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A B S T R A C T

Mixed-variable symplectic integrators exhibit no long-term accumulation of energy error,

beyond that owing to round-off, and they are substantially faster than conventional N-body

algorithms. This makes them the integrator of choice for many problems in Solar system

astronomy. However, in their original formulation, they become inaccurate whenever two

bodies approach one another closely. This occurs because the potential energy term for the pair

undergoing the encounter becomes comparable to the terms representing the unperturbed

motion in the Hamiltonian. The problem can be overcome using a hybrid method, in which the

close encounter term is integrated using a conventional integrator, whilst the remaining terms

are solved symplectically. In addition, using a simple separable potential technique, the hybrid

scheme can be made symplectic even though it incorporates a non-symplectic component.

Key words: accretion, accretion discs ± methods: numerical ± celestial mechanics, stellar

dynamics ± Solar system: general.

1 I N T R O D U C T I O N

Symplectic integrators have two key advantages over other N-body

integrators: they exhibit no long-term build-up of energy error, and

they are substantially faster for problems in which most of the mass

is contained in a single body. This makes them well suited for

studying a wide variety of problems in dynamical astronomy,

especially those involving planetary or satellite systems.

The desirable energy conservation property arises because a

symplectic integrator exactly solves the equations of motion for a

problem very similar to the one in question. The high ef®ciency

comes from the fact that the dominant force on each object can be

`built in', leaving only the smaller perturbations to constrain the

size of the time-step. This means that a symplectic integrator needs

to evaluate the forces acting on a body less often than conventional

algorithms for the same level of accuracy.

In a seminal paper, Wisdom & Holman (1991) describe a simple

second-order symplectic integrator, subsequently popularized by

Levison and Duncan in their swift integration package (Levison &

Duncan 1994). This is roughly an order of magnitude faster than

conventional integrators when applied to problems such as the long-

term evolution of the planets. Higher order symplectic integrators

also exist (Yoshida 1990), although these are usually no more

ef®cient than the second-order method, since the increase in

accuracy is offset by the extra computation required at each step.

Since then, a number of improvements have been made. The

basic algorithm requires a ®xed step-size, but it is possible to give

each body in the integration a different ®xed step-size (Saha &

Tremaine 1994). This yields an extra gain in ef®ciency when the

bodies have a wide range of orbital periods. Weak dissipative forces

can also be included (Malhotra 1994; Cordeiro, Gomes & Martins

1997; Mikkola 1998), although strictly speaking this violates the

symplectic properties of the integrator. In addition, at least two

ways have been found to improve the accuracy of long-term

integrations by making small changes to the variables prior to the

start of the calculation (Saha & Tremaine 1992; Wisdom, Holman

& Touma 1996). Mikkola (1997) describes a time transformation

that overcomes the problem of using a ®xed time-step to integrate

orbits with high eccentricities.

The theory of symplectic integrators is described in a short

review by Yoshida (1993), and in more detail by Sanz-Serna (1991).

The ®xed time-step inherent in symplectic algorithms makes

dealing with close encounters particularly dif®cult. Ideally one

would like the step-size to decrease during an encounter in order to

preserve the accuracy of the overall integration. However, changing

the step-size of a symplectic integrator introduces an error with each

change. If close encounters do not occur too often, this technique

can still be used when the results of the integration are interpreted in

a statistical sense (Levison & Duncan 1994). However, such an

integrator cannot be relied upon to reproduce the true orbital

evolution of a particular body (Michel & Valsecchi 1997).

One solution to this problem is to split up the perturbation terms,

and give each part a separate (®xed) step-size, in such a way that

stronger perturbations have smaller step-sizes (Duncan, Levison &

Lee 1998). The resulting integrator, symba, is truly symplectic,

although it is rather cumbersome to implement in practice, and it

may not retain the great speed advantage of the basic symplectic

method.

In this paper, I describe an alternative solution ± a hybrid

integrator that melds symplectic and non-symplectic components
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in such a way that the combined algorithm retains the desirable

properties of both. The integrator was originally designed to study

planetary accretion problems, which are characterized by repeated

close encounters between large numbers of massive bodies. How-

ever, the principles involved are general, and the technique should

be applicable to other problems.

