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A B S T R A C T

We have applied two different automatic classifier algorithms to the BATSE Current GRB

Catalog data and we obtain three different classes of gamma-ray bursts (GRBs). Our results

confirm the existence of a third, intermediate class of GRBs, with mean duration ,25–50 s, as

deduced from a cluster analysis and from a neural network algorithm. Our analyses imply

longer durations than those found by Mukherjee et al. and Horváth, whose intermediate class

had durations ,2–10 s. From the neural network analysis no difference in hardness between

the two longest classes is found, and from both methods we find that the intermediate-

duration class constitutes the most homogeneous sample of GRBs in its space distribution,

while the longest-duration class constitutes the most inhomogeneous one with

kV/Vmaxl , 0:1, being thus the deepest population of GRBs with zmax , 10. The trend

previously found in long bursts, of spatial inhomogeneity increasing with hardness, only

holds for this new longest-duration class.
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1 I N T R O D U C T I O N

Since their discovery in the late 1960s (Klebesadel, Strong &

Olson 1973), gamma-ray bursts (GRBs) have been a long-

remaining puzzle (see Piran 2000, Mészáros 2001 and Castro-

Tirado 2001 for recent reviews). Models involving a short distance

scale implied an emitted energy ,1042 erg, whereas a cosmo-

logical origin required 1051 erg at least. The increasing degree of

isotropy found as the sample of GRBs grew, plus the lack of faint

GRBs (Meegan, Fishman & Wilson 1985), favoured a cosmo-

logical scenario. Moreover, after the launch, in 1991, of the BATSE

instrument on board the CGRO, a very high degree of isotropy was

found in the new, much larger sample. Finally, the measurement in

1997 of the first GRB redshift (Metzger et al. 1997) and the

subsequent ones have confirmed that GRBs are at cosmological

distances.

Concerning the physical mechanism of GRBs, the fireball shock

model (Rees & Mészáros 1992; Mészáros & Rees 1993; Daigne &

Mochkovitch 1998) is a progenitor-independent model for

radiation emission that succeeds in explaining both the burst itself

and its afterglow. There are, however, a variety of proposed objects

that are capable of generating the GRBs (Nemiroff 1994): from

mergings of neutron stars with neutron stars (Paczyński 1990) or

with black holes (Narayan, Paczyński & Piran 1992) to collapsars

(Woosley 1993; MacFadyen & Woosley 1999) and hypernovae

(Paczyński 1998). Magnetic instability in a neutron star being spun

up by accretion in an X-ray binary could also produce them (Spruit

1999). There are more exotic models, involving quark stars (Ma &

Xie 1996), mirror stars (Blinnikov 1999) or cosmic strings

(Berezinsky, Hnatyk & Vilenkin 2001). In the face of such a

boiling-pot of theoretical ideas, to know the positions of the GRBs

with respect to their host galaxies and especially their redshifts are

key issues (Bloom, Kulkarni & Djorgovski 2000). Once a fair

sample of redshifts becomes available, which should happen soon

with the up-to-date technology of new missions like HETE 2 and

Swift, the distances will be known and with that the released energy

and the luminosity function of GRBs, together with their

distribution across the Universe. That should certainly discriminate

among existing models, and it should also give unprecedented

information on the very structure of the Universe up to redshifts far

higher than 5 (Lamb & Reichart 2000, hereafter LR00), on the

cosmic star formation history (Totani 1999), and on the evolution

of galaxies (Totani 1997).

It is likely that more than strictly one progenitor could give rise

to GRBs, since it has been shown that different objects can produce

a burst of gamma-rays with the observed characteristics. Therefore

the catalogue of GRBs may reflect the manifestations of various

phenomena. To uncover them, various attempts to separate

different classes of GRBs have been made.

The two most generally accepted classes of GRBs are those

arising from the bimodal distribution of their durations

(Kouveliotou et al. 1993, hereafter K93), which separates long

(lasting for more than 2 s) and short (less than 2 s) GRBs, the short
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bursts being at the same time spectrally harder than the long bursts.

