more like convection.
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appropriate to use the Rosseland diffusion approximation
for the radiation field.

3 BASIC  EQUATIONS

Since we cannot use the Rosseland diffusion approximation
for the radiation field, we turn to the more general flux-
limited non-equilibrium diffusion approximation (see
Mihalas & Mihalas 1984, and references therein). This
approximation is very similar to the Rosseland diffusion
approximation (it still sets Kij\Jdij/3, where K and J are the
second and zeroth angular moments of the intensity), but,
loosely speaking, it allows for the possibility that the radia-
tion field has a different ‘temperature’ than the gas. More
precisely, it does not require that J\sT 4

g/p, where Tg=gas
temperature. Because it is a diffusion approximation, it is
strictly valid only on scales that are large compared to the
photon mean free path (rkes)

Ð1, but it gives qualitatively
sensible results on smaller scales.

The governing equations for the gas, then, are the conti-
nuity equation,

Dt r\Ðr (H ·v), (10)

where Dt=qt+(v ·H), the momentum equation,

rDt v\ÐHpgÐrHf+
(B ·H)B

4p
Ð

HB 2

8p
+

4pkr
c

H, (11)

where H=qdW In/(4p) is the frequency-integrated flux2 and
f is the gravitational potential, and the gas energy equation
(u=internal energy per unit volume),

Dt u\Ðgu (H ·v)+4pka r (JÐB), (12)

where J is the frequency-integrated mean intensity, B3sT 4
g/

p, and we approximate the absorption opacity by the Planck
mean opacity. The magnetic field evolution is governed by
the induction equation

Dt B\ÐB (H ·v)+(B ·H)v (13)

and the constraint H ·B\0. The mean intensity evolution is
given by

1

c
Dt JÐ2 4 J

3rc3 Dt r\ÐH ·H+ka r (BÐJ), (14)

and the flux evolution is given by

1

c
Dt H\Ð

1

3 
HJÐkrH, (15)

where we approximate k by the Rosseland mean opacity
3kes.

4 MODEL  PROBLEM:  STR ATIFIED 
ATMOSPHER E

Magnetized, radiation-dominated accretion discs are
dynamically evolving flows, since they are subject to the

magnetorotational instability (Balbus & Hawley 1991) and,
possibly, ordinary convective instability. Linear theory
therefore cannot even in principle provide a rigorous guide
to their dynamics. The best we can hope for is to find a
model problem that captures the essence of physical condi-
tions in accretion discs and is simple enough to solve.

The model problem we have chosen is a non-rotating
stratified atmosphere with Hf\g ẑ\constant, a uniform
magnetic field, and a constant flux Hz from below. This is the
least complicated model that is potentially subject to the
photon bubble instability. It allows us to focus on photon
bubbles alone, disentangled from the magnetorotational
instability, magnetic Rayleigh–Taylor instability, and con-
vective instability.

The mnodel equilibrium is determined by the vertical
momentum equation

Ð
1

r
qp

qz
+

4pk
c

HzÐg\0, (16)

the gas energy equation

J\B, (17)

the intensity equation

H · H\0, (18)

and the vertical component of the flux equation

Ð
1

3

dJ

dz
\krHz . (19)

This set of equations admits a two-parameter family of
solutions. A natural set of parameters is br evaluated at
z\z0, and L\Hz 4pk/(cg), which is the ratio of the flux to
the critical flux where the effective gravity vanishes (i.e., the
local Eddington limit). Defining the pressure scaleheight
H=c 2

i /g, at z\z0 we have

hT=ÐH 
q ln Tg

qz
\

1

4

L

1Ðbr

, (20)

hr=ÐH 
q ln r

qz
\

1

br &1ÐL 
(1Ð3br/4)

(1Ðbr) ' , (21)

which imply

hr=ÐH 
q ln Pr

qz
\

L

1Ðbr

, (22)

hg=ÐH 
q ln Pg

qz
\

1ÐL

br

. (23)

The entropy profile suggests convective stability (entropy
increases upwards) if

LsLcrit\
4(gÐ1) (4Ð7br+3b 2

r )

(gÐ1) (16Ð12brÐ3b 2
r )+b 2

r

(24)

(Kutter 1970; Wentzel 1970; Tayler 1954). In the limit of
small br this amounts to

Ls1Ðbr+O (b 2
r ). (25)
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2H denotes the scaleheight, and Hi is a component of the flux.
Likewise B denotes the thermal mean intensity, and Bi is a compo-
nent of the magnetic field. The difference should be clear in con-
text.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/297/3/929/979894 by guest on 23 April 2024



For model atmospheres in which M0ss1 this implies con-
vective stability. In discs the question of convective stability
is more subtle, and outside the scope of this paper, because
of the presence of raditive damping and rotation.