In the next section I outline the theory behind symplectic

integrators from a Lie series viewpoint. Symplectic integrators

can also be understood in terms of the averaging principle,

described by Wisdom & Holman (1991). Section 3 shows how

the standard algorithm can be extended to include the effects of

close encounters, using a hybrid integrator. Section 4 addresses the

practical details of how to make such a scheme work. In Section 5, I

put the hybrid integrator through its paces in a set of test problems.

Finally, Section 6 explains how to obtain a copy of mercury, a

publicly available software package that includes a working version

of the integrator described here.

2 T H E T H E O RY O F S Y M P L E C T I C

I N T E G R AT O R S

The basic theory of symplectic integrators can be understood by

starting with Hamilton's equations of motion. These give the rate of

change of the position, x, and momentum, p, for each object in an N-

body system:

dxi

dt
�

¶H

¶pi

;

dpi

dt
� ÿ

¶H

¶xi

: �1�

The Hamiltonian, H, is the sum of the kinetic and potential energy

terms for all the bodies:

H �
XN

i�1

p2
i

2mi

ÿ G
XN

i�1

mi

XN

j�i�1

mj

rij

;

where mi is the mass of body i, and rij is the separation between

bodies i and j. Using equations (1), the rate of change of any

quantity, q, can be expressed as

dq

dt
�
Xn

i�1

¶q

¶xi

dxi

dt
�

¶q

¶pi

dpi

dt

� �
�
Xn

i�1

¶q

¶xi

¶H

¶pi

ÿ
¶q

¶pi

¶H

¶xi

� �
� Fq; �2�

where F is an `operator'. The variable q can represent the position or

momentum of a body, or any combination of x and p for all the

bodies. The general solution of equation (2) at time t is

q�t� � etFq�t ÿ t�

� 1 � tF �
t2F2

2
� . . .

� �
q�t ÿ t�;

where q�t ÿ t� is the value of q at an earlier epoch.

So far, all we have done is rewrite the equations of motion, and

these remain insoluble analytically, except in special cases. The

trick of symplectic integrators is to split H into pieces, each of

which can be solved on its own, and then apply the solutions one at a

time in such a way that they approximate the solution of the problem

as a whole.

For example, let H � HA � HB. The time evolution of q is now

given by

q�t� � et�A�B�q�t ÿ t�; �3�

where A and B are new operators, such that

A �
Xn

i�1

¶
¶xi

¶HA

¶pi

ÿ
¶

¶pi

¶HA

¶xi

� �
with an analogous expression for B. These operators obey many of

the usual rules of algebra, with an important exception: we cannot

assume that they commute. In other words AB Þ BA, in general.

Bearing this in mind, the exponential in equation (3) can be

expanded to give

et�A�B�
� 1 � t�A � B� �

t2
�A � B�2

2
� . . .

� 1 � t�A � B� �
t2
�A2

� AB � BA � B2
�

2
� . . . : �4�

Now consider the result of applying the exponential operators

one after the other:

etAetB
� 1 � tA �

t2A2

2
� . . .

� �
1 � tB �

t2B2

2
� . . .

� �
� 1 � t�A � B� �

t2
�A2

� 2AB � B2
�

2
� . . . : �5�

Note that the right-hand sides of equations (4) and (5) are the same

to O�t�.

Applying one of the exponential operators on its own is equiva-

lent to solving the equations of motion with only the corresponding

part of the Hamiltonian present. There are several ways of splitting

H into two parts, each of which can be integrated ef®ciently. Often,

the best approach is to choose two parts that are each soluble

analytically. However, this is not necessary if there is an ef®cient

way to integrate HA and HB numerically.

Whichever way we choose to split the Hamiltonian, a ®rst-order

integrator is given by

q�t� � etAetBq�t ÿ t�;

where t is the step-size. Each step of the integrator consists of two

substeps:

(i) advance the system subject to the forces associated with HB

for one time-step (ignoring the effect of HA);

(ii) advance the resulting system subject to the forces associated

with HA for one time-step.