The different spatial distributions of the two classes have also been

shown (Katz & Canel 1996), and it is consistent with isotropy in

both. However, the longer GRBs appear to be more inhomo-

geneous in their space distribution than the shorter ones, as

deduced from the higher value of kV/Vmaxl for the short GRBs (this

quantity measures the deviation of the space distribution from a

homogeneous Euclidean distribution). Separating the long-bursts

class into two groups of hardness H32 (the fluence ratio of spectral

channel 3 to spectral channel 2), respectively higher than and lower

than 3, Tavani (1998, hereafter T98) found that the long/hard bursts

are more inhomogeneously distributed than the long/soft ones. We

will show here that there exists, indeed, a trend, among the long

bursts, of harder bursts being more inhomogeneous in their space

distribution, which holds for hardnesses up to ,4, with a slight rise

of kV/Vmaxl beyond that point. In the three-class classification that

we propose here this trend, however, exists only for the longest

class.

In the following we first describe the two methods (cluster

analysis and neural network) that are used to classify GRBs in the

present work. The results from the two different methods are then

discussed and compared. We find that both methods point to a

classification in three classes, that resulting from splitting the ‘old’

long-burst class into two, and we compare the characteristics of the

three new groups. Finally, the possible physical meaning of the

new classification is discussed.

2 M E T H O D O L O G Y

The usual approach in GRB classification has been based on the

study of bivariate distributions. However, as noted by Bagoly et al.

(1998, hereafter B98), the BATSE catalogue provides up to nine

quantities intrinsic to the burst (seven related to energy and two

related to duration), plus other quantities corresponding to spatial

distribution and to errors in the magnitudes. New composite

quantities can also be defined, such as the different measures of

spectral hardness (from the fluence ratios in different spectral

channels), and also V/Vmax. That involves a large number of

variables which is difficult to handle, complex relationships among

them (including non-linear ones) probably being present. Such

relationships can hardly be directly visualized, and thus multi-

variate analysis is needed.

Starting from the BATSE Current GRB Catalog (available at

http://www.batse.msfc.nasa.gov/batse/grb/catalog/current) in its

version of 2000 September, 1599 bursts have been selected:

those for which non-zero values of all nine magnitudes are given.

These magnitudes are the four time-integrated fluences FCh1–FCh4,

respectively corresponding to the 20–50, 50–100, 100–300 and

3001 keV spectral channels; the three peak fluxes P64, P256 and

P1024, measured in 64-, 256- and 1024-ms bins, respectively; and

the two measures of burst duration T50 and T90, the times within

which 50 and 90 per cent of the flux arrives. Then a principal

component analysis (PCA) of the standardized logarithms (zero

mean and unity variance) of those quantities has been performed,

obtaining results (Table 1) that are very similar to those of B98. As

is well known, PCA is a statistical method used in multivariate

data analysis to obtain new variables, linear combinations of the

original ones, which carry most of the variance of the system.

Based on the correlations among the original variables, some of the

new variables can be disregarded if they carry very little

information. For further details on PCA, the reader is referred to

B98 and to Murtagh & Heck (1987, hereafter M87).

As seen in Table 1, with only three variables, linear

combinations of the original ones, ,96 per cent of the system

information can be accounted for. The first row shows that 64 per

cent of the information is carried by a variable that is a weighted

sum of all the original variables with nearly the same weight for

each of them. The second principal component in importance is

approximately the difference between the weighted sum of the

logarithms of the three peak fluxes and that of the logarithms of the

two durations, all again with similar weights. With 5 per cent of

the total variance of the system, the logarithm of the fluence in the

fourth channel is found.

Our current goal is to achieve an automatic classification based

on the nine original variables, and for that two different methods

are used: a cluster analysis applied to the results of the PCA, and a

neural network algorithm.

