Cosmological parameter estimation using Very Small Array data out to $\ell =1500$

Rafael Rebolo,1,2⋆ Richard A. Battye,3★ Pedro Carreira,3 Kieran Cleary,3 Rod D. Davies,3 Richard J. Davis,3 Clive Dickinson,3† Ricardo Genova-Santos,1 Keith Grainge,4 Carlos M. Gutiérrez,1 Yaser A. Hafez,3 Michael P. Hobson,4 Michael E. Jones,4 Rüdiger Kneissl,4 Katy Lancaster,4 Anthony Lasenby,4 J. P. Leahy,3 Klaus Maisinger,4 Guy G. Pooley,4 Nutan Rajguru,4 José Alberto Rubiño-Martin,1,5 Richard D. E. Saunders,4 Richard S. Savage,4† Anna Scaife,4 Paul F. Scott,4 Anže Slosar,4§ Pedro Sosa Molina,1 Angela C. Taylor,4 David Titterington,4 Elizabeth Waldram,4 Robert A. Watson3¶ and Althea Wilkinson3

1Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain
2Consejo Superior de Investigaciones Científicas, Spain
3Jodrell Bank Observatory, University of Manchester, Macclesfield, Cheshire SK11 9DL
4Astrophysics Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE
5Max-Planck Institut für Astrophysik, Karl-Schwarzchild-Str. 1, Postfach 1317, 85741 Garching, Germany

Accepted 2004 June 4. Received 2004 June 4; in original form 2004 February 19

ABSTRACT

We estimate cosmological parameters using data obtained by the Very Small Array (VSA) in its extended configuration, in conjunction with a variety of other cosmic microwave background (CMB) data and external priors. Within the flat Λ cold dark matter (ΛCDM) model, we find that the inclusion of high-resolution data from the VSA modifies the limits on the cosmological parameters as compared to those suggested by the Wilkinson Microwave Anisotropy Probe (WMAP) alone, while still remaining compatible with their estimates. We find that $\Omega_m h^2 = 0.0234^{+0.0012}_{-0.0014}$, $\Omega_b h^2 = 0.111^{+0.014}_{-0.016}$, $h = 0.73^{+0.09}_{-0.05}$, $n_S = 0.97^{+0.06}_{-0.03}$, $10^4 A_S = 23^{+7}_{-3}$ and $\tau = 0.14^{+0.16}_{-0.07}$ for WMAP and VSA when no external prior is included. On extending the model to include a running spectral index of density fluctuations, we find that the inclusion of VSA data leads to a negative running at a level of more than 95 per cent confidence ($n_{\text{run}} = -0.069^{+0.014}_{-0.032}$), something that is not significantly changed by the inclusion of a stringent prior on the Hubble constant. Inclusion of prior information from the 2dF galaxy redshift survey reduces the significance of the result by constraining the value of Ω_m. We discuss the veracity of this result in the context of various systematic effects and also a broken spectral index model. We also constrain the fraction of neutrinos and find that $f_\nu < 0.087$ at 95 per cent confidence, which corresponds to $m_\nu < 0.32$ eV when all neutrino masses are equal. Finally, we consider the global best fit within a general cosmological model with 12 parameters and find consistency with other analyses available in the literature. The evidence for $n_{\text{run}} < 0$ is only marginal within this model.

Key words: cosmic microwave background – cosmology: observations.