5 LINE A R  THEORY

We will consider only short-wavelength (WKB) perturba-
tions. Longer wavelength models are global in nature and
depend on the details of the equilibrium; however, the care-
ful construction of disc equilibria is a futile endeavour, since
all weakly magnetized discs are unstable. The perturbations
have the form

df1exp 8i &kx x+h
z

kz(z p) dz pÐwt'9, (26)

where f is any one of the perturbed variables. Like Arons,
we take kx\(1Ðm 2)1/2k and kz\mk. The basic small param-
eter of the WKB approximation is (kH)Ð11ess1 (we
assume that m11).

Retaining all terms that are potentially of leading order,
the linearized continuity equation is

ÐiwdrÐdvz

rhr

H
\Ðirk ·dv, (27)

the momentum equation is

Ðiwrdv\ÐikdpgÐik 
B ·dB

4p
+idB 

k ·B

4p

+
4p

c
(dkH+kdrH+krdH)Ðgdr ẑ, (28)

the induction equation is

ÐiwdB\ÐiB (k ·dv)+i (k ·B) dv, (29)

the gas energy equation is

ÐiwduÐdvz

uhg

H
\Ðigu (k ·dv)+4pka r (dJÐdB), (30)

the intensity equation is

1

c 2ÐiwdJÐdvz

hrB

H 3Ð 4J

3rc 
(Ðirk ·dv)\

Ðik ·dH+ka r (dBÐdJ), (31)

and the flux equation is

Ð
1

c
(iwdH)\Ð

1

3 
ikdJÐkrdHÐkdrHÐdkrH. (32)

Together with the constraint k ·dB\0, these equations
imply a complicated eleventh-order dispersion relation
D (w, k)\0 which we shall not record here (the most com-
pact form of the full relation is the above equations). We
have confirmed that it contains the dispersion relations for

magnetohydrodynamic (MHD) waves, magnetoatmo-
spheric waves (e.g. Thomas 1982), internal waves, sound
waves in a radiating fluid (Mihalas & Mihalas 1984), and the
over-stable photon bubble mode of Arons (1992) as special
cases.

6 OVERSTA BILITY

6.1 Numerical solution

The full dispersion relation is analytically intractable. In the
end we will need to expand it in a small parameter to
retrieve the relevant pieces that describe the photon bubble
mode. To motivate an asymtotic approach, we shall first
solve the dispersion relation numerically. The parameters
are those appropriate to a disc around a 10-M> black hole
accreting at the Eddington rate, at r\50GM/c 2. Assume
a\0.1, so bM\2.5, and that the field is purely vertical. Then
br\0.05, c/ci\120, l*\0.07H, g\5/3, M0\0.4. Take
L\1Ð3br/2\0.93 so that convection is absent. We con-
sider a set of modes with varying k and m\1/3. The real part
of the full dispersion relation is shown in Fig. 1. The real
part of the over-stable mode is marked with a heavy solid
line; the imaginary part has comparable magnitude.

At large wavenumber the dispersion relation is easily
interpreted because it becomes analytic. For general m,

2w 2Ð
1

3 
c 2k23 2w 2Ð

1

bM

c 2
i k2m 23

Å&w 4Ð2brgc 2
i k2+

1

bM

c 2
i k23 w 2+

1

bM

brgc 2
i k4m 2'

Å2w+
ic 2

D03
2

&w+
48i (1Ðbr) (gÐ1)D0

br gl*
2 '\0. (33)

The first term in parentheses is the flux-limited electromag-
netic wave with phase velocity c/Z3 (see Mihalas & Mihalas
1984). The second term is the Alfvén wave. The third term
contains the fast and slow MHD modes. These are labelled
in Fig. 1. Notice that the over-stable mode becomes the slow
MHD mode at large wavenumber. The final three modes
are strongly damped entropy modes.
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Notice that the slow MHD mode has rather low fre-
quency. This is because at short wavelengths radiation dif-
fuses rapidly out of the perturbation, and so the radiation
pressure perturbation is nil. Thus only gas pressure provides
a restoring force for this mode. For brss1, the slow mode
has w 22brc

2
i gk2m 2, so the slow mode velocity is directly

related to the sound speed associated with the gas pressure
alone. A radiation-pressure-dominated fluid is thus rather
delicate on small scales in that it is easily compressed.

6.2 Vertical magnetic field

We have shown that an over-stable mode exists; we will now
demonstrate the existence of this mode analytically. Again
we consider only the simple case of a purely vertical mag-
netic field. The basic small parameter is e\(kH)Ð1. The
survey of conditions in accretion discs (Section 2) then sug-
gests the following scalings for the other parameters in the
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problem. We take H11, ci11, ci /c1e, bM11, l*11,
br1e 3/2, M011, L\1ÐO (br), and m11. Using a little
asymptotic foresight, we also take w1e Ð1/2.