2.1 Cluster analysis

For the cluster analysis the MIDAS statistical package has been

used. As stated above, a PCA is first performed. In this way are

obtained new variables into which the problem becomes easier to

separate. This result provides the starting point for the cluster

analysis, where Ward’s criterion of minimum variance (Ward 1963;

see also M87) is used. The analysis follows an agglomerative

hierarchical clustering procedure, which starts from n points spread

over the nine-dimensional space and groups them until it ends up

with a single cluster. The algorithm searches for clusters with

minimum variance among objects belonging to the same cluster

and with maximum variance between clusters, and works with the

Table 1. Principal component analysis for the standardized logarithms of fluencies, peak fluxes and
durations. There are shown, in each row, the components of each principal axis in the base of our original
variables (columns), together with the percentage of the variance carried by each of the new axes (first
column). For instance, the first principal component is – 0.39 log FCh1 – 0.40 log FCh2 – 0.40 log FCh3 –
0.33 log FCh4 – 0.22 log P64 – 0.28 log P256 – 0.36 log P1024 – 0.29 log T50 – 0.30 log T90.

% log FCh1 log FCh2 log FCh3 log FCh4 log P64 log P256 log P1024 log T50 log T90

64.3 20.39 20.40 20.40 20.33 20.22 20.28 20.36 20.29 20.30
27.0 10.15 10.12 10.04 20.05 20.53 20.47 20.30 10.44 10.41
4.9 20.22 20.19 10.06 10.92 20.10 20.13 20.17 20.06 20.08
1.7 10.48 10.41 10.21 10.03 20.22 20.25 20.13 20.47 20.46
0.8 10.56 20.05 20.77 10.19 10.16 10.06 20.09 20.01 10.12
0.6 10.01 10.11 10.19 20.06 10.60 20.03 20.75 10.13 20.00
0.4 20.02 20.05 10.11 20.02 10.04 20.04 20.07 20.69 10.71
0.2 10.49 20.78 10.38 20.07 20.04 10.05 20.03 10.04 20.06
0.1 20.01 10.08 10.01 10.00 20.46 10.78 20.40 20.03 10.01
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‘centre of gravity’ of each cluster. That gives clusters as compact

and as detached from each other as possible.

A dendrogram is obtained, which shows the way in which

groups are clustering, as well as the inner variance of the resulting

groups. Thus detecting a large rise in the variance by the union of

two clusters means that two groups with remarkably different

characteristics have been merged.

It is important to notice that the PCA looks for combinations of

variables to obtain axes that have the maximum possible variance.

As seen above, with just three of those axes more than 95 per cent

of the total variance is accounted for. The cluster analysis could,

therefore, have been applied to those three new variables only. This

has been checked and it is found that the results are barely affected

by this reduction in the number of variables, since most of the

system information is conserved. Here, however, the results of the

complete nine-dimensional analysis will be presented, since those

same nine variables will later be used for the neural network

analysis.

Concerning the previous work of Mukherjee et al. (1998,

hereafter M98), it must be noted that they chose six variables for

their analysis, three of them being the peak flux log P256 plus the

two durations (log T50 and log T90), the other three being the total

fluence log Ftotal and two hardnesses, log H321 and log H32. It has

been learned, from the PCA, that three variables are necessary

which together carry more than 95 per cent of the variance, one of

them being approximately the logarithm of the fluence in the fourth

channel, FCh4 (see above). So it seems that M98 do lose

information by not taking into account the fluence in the fourth

channel separately, and also by not considering any peak flux later

on. It must equally be noticed, when comparing results, that our

GRB sample is twice as large as theirs.

The main weakness of the cluster analysis is that it only deals

with linear combinations of the variables. Such a weakness can be

overcome by means of a neural network analysis, which also

detects non-linear relationships.

2.2 Neural network

Neural networks are artificial intelligence algorithms that can be

used for an automatic and objective classification. We do not want

to start from any prior classification. Therefore a non-supervised

algorithm is used. As we do not wish to introduce any tracer object

either, the net is initialized at random. The ‘Self-Organizing Map’

algorithm (Kohonen 1990), implemented in the SOM_PAK package

from the Laboratory of Computer and Information Science of the

University of Helsinki, is used.

As in the cluster analysis, the entrance parameters are the

logarithms of the same nine variables.

The dimension of the output space must be specified, and based

on the results of the cluster analysis the network is run twice,

asking first for a two- and then for a three-dimensional output

space, thus grouping either two or three classes of GRBs. The net is

trained in two steps before looking for results.