1 INTRODUCTION

Recent measurements of the cosmic microwave background (CMB) anisotropies have allowed the determination of a large number of
cosmological parameters with unprecedented accuracy. The Wilkinson Microwave Anisotropy Probe (WMAP) and pre-WMAP data sets can be fitted by a six-parameter Λ cold dark matter (ΛCDM) model (see, for example, Bennett et al. 2003; Slosar et al. 2003). In order to break the degeneracies inherent in the CMB power spectrum (Efstathiou & Bond 1999), various authors have augmented measurements of the CMB with observations of large-scale structure (LSS), for example, the 2dF galaxy power spectrum (Percival et al. 2001, 2002), Lyman-α forest (Mandelbaum et al. 2003; Seljak, McDonald & Makarov 2003), Sloan Digital Sky Survey (SDSS) three-dimensional power spectrum (Tegmark et al. 2003), measurements of cosmic shear (CS; Hoekstra, Yee & Gladders 2002) and the galaxy cluster luminosity function (Allen et al. 2003a), and/or information on the expansion rate of the Universe from measurements of the Hubble constant (Freedman et al. 2001) and high-redshift supernovae (Reiss et al. 1998; Perlmutter et al. 1999).

High-resolution ($\ell \geq 700$) observations of CMB anisotropies provided by previously released data obtained by the Very Small Array (WSA; Grainge et al. 2003), the Arcminute Bolometer Array (ACBAR; Kuo et al. 2004) and the Cosmic Background Imager (CBI; Pearson et al. 2003) can also be important in reducing the impact of degeneracies and provide information on the parameters relating to the power spectrum of initial density fluctuations over a much wider range of scales. In particular, the WMAP team made use of these data in their analyses in order to improve the significance of their results (Spergel et al. 2003).

In this paper, we study the cosmological implications of the new CMB power spectrum measured by the WSA, which has a good signal-to-noise ratio out to a multipole of $\ell = 1500$ (Dickinson et al. 2004). These observations cover 33 fields, as opposed to 9 in Grainge et al. (2003), representing an improvement of a factor of 3 in signal-to-noise over the previous data. By virtue of the accurately measured temperature of Jupiter by WMAP, the absolute calibration uncertainty for these data is reduced to 3 per cent on the power spectrum: something which will be significant in our subsequent discussion. The power spectrum is measured between $\ell = 300$ and 1500 with a resolution in ℓ-space of $\Delta \ell \approx 60$. Previous measurements of the power spectrum between $\ell = 130$ and 900 using the VSA compact configuration can be found in Scott et al. (2003).

We will first consider the standard six-parameter flat ΛCDM model and then include extra parameters broadly in keeping with the approach taken in the papers published by the WMAP team (Peiris et al. 2003; Spergel et al. 2003; Verde et al. 2003). Our main focus will be on the initial spectrum of fluctuations, quantified by the running of the spectral index, which appears to be particularly sensitive to high-resolution data such as ours. In the case where we do not impose external priors on the CMB data (WMAP + VSA), we find that there is significant evidence ($>2\sigma$) for power running: something that is not implied by the WMAP data alone. The significance of this result is sensitive to the inclusion of external priors, the relative calibration of WMAP and VSA, and possible source/cluster contamination of the measured power spectrum, illustrating issues that are of great relevance in the era of precision cosmology. The result, if true, would be a significant challenge to models of slow-roll inflation and so we also consider a broken spectral index model. As a final point, we consider a 12-parameter model fit to WMAP, WMAP + VSA and all available CMB data beyond $\ell > 1000$, illustrating the effects of external priors on the estimated parameters. Our results within this model are compatible with previous determinations, both by the WMAP team and others.

2 METHODOLOGY

2.1 Cosmological model

We will define the ΛCDM model as follows. First, we will assume that the Universe is flat and dominated by CDM, baryons and a cosmological constant, Λ. The densities of these components relative to critical are denoted Ω_{Λ}, Ω_{b}, and Ω_{c}, respectively, and we define $\Omega_{m} = \Omega_{\text{b}} + \Omega_{\text{c}}$, to be the overall matter density (CDM and baryons) in the same units. The expansion rate is quantified in terms of the Hubble constant $H_0 = 100 h \text{ km s}^{-1} \text{ Mpc}^{-1}$ and we allow for instantaneous reionization at some epoch $\tau_{\text{re}}(\sim 30)$ [optical depth $\tau_{\text{re}}(<0.32)]$. The so-called physical densities of the CDM and baryons are defined as $\omega_{\text{dm}} = \Omega_{\text{dm}} h^2$ and $\omega_{\text{b}} = \Omega_{\text{b}} h^2$. We will consider only adiabatic models and, guided by the predictions of slow-roll inflation, we parametrize the initial fluctuation spectrum of this model by