Expanding D (w, k) through leading order in e, we find the
remarkably simple relation

w 2\Ðigkm (1Ðm 2). (34)

One root of this equation, the one with negative phase
velocity, describes the overstable photon bubble mode.

What happens if we increase the importance of gas pres-
sure? Suppose that br1e. Then we find

w 2\Ðigkm (1Ðm 2)+br c
2
i m 2k2. (35)

The first term is the photon bubble term, while the second is
that of a slow MHD mode in which gas pressure provides
the only restoring force. If we increase br/(kH) still further,
then the first term becomes subdominant. This branch of
the dispersion relation then becomes the slow mode, which
is stable to leading order in WKB.

Since the over-stability is no longer present to leading
order in e when kz(br H)Ð1, and kz1/H, the overstability
fails in a WKB sense when br11. This provides an approxi-
mate limit on the oversatable region in parameter space.

Now suppose that the diffusion time is long compared to
a dynamical time, i.e., M01e 1/2. Again expanding D (w, k) to
leading order in e, we find

w 2+iw 
4c 2

i m 2

D0

+igkm (1Ðm 2)\0. (36)

The new term causes damping. It shows that instability is

present in a WKB sense only on scales such that kz1/
(HM 2

0).

6.3 General discussion

We can obtain a better physical understanding of the origin
of the photon bubble instability, and a more general disper-
sion relation, by expanding the linearized equations in e.
This is not trivial, because we must assign an explicit relative
ordering in e to all the perturbed variables. We do this by
solving for the eigenvectors df (dr) (f represents any of the
perturbed variables), and then determining the relative
ordering. We use the same ordering for the model param-
eters as that described at the beginning of Section 6.2. This
procedure reveals that the photon bubble mode consists
predominantly of motions along the magnetic field. This is
easy to understand because the frequency of the mode,
1Zgk, is smaller by order e 1/2 than the Alfvén frequency at
the same scale, 1kvA. Thus the field is stiff enough to resist
any motion that bends the field lines.

Writing out the dominant terms in full and allowing for a
general orientation of the initially uniform magnetic field,
the continuity equation becomes

Ðiwdr\Ðirk ·dv. (37)

The perturbed velocities perpendicular to the magnetic
field vanish. Denoting the unit vector parallel to the field by
b̂, the parallel component of the velocity is governed by

Ðiwdv · b̂\
4pkr

c
dH · b̂, (38)

so the material feels only the perturbed radiation force. The
induction equation is irrelevant, since the field is stiff. The
perturbed flux obeys

k ·dH\0. (39)

The perturbed flux is conserved, so there is no exchange of
energy between the radiation field and the fluid on a time-
scale wÐ1. Combining this result with the perturbed inten-
sity equation, we find

dH\Ð
dr
r &HÐk 

(k · H)

k2 ' . (40)

In words, the fluid feels a radiation force that is directed
parallel to the wave crests and is inversely proportional to
the density perturbation. Radiation escapes more rapidly
along density minima, while energy flow is impeded along
density maxima. Combining equations (37), (38) and (40),
and denoting the unit vector along k by k̂, we find the
general dispersion relation

w 2\Ðikg (k̂ · b̂) [b̂ · ẑÐ(k̂ · ẑ) (k̂ · b̂)]. (41)

This implies that the growth rate of the instability is largest
for kz\0 (where the WKB approximation is not strictly
valid) and for B at an angle of ¹p/4 to the wavevector.

It is readily shown that if the fluid is allowed to move
freely, unconstrained by the magnetic field, then the mode
frequency vanishes if we start from the reduced set of equa-
tions above. More rigorously, if we begin with the full set of
linearized equations and turn off the magnetic field, then

Figure 1. The real part of the WKB dispersion relation for a radia-
tion-dominated atmosphere with uniform vertical field. See text for
details. The abscissa is the wavenumber in units of the scaleheight;
the ordinate is the phase velocity in units of the isothermal sound
speed (P/r)1/2. The real part of the phase velocity for the photon
bubble mode is shown as a heavy line. The growth rate (imaginary
part) is comparable in magnitude.
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the stability criterion reduces to the condition that the
Brunt–Vaisala frequency be real.

To understand the overstability on a more qualitative
level, consider the history of a single fluid element in the
case kz\0 where B makes an angle p/4 with the vertical.
Suppose that the fluid element initially lies in a density
minimum, so it feels an increaseed radiation force from
below. It is accelerated upward along the field line. This
soon puts it in a region of convergent flow and then in a
density maximum: the phase velocity of the over-stable
mode is such that the density maxima progress downward
along field lines. It is now shadowed by the density maxi-
mum, the radiation flux drops somewhat, and it falls down-
ward along the field line. This puts it in a region of divergent
flow and then a density minimum, so it is accelerated
upward again. Each round of acceleration is larger than the
one before, and so an over-stability results.