3 R E S U LT S

3.1 Cluster analysis

In Fig. 1 the dendrogram with the last six levels of clustering is

shown. It can be seen that the first important increase of the

variance occurs when joining group 3 with group 2, which tells us

that two groups with somewhat different characteristics have been

merged, but the most significant rise in variance occurs when

merging cluster 2 with cluster 1. From that it is concluded that there

are two well-separated classes plus an emergent third class.

Fig. 2 shows what happens when adding, to the nine starting

variables, the two extra variables H32 and kV/Vmaxl. In that case the

sample is reduced to 757 bursts only (instead of 1599), for which

all 11 quantities are known. It can be seen that the three-class

classification is the most favoured one.

Next, in Table 2, the main characteristics of each GRB class are

shown, 2-I and 2-II corresponding to the two-class classification,

and 3-I, 3-II and 3-III corresponding to the three-class

classification. The deviations correspond to s/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2 1
p

. The results

of the 11-dimensional cluster analysis are not shown here. They are

Figure 1. Dendrogram of the nine-dimensional analysis. The numbers at

the bottom of the diagram are identifiers of the groups, and those at the left

show the inner variance of the groups. For instance, when merging group 6

with group 4 the variance of the cluster is 0.35. The largest increment in the

variance occurs when merging group 2 with group 1, with a variance

increase of 3.04.

Figure 2. Dendrogram of the 11-dimensional analysis. Here the largest

increase in the cluster variance occurs when joining groups 3 and 1,

suggesting three different classes of GRBs.
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very similar to those of the nine-dimensional one but are less

significant because the sample is reduced to one-half. We only

comment that since the hardness has been added there, its weight

has thus been enforced, and then class I becomes slightly harder

and shorter than when obtained from nine variables.

It must be noted that, by just looking at the values of the

dispersions in the four variables T90, H32, P1024 and Ftotal given in

Table 2, it might seem that the variance would increase when

shifting from the two-class to the three-class classification, but that

is just an effect of projecting the groups on to these particular

variables (three of them composites); the full nine-dimensional

analysis shows the opposite, as stated above.

Adopting the same expected values for isotropy as for the 4B

catalogue (Fishman et al. 1999), that is for the Galactic dipole

moment kcos ul ¼ 20:009 and for the quadrupole Galactic

moment ksin2b 2 1=3l ¼ 20:004, it can be seen in Table 2 that

only one of the corresponding values for classes 3-I–3-III lies

beyond 1s of the expected value, and that is the dipole for the 3-II

class, which is 11.2s above. Just this value being above 1s

appears not to be significant and it is concluded that all three

classes are isotropically distributed.

In calculating the kV/Vmaxl parameter, not all the 1599 bursts

could be used, but only those for which that value could be derived,

and in a similar way when calculating the dipole and quadrupole

moments the GRBs that were overwrites (Fishman et al. 1999)

were not taken into account.

In Table 2 the class numbers are given in order of increasing

durations kT90l. With the two-class classification the ‘classical’

GRB types are recovered: short/hard, which are fainter (taking as

brightness the peak flux kP1024lÞ; and long/soft, which are brighter

and more non-Euclidean in their space distribution. As seen from

Fig. 3, two classes with an overlapping distribution of durations

have been obtained, in contrast with the classical definition of short

ðT90 , 2 sÞ and long ðT90 . 2 sÞ GRBs. Now the short class has

durations up to ,20 s while the long-duration class starts at ,2 s.

This overlapping of the two classes was obviously supposed to

exist, but based on the distribution of durations alone it could not

be decided whether, in the overlapping region, a given GRB

belonged to either of the two classes. Now the algorithm handles all

the available magnitudes and assigns each GRB to the cluster to the

characteristics of which it is closer. The hardness distribution

(Fig. 4) does not differ significantly from that in K93.

A first look at the three-class classification reveals that class I is

exactly the same as in the two-class grouping: this is because the

clustering method is agglomerative, which means that new groups

are formed by merging former ones, so the passage from three to

two classes happens when merging class II and class III GRBs.

Let us concentrate on the new three-class classification. As

stated already, ‘old’ class II has been divided into class II and class

III. Class II is not properly an intermediate class: it has inter-

mediate duration but still of the same order of magnitude as class

III, and with an almost coincident distribution, as seen in Fig. 5.