$$ P(k) = A_s \left(\frac{k}{k_c} \right)^{n_s - 1}, $$

where $k_c = 0.05 \text{ Mpc}^{-1}$ is the arbitrarily chosen pivot point of the spectrum, n_s is the spectral index and A_s is the scalar power spectrum normalization.

We will modify this model by the inclusion of two other parametrizations of the power spectrum. We will, for the most part, consider a model with a running spectral index,

$$ P(k) = A_s \left(\frac{k}{k_c} \right)^{n_s - 1 + \frac{1}{2} n_{\text{run}} \log(k/k_c)} , $$

so that the overall spectral index of fluctuations is a function of scale, $n_s(k)$, given by

$$ n_s(k) = 1 + \frac{\log(P)}{\log(k)} = n_s + n_{\text{run}} \log \left(\frac{k}{k_c} \right), $$

where n_{run} is known as the running of the spectral index. For slow-roll inflation to be well defined, one requires that $|n_{\text{run}}| \ll |1 - n_s|/2$ (Leach & Liddle 2003). We therefore consider an alternative model, which could be motivated by broken-scale invariance models of inflation (see, for example, Barriga et al. 2001), but is probably best thought of as a test of whether or not the data prefer a single power law. The specific choice we will make is to consider

$$ n(k) = n_1 \text{ for } k < k_c \text{ and } n(k) = n_2 \text{ for } k > k_c, $$

with an appropriate normalization for $k > k_c$ so as to make the power spectrum continuous and the same value of k_c as used in the standard ΛCDM model.

In our discussion of systematic effects in Section 4, we will consider the possibility of an extra component to the anisotropies with $C_l = 2\pi A_X \times 10^{-6}$. Such a component is motivated by foreground effects resulting from point sources and the Sunyaev–Zel’dovich (SZ) effect from galaxy clusters along the line of sight. The temperature anisotropies as a result of such a component will be $(\Delta T)^2 = [\ell(\ell + 1)C_l/(2\pi)] = A_X(\ell/1000)^2$ and could be significant for $\ell > 1000$. The VSA has a sophisticated procedure to extract the effects of point sources using a dedicated, colocated, single-baseline interferometer (see Dickinson et al. 2004, for details), and the VSA fields have been chosen to avoid very luminous X-ray clusters. There could

1 It has been assumed $\Omega_{\Lambda} = 0.044$, $h = 0.71$ and a flat universe with $\Omega_m = 0.3$. © 2004 RAS, MNRAS 353, 747–759
still, however, be some residual contamination. Moreover, claims have been made of an excess signal between \(\ell = 2000 \) and 4000 by the CBI team (Mason et al. 2003), who attribute this to the SZ effect. If the signal is as large as is claimed, then it could be a contaminant even at lower \(\ell \). By including such a component in the parameter fitting, it should be possible to constrain the contribution at \(\ell > 2000 \) as well as gaining some insights into the possible systematic effects of making such an error.

The other parameters that we will consider in our analyses are: \(f_\nu = \Omega_s / \Omega_{dm} \), the fraction of the dark matter that is massive neutrinos; \(\Omega_L = 1 - \Omega_m - \Omega_b + \Omega_r + \Omega_\chi \), the curvature in units of the critical density; \(w = P_Q / P_G \), the equation-of-state parameter for a dark energy component modelled as a slowly rolling scalar field; \(n_T \), the spectral index of tensor fluctuations specified at the pivot point \(k_* = 0.002 \, \text{Mpc}^{-1} \); \(R = A_T / A_S \), the ratio of the amplitude of the scalar fluctuations, \(A_S \), evaluated at \(k_* = 0.05 \, \text{Mpc}^{-1} \), and that of the tensor fluctuations evaluated at \(k_* = 0.002 \, \text{Mpc}^{-1} \). In addition to these parameters, for which we fit, we will also comment on various derived quantities: \(t_0 \), the age of the universe; \(\sigma_8 \), the amplitude of density fluctuations in the spheres of 8 h\(^{-1}\) Mpc.