Splitting the exp�tB� term in half gives a second-order integrator:

q�t� � etB=2etAetB=2q�t ÿ t�; �6�

which is equivalent to equation (3) to O�t2
�. Higher order integra-

tors can be devised by splitting each of the exponential terms still

further (Yoshida 1990).

Using any of these integrators is equivalent to exactly solving the

equations of motion for a system with Hamiltonian Hinteg, which is

close to that of the real problem. For example, for the ®rst-order

integrator:

Hinteg � H �
t

2

Xn

i�1

¶HB

¶xi

¶HA

¶pi

ÿ
¶HB

¶pi

¶HA

¶xi

� �
� O�t2

� �7�

(Saha & Tremaine 1992). Hinteg is conserved exactly, to within

computer round-off error. So, if t is small, H will differ from Hinteg

by only a small amount, and there will be no long-term build-up in

the energy error.

The error incurred at each step of an integrator can be expressed

in terms of A and B. For the ®rst-order integrator

etAetB
� et�A�B�

�
t2

2
�AB ÿ BA� � . . . :
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If we continued to work out the higher order terms in this expres-

sion, we would ®nd that all of them depend on both A and B. This

means that if B , eA, where e is a small quantity, the error per step

will also be proportional to e. For this reason it pays to split the

Hamiltonian into a dominant part plus a small perturbation if

possible. In the case of the Solar system, the dominant force is

usually due to the gravity of the Sun, so we can assign HA and HB as

follows.

HA: each body moves on an unperturbed Keplerian orbit about

the Sun.

HB: each body remains ®xed, and receives an acceleration owing

to perturbations from the other bodies.

The precise details of how this is done depend on the variables

chosen. Using barycentric coordinates, HA q HB for all the bodies

orbiting the Sun, but not for the Sun itself, so the error per step no

longer bene®ts from the e factor. Wisdom & Holman (1991)

advocate using Jacobi variables, and this works satisfactorily.

However, for reasons that will become apparent later, it is better

to use mixed-centre variables (called `democratic heliocentric'

variables by Duncan et al. 1998). These consist of heliocentric

coordinates and barycentric velocities, which also satisfy Hamil-

ton's equations.

Using mixed-centre coordinates, the Hamiltonian can be split as

follows:

HA �
XN

i�1

p2
i

2mi

ÿ
Gm(mi

ri(

� �
;

HB � ÿG
XN

i�1

XN

j�i�1

mimj

rij

; �8�

HC �
1

2m(

XN

i�1

pi

 !2

;

where N now refers to the number of objects not including the Sun,

and quantities with the index ( refer to the Sun. Note that each of

these partial Hamiltonians can be solved analytically in the absence

of the others.

One minor drawback with using mixed-centre coordinates is that,

in addition to HA and HB, the terms arising from the kinetic energy

of the Sun have to be placed in a third part of the Hamiltonian, HC.

However, the ideas outlined above can be easily extended to handle

this situation. For example, the second-order integrator in equation

(6) now becomes

q�t� � etB=2etC=2etAetC=2etB=2q�t ÿ t�;

where the operator C arises from the Hamiltonian HC .

Provided that all the bodies remain far apart from one another,

HA q HB, and HA q HC . This means that each step of the inte-

grator has an error of O�et3
�, where e �

P
mi=m(. However, if two

bodies undergo a close approach (that is, rij becomes small), the

corresponding term in HB becomes large, and the error per step

increases substantially. This is the reason why, until recently,

symplectic integrators have been unable to address a large class

of problems in Solar-system science ± those involving small bodies

on planet-crossing orbits, and accretion discs.

3 C L O S E E N C O U N T E R S

Conventional integrators often reduce the size of the time-step

during a close encounter, in order to maintain the same level of

accuracy. However, each time the step-size, t, of a symplectic

integrator is changed, the integration Hamiltonian also changes (see

equation 7). This produces a shift in the energy of the real system. If

many close encounters occur, this energy error builds up, and

eventually destroys the symplectic property of the integrator.