Class II is the softest and faintest class and the one most

homogeneously distributed in space. Despite its duration being of

the same order as that of class III, the fluence is one order of

magnitude lower.

The most striking result of this new classification is the

extremely low value of kV/Vmaxl in class III, which means that we

are dealing with an extremely deep population that extends up to

Table 2. Characteristics of the classification from the nine-dimensional cluster analysis. T90 is in units of s, P1024 in units of
photon cm22 s21, and Ftotal in units of 1026 erg cm22.

Class N kT90l kH32l kV/Vmaxl kP1024l kFtotall kcos ul ksin2b 2 1=3l

2-I 580 2.65^ 0.17 5.96^ 0.20 0.265^ 0.017 1.29^ 0.08 1.75^ 0.13 20.031^ 0.026 20.006^ 0.013
2-II 1019 59.7^ 2.1 3.11^ 0.05 0.184^ 0.008 3.33^ 0.20 22.5^ 1.8 20.004^ 0.019 +0.001^ 0.010

3-I 580 2.65^ 0.17 5.96^ 0.20 0.265^ 0.017 1.29^ 0.08 1.75^ 0.13 20.031^ 0.026 20.006^ 0.013
3-II 570 51.3^ 2.3 2.85^ 0.07 0.296^ 0.012 0.88^ 0.02 4.58^ 0.21 +0.021^ 0.025 20.000^ 0.013
3-III 449 70.3^ 3.8 3.43^ 0.06 0.051^ 0.004 6.44^ 0.41 45.3^ 3.9 20.035^ 0.030 +0.002^ 0.015

Figure 3. Duration distributions of classes 2-I and 2-II.

Figure 4. Hardness distributions of classes 2-I and 2-II.
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very high redshifts. Following the same procedure as in Mao &

Paczyński (1992), that is to calculate the theoretical value of

kðFmin/FÞ3=2l as a function of zmax, and taking kV/Vmaxl in Table 2

as an empirical value for that quantity, a value of zmax for the

distribution of the GRBs can be derived. Adopting a model

universe with VM ¼ 0:3, VL ¼ 0:7 and H0 ¼ 65 km s21 Mpc21,

assuming the GRBs to be standard candles with a spectral slope

a ¼ 1 (Mallozzi Pendleton & Paciesas 1996), and assuming

constant comoving GRB rate, one obtains zmax ¼ 4:0610:66
20:57 for

class I, 3:0810:35
20:32 for class II and 45:2414:23

23:55 for class III. The latter

is an exceedingly high value, but, as will be seen in Section 4, class

III can have very massive stars as progenitors, and in that case the

GRB rate should be proportional to the star formation rate (SFR)

rather than being constant. Taking as SFR(z) that of Madau &

Pozzetti (2000), zmax ¼ 11:3010:56
20:43 is obtained for class III, which is

a more reasonable value.

It was already known that separating long-class GRBs into two

hardness groups results in two very different degrees of

inhomogeneity (T98). The kV/Vmaxl values for the whole Current

GRB Catalog have been calculated and the results are kV/Vmaxl ¼
0:268 ^ 0:011 for GRBs with H32 , 3, and kV/Vmaxl ¼ 0:182 ^

0:012 for GRBs with H32 . 3. Now, with the three-class

classification, very different degrees of inhomogeneity within the

same interval of hardness are found, as can be seen by comparing

Table 2 with Fig. 6, and with little difference in mean hardness:

those of class II and class III differ here with 4 � 1023 significance

in a Student test, but in the neural network classification the

significance will only be 0.42 while the kV/Vmaxl difference will

remain. We leave a discussion of the value of kV/Vmaxl as related to

hardness for Section 4.

It can also be pointed out that, in contrast with what happened in

the binary long/short classification, where shorter bursts were

harder, now class II is shorter than class III but it is slightly softer at

the same time.

3.2 Neural network

In the neural network case, how many classes are to be obtained

must be decided beforehand: knowing the dendrograms that result

from the cluster analysis, we ask for either two or three classes.

Their main characteristics are summarized in Table 3, using the

same units as in Table 2.