2.2 CMB data

In this paper, we will consider the cosmological implications of four different combinations of CMB data.

(i) The first data set, denoted \(\text{COBE} + \text{vsa} \) contains the VSA data as described in Dickinson et al. (2004) combined with the \(\text{COBE} \) data (Smooot et al. 1992; Bennett et al. 1996). The purpose of this particular data set is to check the consistency of the VSA data with the concordant model, without imposing the strong constraining power of the \(\text{WMAP} \) data set (Bennett et al. 2003).

(ii) The second data set, denoted \(\text{WMAP} \) contains only the \(\text{WMAP} \) temperature (TT) data (Hinshaw et al. 2003) and temperature-polarization cross-correlation (TE) data (Kogut et al. 2003). We use these data sets to provide a meaningful comparison with cosmological results obtained from other data sets, avoiding differences that might arise as a result of the priors and other methodological issues.

(iii) The third data set contains \(\text{WMAP} \) data and the new VSA data and is referred to as \(\text{WMAP} + \text{vsa} \). In this data-set we supplement the accurate measurement of the first two peaks by the \(\text{WMAP} \) satellite with the VSA measurements of the power spectrum in the region between the third and fifth peaks. The importance of these data sets is to illustrate the extra information that is available from the measurements of the power spectrum on small angular scales.

(iv) The last data set combines the previous two with all important CMB experiments providing measurements in the region of the second peak of the spectrum and beyond, namely CBI, ACBAR, \(\text{BOOMERanG}, \text{MAXIMA} \) and the Degree Angular Scale Interferometer (DASI) (Pearson et al. 2003; Kuo et al. 2004; Netterfield et al. 2002; Hanany et al. 2002 and Halverson et al. 2002, respectively). This last data set is hereafter referred to as \(\text{AICMB} \).

Throughout our analysis, we ignore small correlations between data sets that arise as a result of the fact that they have observed the same portions of the sky. This applies only to correlations between \(\text{WMAP} \), which has used nearly all the sky, and terrestrial experiments, which have observed only small patches. In all cases, the decoupling of observed angular scales and the fact that any given patch of sky observed by a terrestrial experiment makes up less than 1 per cent of the sky coverage makes this approximation truly valid and far below systematic uncertainties.

2.3 External priors

In addition to the CMB data sets described above, we consider the effects of other cosmological data, not only to break the degeneracies, but also to see how the measured CMB power spectrum fits in the wider cosmological context. Each of these external priors is discussed below.

(i) The constraint on the Hubble constant obtained by imposing the \textit{Hubble Space Telescope} (HST) key project value of \(H_0 = 72 \pm 8 \, \text{km s}^{-1} \, \text{Mpc}^{-1} \) (Freedman et al. 2001) as a Gaussian distribution. The error bar includes both statistical and systematic uncertainty and prohibits the low-density, low-\(h \) universes allowed by the CMB data alone.

(ii) Constraints on large scale structure from the 2dF Galaxy Redshift Survey (Colless et al. 2001; Percival et al. 2001, 2002), which provides measurements on scales 0.02 < \(k/(h \, \text{Mpc}^{-1}) < 0.15 \). The 2dF data measure the power spectrum of the galaxy fluctuations in the linear regime, which is linked to the spectrum of primordial fluctuations and the parameters of the standard model in a different manner to the CMB data and, thus, provides an important consistency check. A joint likelihood analysis is performed using the power spectrum data convolved with the window function provided by the 2dF team.