The photon bubble instability described by Arons is
physically similar to ours, but there are two differences. The
most important is that Arons considers the asymptotic
regime M0ss1 appropriate to neutron star polar caps. This
leads to a rather more complicated dispersion relation for
the overstable modes, with the growth rate proportional to
M 3

0 . In this limit, there is a small phase offset between the
radiation flux and the density, rather than the large phase
offset that initiates the instability in the limits M011.
Another difference is that Arons uses the Rosseland diffu-
sion approximation, which requires that the gas and radia-
tion have the same temperature, while we use a
non-equilibrium diffusion approximation, which allows the
gas and radiation ‘temperature’ to differ. In the end this
turns out to have no effect whatsoever on the over-stable
modes, because gas pressure (and hence gas temperature) is
completely negligible for modes with frequency and wave-
length comparable to the photon bubble mode. Finally, we
note that in the appropriate limit we are able to recover
Arons’s dispersion relation, thus confirming his analysis.

7 NON-LINE A R  OUTCOME

The astrophysical implications of the photon bubble
instability depend on the non-linear outcome, to which
the linear theory is an unreliable guide. Numerical experi-
ments by Hsu et al. (1997) show that in the regime M0\
c/(tesci)ss1, bMss1 the photon bubble instability leads to
greatly enhanced vertical transport of energy. It thus seems
likely that the photon bubble instability will enhance vertical
energy transport in discs.

It is tempting to make an analogy between photon bub-
bles and convection. Convection generates such efficient
transport of energy that it erases the inverted entropy
gradient that initiated it and, if forced, maintains the con-
vective fluid in a marginally stable state. It is natural to think
that the photon bubble instability drives the disc toward a
marginally stable state as well. Our analysis does not give
any rigorous stability criteria, but it does show that when
br11 the instability is no longer present at leading order.
Thus the instability is likely to be absent or greatly reduced
in strength when br11. If the disc is initially radiation-
dominated, photon bubbles might then transport energy
efficiently out of the disc, lowering the temperature and
raising br toward 1.

The non-linear outcome of the photon bubble instability
can be characterized by a cooling rate Q Ð(S, Tc), which is
the energy lost per unit time per unit disc area. The thermal
and viscous stability properties of the disc depend on how
Q Ð varies with temperature and surface density (Piran
1978). Ultimately this can only be evaluated from a fully
non-linear theory, but if Q Ð is a steep enough function of
Tc, then the disc can be viscously and thermally stable.

Our analysis also shows that when the dimensionless
radiative diffusion rate M0 decreases the instability weakens,
in that instability is only present for kHzM Ð2

0 . This effect
may also shut off photon bubbles. At low accretion rates, for
example, a disc with br11 will have large M0 , while at larger
accretion rates M0 is smaller.

Photon bubbles might also change the emergent spec-
trum. The bubbles make the disc porous to radiation, so a
photon traverses a shorter path to the surface than it would
if the disc were subject only to ordinary diffusion. The
photon distribution therefore has less opportunity to ther-
malize. In addition, the vertical transport might be more
episodic, enhancing variability.

This discussion is speculative. Other physical processes
may contribute to vertical energy transport in discs: ordi-
nary convection (but see the discussion of Rees 1987) or
magnetic Rayleigh–Taylor instability (see the flux-tube cal-
culation of Sakimoto & Coroniti 1989) may dominate
photon bubbles. In addition, MHD turbulence initiated by
the Balbus–Hawley instability must coexist with photon
bubbles. We have developed a linear theory only when these
effects are absent. The full non-linear development of the
radiation-dominated disc can probably only be studied real-
istically via three-dimensional numerical experiments.
Numerical methods exist for treating the radiative transfer
in a flux-limited Rosseland diffusion approximation. Since
the character of the unstable mode is identical in the non-
equilibrium and Rosseland diffusion approximations,
numerical studies of the non-linear evolution of a radiation-
dominated disc may be immediately practical.

8 SUMM A RY

We have considered the linear theory of a radiation-domi-
nated atmosphere with spatially constant magnetic field as a
model for the radiation-dominated inner parts of thin accre-
tion discs around compact objects. The model is subject to
an over-stable photon bubble mode that tends to separate
radiation and matter. The photon bubble dispersion rela-
tion for a general orientation of the magnetic field is given
by equation (41). Vertical energy transport is likely to be
enhanced in the non-linear outcome. The disc may then
deflate until it is no longer radiation-pressure-dominated.
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