As should be expected, there are some differences in the

composition of the classes as compared with those obtained from

the clustering method, since the neural network method is not

agglomerative. So, for instance, class I is no longer identical, in the

two-group classification, to class I in the three-group scheme. Also,

the ‘short’ GRBs which make up this class now have longer

average durations than in the cluster analysis.

There is also some change from the results of the cluster analysis

in the three-group classification. Classes II and III now become

more widely separated in duration (Fig. 7), basically because of the

decrease in duration of class II. The difference in hardness between

classes II and III, in contrast, has decreased (Fig. 8).

As in the cluster analysis, all three classes are highly isotropic,

with no value of the moments above 0.8s of the values expected for

isotropy.

Class II is now the intermediate class in peak flux. From both

methods, cluster analysis and neural network, it is seen that, despite

the difference of one order of magnitude between the durations of

classes I and II, their respective total fluences remain of the same

order.

The high inhomogeneity in the space distribution of class III is

seen once more, and also how class II is again the most

homogeneous one. Now the sample depths are, for constant

comoving GRB rate, zmax ¼ 3:3410:55
20:48, 2:7810:53

20:46 and 15:4511:50
21:33 for

classes I, II and III respectively. For GRB rate proportional to SFR,

zmax ¼ 3:2210:22
20:20, 2:9810:23

20:20 and 6:6710:30
20:30. The value of zmax ,

11:3; obtained from the cluster analysis, corresponds to a universe

with an age of 4:3 � 108 yr, and is in good agreement with the

expectation of GRBs occurring out to at least z < 10. The value

obtained from the neural network analysis of zmax , 6:7

corresponds to a universe with an age of 8:8 � 108 yr. Both values

for zmax are below the redshift limit, z < 15–20, given for

Population III stars by LR00.

We conclude that the three classes respectively obtained from

the cluster analysis and from the neural network algorithm show

similar characteristics, and thus both treatments are mutually

consistent.

Figure 5. Duration distributions of the three-class classification from

cluster analysis.

Figure 6. Hardness distributions of the three-class classification from

cluster analysis.
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4 D I S C U S S I O N

The two different automatic classifier methods above suggest the

existence of three different groups of GRBs with different

properties. We will now examine whether such a classification does

make physical sense and we are actually dealing with three classes

of GRBs.

Let us first discuss the proposal by T98, of taking the long-burst

class and dividing it into two groups with H32 higher and lower

than 3 respectively. As seen in Section 3.1, long/hard bursts are

more inhomogeneously distributed than long/soft bursts. This

might seem to be in contradiction with the cosmological scenario,

in which more distant bursts are expected to be softer because of

the spectrum redshift, and it leads us to conclude that class III

bursts are intrinsically much harder than those of classes I and II.

Fig. 9 shows that there is indeed evolution in hardness: the value

of kV/Vmaxl decreases with increasing H32. The hardness bins are

taken so as to include similar numbers of bursts (,60) in each of

them, in order to have comparable error bars. The value of

kV/Vmaxl is displayed in the position of the mean of the hardness

for each bin, and no error bars for the hardness are shown because

the deviation is less than the symbol size, except for the last bin for

which it is about 0.2.

When kV/Vmaxl decreases one is dealing with a more distant

sample of GRBs, and then Fig. 9 tells us that, when sampling to

higher distances, GRBs tend to be harder, and taking into account

the hardness–intensity correlation (Dezalay et al. 1997) they

should also be more luminous. This effect has to be interpreted, in a

cosmological scenario, as a source evolution. There is a possible

explanation: it is generally admitted that the upper limit of the

stellar initial mass function (IMF) depends on metallicity, and that

lower metallicity allows more massive stars to form. When

sampling GRBs farther away, one looks to a younger universe, with

lower metallicity, and thus with more massive stars. Therefore, if

GRBs come from very massive stars, those ancient GRBs had

sources with higher power and they were brighter and harder.

Next are displayed, in Figs 10 and 11, kV/Vmaxl versus hardness

for classes II and III, from the results of the cluster and of the neural

network analyses, respectively.