During an encounter between bodies a and b, their separation rab

becomes small. This makes one of the terms in HB comparable in

size to HA (see equations 8), and the error per step increases from

O�et3
� to O�t3

�. This problem can be remedied if HB can somehow

be made small again compared with HA. One way to do this is

simply to transfer the term involving rab from HB to HA for the

duration of the close encounter:

HA �
XN

i�1

p2
i

2mi

ÿ
Gm(mi

ri(

� �
ÿ

Gmamb

rab

;

HB � ÿG
X
iÞa

X
j>i

mimj

rij

ÿ G
XjÞb

j>a

mamj

raj

:

HA is no longer integrable analytically, since it contains the three-

body problem of the Sun plus objects a and b. However, this is not

really a problem in practice, as these terms can be integrated

numerically, at close to machine precision, using a conventional

N-body integrator.

At this point, the advantage of using mixed-centre coordinates

rather than Jacobi coordinates becomes apparent. Using mixed-

centre coordinates, all of the Kepler terms in HA can still be

advanced analytically, except for objects a and b. Using Jacobi

coordinates, HA becomes

HA �
XN

i�1

Äp2
i

2mi

ÿ
Gm(mi

Äri

� �
ÿ

Gmamb

rab

;

where Jacobi coordinates are indicated by tildes, and

rab � rb ÿ ra � Ärb ÿ Ära �
Xbÿ1

j�a

mjÄrj

m( �
Pj

k�1 mk

:

Now, in addition to integrating terms involving a and b numerically,

all terms involving bodies with indices a < j < b have to be

integrated numerically as well. Clearly, Jacobi coordinates are not

the ones to use when close encounters can occur, and we will stick

with mixed-centre coordinates.

The scheme described above is easy to implement and works

fairly well. However, moving terms between HA and HB at each

close encounter still involves changing Hinteg, albeit not by as much

as changing the step-size. To keep Hinteg constant, and make the

hybrid integrator truly symplectic, we need to ensure that terms

never have to be transferred between different parts of the Hamil-

tonian. We can do this by splitting each of the interaction terms

between HA and HB in such a way that the part in HB always remains

small, while the part in HA is only evaluated during a close

encounter:

HA �
XN

i�1

p2
i

2mi

ÿ
Gm(mi

ri(

� �

ÿ G
XN

i�1

XN

j�i�1

mimj

rij

�1 ÿ K�rij��;

HB � ÿG
XN

i�1

XN

j�i�1

mimj

rij

K�rij�: �9�

Fig. 1 shows a suitable form for K. When rij is large, K should

tend to one, while tending to zero when rij is small. This ensures that

HB p HA, even during a close encounter. In the absence of an

encounter, the terms in HA can be advanced analytically as before.
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This solution was inspired by the separable potential method of

Duncan et al. (1998), but here the potential terms need only be split

into two pieces rather than many.

As with the standard symplectic integrator, there is no guarantee

that the terms in equation (7) will converge for the hybrid integrator.

There may be cases where the series diverges, producing errors that

are larger than suggested by the leading term [which is O�et3
� for

the second-order integrator]. I plan to investigate this possibility

further in a later paper.

The integration scheme for the second-order hybrid integrator is

as follows.

(i) The coordinates remain ®xed. Each body receives an accel-

eration owing to the other bodies (but not the Sun), weighted by a

factor K�rij�, lasting for t=2.

(ii) The momenta remain ®xed, and each body shifts position by

an amount t
P

i pi=2m(.

(iii) Bodies not in an encounter move on a Keplerian orbit about

the Sun for t. For bodies in an encounter, the Kepler terms, and the

close encounter terms weighted by �1 ÿ K�, are integrated numeri-

cally for t.

(iv) As step (ii).

(v) As step (i).

4 P R AC T I C A L D E TA I L S

4.1 The changeover function

The integration scheme outlined above is all very well in theory, but

several details need to be addressed before it will work in practice.

The ®rst of these is the form of the changeover function, K, used to

switch between the standard symplectic scheme and the close

encounter regime. This function has to meet several criteria:

(i) K ! 1 when rij is large, and K ! 0 when rij is small;

(ii) K is smooth enough that the numerical algorithm can follow it

without dif®culty;

(iii) K can be evaluated quickly.