(iii) Constraints from Type Ia supernovae (SNeIa) (Reiss et al. 1998; Perlmutter et al. 1999) were included as a prior on the \(\Omega_m - \Omega_L \) plane, which help to break the CMB geometrical degeneracy and thus accurately determine the ratio of matter to dark-energy components in our Universe.

(iv) Constraints from the gas fraction (\(f_{\text{gas}} \)) in dynamically relaxed clusters of galaxies (Allen, Schmidt & Fabian 2002) and from the observed local X-ray luminosity function (XLF) of galaxy clusters (Allen et al. 2003a). These data provide very accurate measurements of matter content of our Universe, albeit with large systematic uncertainties. We include these priors using importance sampling as in Allen, Schmidt & Briddle (2003b).

(v) Constraints from CS measurements displayed in fig. 3(a) of Hoekstra et al. (2002), which provide an independent restriction in the \(\Omega_m - \sigma_8 \) plane from that implied by X-ray observations of clusters. This prior is included using importance sampling.

2.4 Parameter estimation

The parameter estimation has been performed using the \textsc{cosmomc} computer package (Lewis & Bridle 2002) using the 2003 April version of the software (note that the default parametrization is different in the more recent versions of the \textsc{cosmomc} package). The calculations were performed on LAM clusters with a total of 42 CPUs at the Instituto de Astrofisica de Canarias (IAC) in La Laguna, Tenerife and the COSMOS supercomputer facility at the University of Cambridge. The \textsc{cosmomc} software uses the Markov Chain Monte Carlo (MCMC) algorithm to explore the hypercube of parameters on which we impose flat priors. These priors are listed in Table 1. Additionally, the software automatically imposes the physical prior \(\Omega_L > 0 \), which can significantly affect the marginalized probability distributions (see Slosar et al. 2003 for further discussion). For each considered model, we have run the software until 1 in 25 of samples are accepted. Once this is achieved, we ignore the first 200 accepted samples as a burn-in phase. In the flat models this leads to 65 000 independent samples and 200 000 in the non-flat case. These samples were then thinned by a factor 25 and used to plot marginalized probability distributions with the GETDIST facility, which is part of the \textsc{cosmomc} package.
Table 1. Priors used on each cosmological parameter when it is allowed to vary. The notation (a, b) for parameter x denotes a top-hat prior in the range $a \leq x \leq b$.

<table>
<thead>
<tr>
<th>Basic parameter</th>
<th>Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_b</td>
<td>(0.005, 0.10)</td>
</tr>
<tr>
<td>ω_{dm}</td>
<td>(0.01, 0.99)</td>
</tr>
<tr>
<td>h</td>
<td>(0.4, 1.0)</td>
</tr>
<tr>
<td>n_S, n_1, n_2</td>
<td>(0.5, 1.5)</td>
</tr>
<tr>
<td>ζ_{re}</td>
<td>(4, 30)</td>
</tr>
<tr>
<td>$10^{10} A_S$</td>
<td>(10, 100)</td>
</tr>
<tr>
<td>n_m</td>
<td>(−0.15, 0.15)</td>
</tr>
<tr>
<td>$A_S/(\mu K)^2$</td>
<td>(−500, 500)</td>
</tr>
<tr>
<td>f_i</td>
<td>(0, 0.2)</td>
</tr>
<tr>
<td>Ω_b</td>
<td>(−0.25, 0.25)</td>
</tr>
<tr>
<td>w</td>
<td>(−1.5, 0)</td>
</tr>
<tr>
<td>R</td>
<td>(0, 2)</td>
</tr>
<tr>
<td>n_τ</td>
<td>(−1.5, 3)</td>
</tr>
</tbody>
</table>