Here can be appreciated, with particular clarity in the figure

corresponding to the neural network result, how in the three-class

scheme the ‘new’ class II no longer shows any trend of kV/Vmaxl
decreasing with increasing H32. Such a trend in the ‘old’ class II

was due to the fusion into it of the ‘new’ classes II and III, and now

it is seen that class III is the only one to uphold the trend. To

evaluate the correlation numerically, a Spearman rank test (see, for

instance, its implementation in Press et al. 1992) has been applied,

obtaining for class III a Spearman rank correlation coefficient

rs ¼ 20:344, with a significance of 2 � 1028, for the class

resulting from the cluster analysis, and rs ¼ 20:354, with

significance 4 � 10213, for that resulting from the neural network

analysis. In contrast, for class II from the cluster analysis rs ¼

0:066 is obtained, with a significance of 0.26, and for class II from

the neural network rs ¼ 20:051 is obtained, with a 0.51

significance level. It is concluded, therefore, that class III really

shows clues of cosmological source evolution, which could be due

Figure 8. Hardness distributions of the three-class classification from

neural network analysis.

Table 3. Characteristics of the classification with the neural network. T90 is in units of s, P1024 in units of photon cm22 s21, and Ftotal

in units of 1026 erg cm22.

Class N kT90l kH32l kV/Vmaxl kP1024l kFtotall kcos ul ksin2b 2 1=3l

2-I 685 6.24^ 0.50 5.50^ 0.18 0.288^ 0.015 0.94^ 0.04 1.44^ 0.09 10.002^ 0.024 20.005^ 0.012
2-II 914 63.5^ 2.3 3.12^ 0.05 0.159^ 0.008 3.82^ 0.22 25.1^ 2.0 20.024^ 0.021 10.001^ 0.010

3-I 531 3.05^ 0.34 6.20^ 0.22 0.287^ 0.017 0.81^ 0.04 1.13^ 0.07 20.003^ 0.027 20.014^ 0.014
3-II 341 25.0^ 1.4 3.05^ 0.10 0.307^ 0.019 1.25^ 0.08 2.82^ 0.16 20.012^ 0.033 10.009^ 0.016
3-III 727 71.8^ 2.8 3.15^ 0.05 0.123^ 0.008 4.51^ 0.28 30.8^ 2.5 20.022^ 0.023 10.003^ 0.012

Figure 7. Duration distributions of the three-class classification from neural

network analysis.
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to its being composed of GRBs produced by very massive stars,

probably through collapsars.

Out of all the bursts with known redshifts, eight entered into our

classification. In the case of the neural network classification,

seven out of those eight bursts are classified as class III, and only

one of them as class II. With the clustering method classification,

six belong to class III and two to class II. One of these last two

bursts is GRB 980425, presumably related to SN 1998bw (Galama

et al. 1999), which is thought to be a peculiar GRB. In both

classifications GRB 970508 (Metzger et al. 1997) was assigned to

class II. The assignation of any individual GRB to a given class by

our methods is not entirely reliable, however, and has an

uncertainty that is most important in the limiting region of each

cluster. By looking at the scatter graphs, it has been checked that

GRB 970508 in fact lies in the region near class III. It must be

stressed that, given the high isotropy of all three classes found here,

there is no evidence of Galactic structure for any of them. It could

be argued that, in the same way as no redshift has yet been

measured for any GRB of class I, because the fact that they are

short makes them difficult to detect with BeppoSAX (which is

mainly sensitive to bursts longer than about 5–10 sÞ, no redshifts of

GRBs of class II have been measured either, because they are faint

and their detection is equally hard. As an alternative explanation,

the fact that no afterglows from GRBs of class I or II have been

seen is due to their being produced by neutron star–neutron star or

neutron star–black hole mergers, which are expected to happen

mostly outside galaxies where the interstellar medium is too

tenuous to produce any detectable afterglow (see Panaitescu,

Kumar & Narayan 2001, for instance). That would also be

consistent with the kV/Vmaxl values found: while collapsars should

appear first and be more frequent in the distant, early Universe,

neutron star–neutron star and neutron star–neutron black hole

mergers should start later and be more homogeneously distributed

down to low redshifts. In this context we can even speculate

whether the differences between class I and class II GRBs might be

due to one of them corresponding to black hole–neutron star (or

black hole–white dwarf) mergers, the other class being produced

by neutron star–neutron star mergers. The whole question should

be solved with the new generation of GRB detectors aboard the

HETE 2 and Swift satellites.