After some trial and error, I have found that the following

expression works well:

K �

0; for y < 0

y2=�2y2
ÿ 2y � 1� for 0 < y < 1;

1 for y > 1;

8<: �10�

where

y �
rij ÿ 0:1 rcrit

0:9 rcrit

� �
and rcrit is a free parameter.

One might object that the derivatives of equation (10) have

discontinuities at y � 0 and 1, and that these could cause problems.

However, the non-symplectic integrator will only sample the

function at a ®nite (often small) number of points, so it is merely

necessary to fool the integrator into thinking that the function is

smooth. Equation (10) seems to avoid dif®culties unless the

numerical algorithm is used with a very strict tolerance, combined

with a small step-size for the symplectic integrator.

4.2 The changeover distance

The value of the critical distance, rcrit, at which the numerical

algorithm starts to integrate a close encounter is something of a

compromise. If rcrit is too small, the encounter will not be calculated

properly. If rcrit is too large, then the computer time needed to follow

the encounter will be more than can be justi®ed by the overall

accuracy of the integration.

Levison & Duncan (1994) take special steps to deal with close

encounters when rij < 3RH, where RH is the Hill radius. Duncan et

al. (1998) recommend a value of 3 mutual Hill radii for encounters

involving two massive bodies. These values seem to work well

when one or both of the objects are large (comparable in mass to the

giant planets). However, when the masses are smaller, the key factor

is not the number of Hill radii, but rather the number of time-steps

used to sample the changeover function K. A pair of objects with

lunar mass can easily travel 3 mutual Hill radii in a single time-step.

In this case the switch from the symplectic regime to the hybrid

regime would be instantaneous, leading to large errors during the

close encounter.

For this reason I advocate a two-fold strategy. For each object, rcrit

should be the larger of n1RH and n2tvmax, where n1 and n2 are

parameters, and vmax is the maximum velocity expected during the

integration (say, the initial orbital velocity of the innermost body).

During a particular encounter, rcrit should be the larger of the values

for the two bodies involved. The precise values of n1 and n2 used will

depend on the nature of the problem being studied, but values in the

ranges n1 � 3±10 and n2 � 0:3±2.0 seem to cover most likely cases.

4.3 Which numerical integrator?

The N-body algorithm used to integrate the close encounters

numerically is a matter of personal preference. The Bulirsch±

Stoer method (Stoer & Bulirsch 1980) is often used to check the

results of other integration algorithms, since it is generally robust

for N-body problems. For this reason I advocate using it here. The

standard version assumes that the force on each object can be a

function of both the coordinates and momenta. Press et al. (1992)

give a version designed for conservative systems (where the force is

a function of x only), based on Stoermer's rule, and this is about

twice as fast as the standard algorithm. Everhart's radau routine

(Everhart 1985) is faster still, but it occasionally runs into dif®culty

when objects undergo very close encounters, so it is probably safer

to use Bulirsch±Stoer.

4.4 Predicting encounters

Prior to calculating each step, the hybrid integrator needs to know
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which bodies will be involved in a close encounter at some point

during the step. It is not suf®cient to check the separation of each

pair of objects at the start and end of the step, since this may miss a

separation minimum occurring in between. For this reason I

recommend including some sort of predictor step in the integrator.

This need not be particularly accurate, as long as it errs on the side

of caution. For example, if the predictor indicates an encounter that

never actually takes place, the worst that will happen is that the

Keplerian motion of these objects will be calculated using the

numerical routine instead of analytically.

One way to do the prediction is to advance each object (as crudely

as one dares) forward for one time-step along a Keplerian orbit

about the Sun. Only objects far from an encounter need be checked

this way, so the Keplerian approximation is a reasonable one.

Armed with the initial and ®nal coordinates and momenta of each

body, we can interpolate to get an expression for the separation,

D � rij, of any pair accurate to O�t3
� :

D � �1 ÿ t�2�1 � 2t�D0 � t2
�3 ÿ 2t�D1

� t�1 ÿ t�2t ÇD0 ÿ t2
�1 ÿ t�t ÇD1; �11�

where D0, D1 are the separations at the start and end of the

prediction step, respectively, and ÇD0, ÇD1 are the time derivatives

of the separation (which can also be found from x and p). Also, t is

normalized time, such that t � 0 at the start of the step, and t � 1 at

the end of the step.