Table 2. Parameter estimates and 68 per cent confidence limits for the standard six-parameter flat ΛCDM model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>COBE + VSA</th>
<th>WMAP</th>
<th>WMAP + VSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_b</td>
<td>0.0328$^{+0.0073}_{-0.0071}$</td>
<td>0.0240$^{+0.0027}_{-0.0016}$</td>
<td>0.0234$^{+0.0019}_{-0.0014}$</td>
</tr>
<tr>
<td>ω_{dm}</td>
<td>0.125$^{+0.031}_{-0.027}$</td>
<td>0.117$^{+0.018}_{-0.018}$</td>
<td>0.114$^{+0.014}_{-0.016}$</td>
</tr>
<tr>
<td>h</td>
<td>0.77$^{+0.15}_{-0.17}$</td>
<td>0.73$^{+0.10}_{-0.06}$</td>
<td>0.73$^{+0.09}_{-0.05}$</td>
</tr>
<tr>
<td>n_S</td>
<td>1.05$^{+0.12}_{-0.08}$</td>
<td>1.00$^{+0.09}_{-0.04}$</td>
<td>0.97$^{+0.06}_{-0.03}$</td>
</tr>
<tr>
<td>$10^{10} A_S$</td>
<td>25$^{+11}_{-6}$</td>
<td>27$^{+9}_{-5}$</td>
<td>23$^{+7}_{-3}$</td>
</tr>
<tr>
<td>τ</td>
<td>Unconstrained</td>
<td>0.18$^{+0.16}_{-0.08}$</td>
<td>0.14$^{+0.14}_{-0.07}$</td>
</tr>
</tbody>
</table>

Figure 1. Marginalized distributions for the standard 6-parameter flat ΛCDM model with no external priors (that is, CMB alone) using COBE + VSA (solid-line), WMAP alone (dotted line) and WMAP + VSA (dashed line).
result is that for ω_b, which is much larger than the value suggested by WMAP, WMAP + VSA and standard big bang nucleosynthesis, $\omega_b = 0.020 \pm 0.002$, (Burles, Nollett & Turner 2001) and is a result of the somewhat larger amplitude of the third peak and the shifted first peak preferred by the VSA data (Rubio-Martin et al. 2003) in isolation (see Dickinson et al. 2004 for a detailed discussion of the preferred peak structure of the current data). Comparing the derived distributions with those obtained by Slosar et al. (2003; using the earlier VSA data presented in Grainge et al. 2003), we find that the results are fully consistent, but the additional VSA data have led to tighter parameter constraints. In particular, the upper limit on ω_{dm} has been significantly reduced.

3.1.2 Running spectral index models

In the previous section, we saw that the inclusion of the VSA data to that of WMAP shifts the derived limits on the spectral index. Standard, slow-roll models of inflation predict that the spectral index will be a function of scale, albeit at a very low level, and it seems a sensible parameter to allow as the first beyond the standard model. The analyses of Peiris et al. (2003) and Spergel et al. (2003) provided evidence for a non-zero value of $n_{\text{run}} (= -0.031 \pm 0.016)$ when using CMB data from WMAP, ACBAR and CBI, along with LSS data from the 2dF Galaxy Redshift Survey and the Lyman-α forest. This result was discussed independently by Barger, Lee & Marfarti (2003), Bridle et al. (2003), Kinney, Kolb & Melchiorri (2003), Leach & Liddle (2003), where it is was shown that it is highly dependent on the inclusion of the data from the Lyman-α forest, the veracity of which has been questioned (Seljak et al. 2003).

![Figure 2](https://academic.oup.com/mnras/article-abstract/353/3/747/1079045)

Figure 2. Marginalized distributions for n_S and n_{run} in the flat ΛCDM model with a running spectral index. Line styles are as in Fig. 1. The external priors adopted are: none (top row), HST (middle row), 2dF (bottom row).