One should be concerned whether the structure of the GRB data

may partially reflect instrumental biases. Hakkila et al. (2000) have

suggested that the three-class classification obtained by M98 might

arise from a bias in measuring some burst properties, such as

duration and fluence, which would make some bursts in ‘classical’

class II take on ‘new’ class II characteristics (by lowering their

duration and fluence). The fluence–duration bias, however, in spite

of being qualitatively understood, is not well quantified. Hakkila

et al. based their analysis on M98’s classes: their intermediate-

duration class has durations T90 of between 2 and 10 s, while the

class II deduced here extends up to T90 longer than 100 s.

Moreover, such bias acts on the farthest bursts, while what we find

is that our ‘new’ class II GRBs are the closest ones. In addition, any

bias that would make some bursts in the ‘old’ class II appear

Figure 10. kV/Vmaxl versus hardness for classes II and III from the cluster

analysis. Here the nearly constant value of kV/Vmaxl over the interval of

hardnesses covered by class II is seen. The trend for class III of lower

kV/Vmaxl with higher H32 can also be seen. As in Fig. 9, the hardness bins

have been taken so as to include similar numbers of bursts in all of them.

Figure 11. kV/Vmaxl versus hardness for classes II and III from neural

network analysis (same criterion as in Fig. 10 for the hardness bins). In this

graph, the trend for class III of lower kV/Vmaxl with higher H32 is more

evident than in Fig. 10.

Figure 9. kV/Vmaxl versus hardness for GRBs with T90 . 2 s. The

correlation between these two variables is clearly seen. Hardness bins have

been taken so as to include similar numbers of bursts in all of them. Each

hardness bin contains , 60 GRBs.
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shorter and with lower fluence could hardly separate at the same

time the evolutionary effects that we see in Fig. 9 into two groups:

one with evolution (class III) and the other one without it (‘new’

class II).

5 C O N C L U S I O N

There are reasons to think that there exists more than one type of

possible progenitor for GRBs, and each type may give rise to

groups of burst with different properties. We have searched for

these groups in the current BATSE catalogue, with the aid of two

automated classification algorithms, and confirmed that there exist

two clearly separate classes of GRBs corresponding to the

‘classical’ classification of long/short GRBs. In addition, we have

also obtained clear hints that there exists a third class, different

from those previously reported. An oversimplified way of looking

at this would be to say that the third class arises from splitting the

original long class into two groups with high and low peak fluxes,

similar to the way in which the whole sample of GRBs has been

divided, in previous studies, into pairs of groups according to

duration (K93), hardness (T98), brightness (Nemiroff et al. 1994),

or other characteristics (Pendleton et al. 1997). The present work,

however, goes beyond that, since nine quantities related to the

bursts are used for the classification instead of taking a single

parameter and then finding a value separating the bursts into two

classes: there are overlapping zones in every original variable.

What our procedures do is trace a surface in the nine-dimensional

space, separating classes from the way in which each variable

relates to all others. Two different classes may well have the same

duration or show nearly the same distribution for a given variable,

but by taking into account the other variables as well, these

procedures still detect their existence. In contrast, univariate

distributions would overlook them.

Apart from the power of the method, the new grouping of the

bursts thus obtained has to be examined for its possible physical

meaning and its correspondence with separate classes of GRB

progenitors and/or mechanisms. Classes I, II and III here defined

correspond to different observational depths (zmax), and may result

from varying geometries of the observer with respect to the emitter,

different parameters of the explosion, or different progenitors

having different spatial distributions. Thus every class has to be

compared with several possible models. The physical separation of

classes II and III is strongly supported by the fact (which can hardly

be due to chance alone) that when considering both classes

together they show evolution of hardness and intensity with the

maximum distance sampled, while when separated such evolution

exists only in class III. We conclude, therefore, that class III, which

probably has collapsars as progenitors, is the one that can be

detected up to very large redshifts, and it should thus be the most

suitable one to learn about the history of the Universe at high z. We

also suggest that classes I and II could correspond to neutron star–

neutron star or neutron star–black hole mergers instead.
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