Setting the derivative of equation (11) equal to zero, we get an

expression for t when the separation is a minimum:

at2
� bt � c � 0;

where

a � 6�D0 ÿ D1� � 3t� ÇD0 �
ÇD1�;

b � 6�D1 ÿ D0� ÿ 2t�2 ÇD0 �
ÇD1�;

c � t ÇD0:

Equation (11) then gives the minimum separation of the pair of

objects.

This procedure, combined with a `pre-checker' that eliminates

pairs of objects that cannot possibly undergo an encounter during

the next step, takes only a few per cent of the total computer time for

an integration. Higher order interpolation schemes can be derived

by calculating the accelerations (owing to the Sun) at the start and

end of the prediction step. However, these have an unfortunate habit

of giving spurious additional minima, so the cubic interpolation

given above is probably best. Finally, I note that the same inter-

polation scheme can applied after the real integration step, to

estimate the minimum separation of objects undergoing a close

encounter.

5 T E S T I N T E G R AT I O N S

5.1 Scaled outer Solar system

Duncan et al. (1998) tested their symba symplectic algorithm by

integrating the orbits of the four giant planets, with masses

enhanced by a factor of 50. This con®guration is unstable, and

the planets quickly began to have close encounters with one another.

Shortly afterwards, two of the planets were ejected from the system.

Here, I repeat their calculation using the hybrid algorithm. The

integration uses t � 11:05 d and rcrit � 3RH, similar to the values

used by Duncan et al. Fig. 2 shows the evolution of the relative

energy error DE � �E ÿ E0�=E0, where E and E0 are the energy at

time t and the initial energy respectively. The energy error is similar

to that using the symba integrator, even allowing for the jump at

t , 250 yr, caused by an exceptionally close encounter between

Jupiter and Saturn to within 0:007 au.

The time evolution of the orbits of the planets is highly chaotic,

so the evolution differs from the integration of Duncan et al. In fact,

even small changes in the step-size produce a different outcome.

The value of t used here was chosen to maximize the time of ®rst

ejection, which occurs at about 1000 yr, when Neptune is removed.

Shortly afterwards both Uranus and Saturn are ejected, leaving only

Jupiter on a bound orbit.

5.2 The restricted three-body problem

The restricted three-body problem consists of two massive bodies

moving on circular orbits, and a third massless particle. This has an

integral of motion ± the Jacobi constant, C. To test how well the

integrator conserves C, I integrated 36 test particles initially on a

ring outside the orbit of a planet with a mass and orbit similar to

Neptune. The particles had semi-major axes a � 36 au, eccentri-

cities e � 0:18, and mean anomalies, M, evenly spaced along their

orbit. The corresponding elements for Neptune were a � 30 au,

e � 0 and M � 0. All objects moved in the same orbital plane. The

objects were integrated for 106 yr, with t � 5 yr, a Bulirsch±Stoer

tolerance of 10ÿ10 and rcrit � 10 Hill radii ,7:7 au.

During the integration, the maximum relative error on C was

about 3 ´ 10ÿ6, a ®gure that was similar for all the objects. A

Bulirsch±Stoer integration (using Stoermer's method) with toler-

ance of 10ÿ9 gave similar results, requiring about 50 per cent more

computer time.

5.3 Planetary embryos

The hybrid integrator was originally developed for planetary

accretion problems, so here is a typical test case. 30 planetary

embryos have initial semi-major axes a � 0:5±1.2 au, eccentrici-

ties e � 0±0.01 and inclinations i � 0. The remaining angular

elements are randomly distributed. The embryo masses range

from about 0.6 lunar masses to 0.2 Earth masses. The bodies are

treated as point masses (collisions are ignored), with a gravitational

smoothing length, s � 3 ´ 10ÿ8 au ,5 km, such that the usual

expression for the force between two bodies is replaced by

Fij � ÿ
Gmimj

�r2
ij � s2�

rij

rij

:

The embryos are integrated for 10 000 yr using the hybrid integrator,
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Figure 2. Relative energy error during an integration of the four giant

planets, with masses enhanced by a factor of 50, using the hybrid integrator.
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with t � 5 d, a Bulirsch±Stoer tolerance of 10ÿ12, and

rcrit � 0:5tvmax , 0:06 au. Since the problem is two-dimensional, a

large number of close encounters can be expected during the integration.