<table>
<thead>
<tr>
<th>CMB</th>
<th>External</th>
<th>n_S</th>
<th>n_{run}</th>
</tr>
</thead>
<tbody>
<tr>
<td>COBE + VSA</td>
<td>None</td>
<td>0.93$^{+0.13}_{-0.12}$</td>
<td>$-0.081^{+0.049}_{-0.049}$</td>
</tr>
<tr>
<td>WMAP</td>
<td>None</td>
<td>0.94$^{+0.07}_{-0.06}$</td>
<td>$-0.066^{+0.037}_{-0.036}$</td>
</tr>
<tr>
<td>WMAP + VSA</td>
<td>None</td>
<td>0.96$^{+0.07}_{-0.07}$</td>
<td>$-0.066^{+0.032}_{-0.032}$</td>
</tr>
<tr>
<td>COBE + VSA</td>
<td>HST</td>
<td>0.92$^{+0.11}_{-0.12}$</td>
<td>$-0.081^{+0.048}_{-0.048}$</td>
</tr>
<tr>
<td>WMAP</td>
<td>HST</td>
<td>0.95$^{+0.06}_{-0.07}$</td>
<td>$-0.066^{+0.037}_{-0.037}$</td>
</tr>
<tr>
<td>WMAP + VSA</td>
<td>HST</td>
<td>0.93$^{+0.06}_{-0.05}$</td>
<td>$-0.066^{+0.036}_{-0.036}$</td>
</tr>
<tr>
<td>COBE + VSA</td>
<td>2dF</td>
<td>1.00$^{+0.12}_{-0.13}$</td>
<td>$-0.044^{+0.059}_{-0.061}$</td>
</tr>
<tr>
<td>WMAP</td>
<td>2dF</td>
<td>0.95$^{+0.05}_{-0.06}$</td>
<td>$-0.035^{+0.025}_{-0.037}$</td>
</tr>
<tr>
<td>WMAP + VSA</td>
<td>2dF</td>
<td>0.93$^{+0.05}_{-0.05}$</td>
<td>$-0.040^{+0.035}_{-0.034}$</td>
</tr>
</tbody>
</table>

We will start our discussion by considering the same model as in the previous section with no external priors, but with n_{run} allowed to vary. The marginalized distributions and derived limits on n_S and n_{run} are presented in the top row of Fig. 2 and the first three rows of Table 3 for COBE + VSA, WMAP and WMAP + VSA. The derived limits on ω_b, ω_{dm} and h are not changed appreciably and the other
parameters, A_s and τ (or z_{re}) are strongly degenerate and z_{re} will feature in our discussion below.

The values of n_s and n_{run} are not particularly well constrained by COBE + VSA, but it is worth noting that even in this case there is a definite preference for a value of $n_{run} < 0$. The results have been included for completeness and provide a useful cross-check. The results for WMAP are somewhat different to those presented in Spergel et al. (2003), something to which we will return in the subsequent discussion. In particular, we find that $n_{run} = -0.060^{+0.037}_{-0.036}$, a 1.6$\sigma$ preference for $n_{run} < 0$, as opposed to $n_{run} = -0.047 \pm 0.04$ from Spergel et al. (2003). The significance of this result is improved to 2.2σ by the inclusion of the high-resolution data from the VSA. These quantitative results are borne out on examination of the likelihood curves. It is worth emphasizing that this result comes from CMB data alone.

We have tested the sensitivity of this apparently strong result to the inclusion of external priors from the HST and 2dF Galaxy Redshift Survey, and the results are also presented in Fig. 2 and Table 3. We see that the effect of the HST prior is to relax marginally the constraint on n_{run}, although there is a significant change in the derived limit on n_s. We note that the results for WMAP alone are very similar with and without the HST prior.