Fig. 3 shows the evolution of the energy error during the

integration. For comparison, the ®gure also shows the energy

error for the same calculation using the Stoermer version of the

Bulirsch±Stoer algorithm, with a tolerance of 10ÿ10. The maximum

energy error is about the same in each case, although the Bulirsch±

Stoer integration takes 3.5 times longer. The energy error shows a

linear increase with time in the Bulirsch±Stoer calculation. Using

the hybrid integrator, the energy variations over short periods of

time are much larger, but no secular trend is apparent.

Also shown in Fig. 3 is the cumulative number distribution of

close encounters in each integration. The distributions have

approximately the same slope, and the total number of encounters

is similar.

Incidentally, using the symba algorithm of Duncan et al. (1998),

the ®nal energy error for the same integration is about two orders of

magnitude larger (Duncan, private communication), presumably

because this algorithm uses a smaller value of rcrit.

798 J. E. Chambers

q 1999 RAS, MNRAS 304, 793±799

Figure 3. Relative energy error versus time for an integration of 30 planetary embryos, using the hybrid integrator and the Bulirsch±Stoer (BS) integrator. Also

shown are the cumulative number of close encounters, N, as a function of distance of closest approach, for each integration.

Figure 4. Trajectory of Comet P/Oterma during a close encounter with Jupiter, integrated using the Bulirsch±Stoer (BS) integrator and the hybrid integrator. The

trajectory is shown in a rotating frame, with Jupiter at the origin and the Sun on the negative x-axis.
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5.4 Comet P/Oterma

Michel & Valsecchi (1997) have shown that changing the time-step

of a symplectic integrator can lead to spurious results. They

integrated a close encounter between Comet P/Oterma and Jupiter,

using the Bulirsch±Stoer method as a reference, and using the

rmvs2 algorithm of Levison & Duncan (1994). The latter is based

on a second-order symplectic integrator. During a close encounter it

®rst decreases the step-size, and then changes the centre of motion

to the planet instead of the Sun. This technique failed to reproduce

the correct trajectory of the comet during the encounter if the time-

step was larger than about 20 d.

We have to be sure that the hybrid integrator does not suffer from

the same problem, so I have repeated the test here. The ®rst panel of

Fig. 4 shows the close encounter trajectory calculated using the

Bulirsch±Stoer method, with a tolerance parameter of 10ÿ12. The

coordinate origin is at Jupiter in a rotating frame, with the Sun on

the negative x-axis. The initial conditions are those given in table IV

of Michel & Valsecchi (1997). The second panel shows the

trajectory calculated using the hybrid integrator, with a step-size

of 25 d, and a changeover distance of 3 Hill radii (the same as used

by rmvs2). The diagrams are virtually identical.

In fact, the hybrid integrator does quite well for larger step-sizes

too. The evolution is qualitatively similar in the third panel (step-

size 50 d). Even with a step-size of 100 d (fourth panel), the hybrid

integrator does better than rmvs2 with a step-size four times

smaller. Perhaps this is not too surprising, since the same

Bulirsch±Stoer algorithm is doing all the hard work of getting the

close encounter right regardless of the step-size. For this reason too,

the time taken to complete the calculation is about the same for the

hybrid as for Bulirsch±Stoer on its own. In order to see the inherent

speed advantage of the symplectic part of the integrator, we would

need to include more planets in the calculation.

6 T H E m e r c u r y I N T E G R AT O R PAC K AG E

The hybrid symplectic integrator described in this paper is included

in a publicly available N-body integrator package called mercury

(Chambers & Migliorini 1997). Copies of the source code,

instructions for how to compile and run the programs, and example

integrations can be obtained via anonymous FTP at Armagh Obser-

vatory (star.arm.ac.uk in the subdirectory pub/jec). In addition to

the symplectic integrator, the package includes the Bulirsch±Stoer

algorithms and a version of Everhart's radau integrator.
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