The inclusion of 2dF does significantly affect our results. Using only WMAP, we find that there is only a marginal preference for $n_{run} < 0$ and the inclusion of VSA only yields a 1.4σ result. We note that this is a shift in the derived value and the error bars do not change significantly; it is worth discussing the reason for this shift because it is a result of the breaking of a degeneracy by the addition of 2dF data. The main parameter combination that is constrained by the galaxy power spectrum is the shape parameter $\Gamma = \Omega_m h$, which arises from the size of the horizon at matter-radiation equality measured in redshift space. Hence, once combined with the CMB data, the derived parameters Ω_m and Ω_A are constrained individually (Efstathiou et al. 2002). Fig. 3 presents the marginalized distribution for Ω_m for the three cases: no external prior, HST prior and 2dF prior. We see that for the first two cases, in which there is significant evidence for $n_{run} < 0$, the preferred values of Ω_m are much lower (extremely low in the no prior case) with the corresponding mean values of the distributions giving $\Omega_m h \approx 0.17$–0.18, whereas in the latter case $\Omega_m \approx 0.3$, $h \approx 0.68$ and $\Omega_m h \approx 0.21$, closer to the value suggested by Percival et al. (2001) from the their analysis of the 2dF data alone.

3.1.3 Broken power-law models

In the previous section, we have seen that there is some evidence for an initial power spectrum of density fluctuations that is not described by a single power-law index. The running spectral index model is suggested by slow-roll inflation. However, the values that are preferred by the data, at least with some priors, are too large to come from standard slow-roll inflation and are incompatible with the idea of the spectral index being a power series in $\log(k/k_c)$. Here, we consider a model with two spectral indices n_1 and n_2, with the cross-over point being $k_c \approx 0.05 \text{ Mpc}^{-1}$, which corresponds to $l \approx 800$.

The results obtained from this model are presented in Fig. 4 for the HST and 2dF external priors respectively, using CMB data from WMAP and WMAP + VSA. We see that, in both cases and with both data sets, one obtains $n_1 \approx 1$. The situation for n_2 is more complicated. For the HST case (left column), we see that the best-fitting value is very low. In fact, it is lower than the lower limit we have included as a top hat prior. For WMAP, values as large as $n_2 = 1.4$ are not excluded, whereas the inclusion of the VSA has the effect of excluding models with $n_2 > 1$. The inclusion of the 2dF prior (right column) has a strong effect, moving the distribution of n_2 to larger values, but still preferring $n_2 < 1$. In this case, for WMAP we find that $n_1 = 0.99 \pm 0.04$ and $n_2 = 0.97 \pm 0.18$, which suggests that something close to scale-invariant $n_1 = n_2 = 1$ is preferred, whereas for WMAP + VSA $n_1 = 0.99 \pm 0.03$ and $n_2 = 0.88 \pm 0.15$. While this is clearly compatible with scale invariant even at the 1σ level, there is undoubtedly a preference for a broken spectral index when the VSA is included.

It is clear that our results are compatible with those of the previous section on running spectral index models. Models with $n_{run} < 0$ have a lower value of the spectral index for $k > k_c$, than for $k < k_c$, and this is exactly what we find in this alternative parametrization. We should note that large variations in n_2 only lead to much smaller changes in the actual power spectrum than one might expect naively from, for example, plotting the power spectrum for different values of n_S within the standard ΛCDM model.

3.1.4 Neutrino fraction

As a final extension to our flat ΛCDM model, it is of interest to include the fraction f_ν of dark matter in the form of neutrinos. Evidence for a neutrino oscillation, and hence for the existence of massive neutrinos, has been found by solar neutrino and atmospheric neutrino experiments (Fukuda et al. 1998; Allison et al. 1999; Ambrosio et al. 2000; Ahmad et al. 2002; Fukuda et al. 2002). Further evidence for a non-zero value of the neutrino mass has recently been claimed from cosmological data (Allen et al. 2003b).

In addition to obtaining constraints on f_ν, the inclusion of this parameter will inevitably lead to some broadening of the marginalized distributions for the other parameters. Of particular interest is whether the constraints on the running spectral index derived above are robust to the inclusion of f_ν. We therefore include f_ν, with the top-hat prior given in Table 1, into the running spectral index model. In the analysis of this model, we include the 2dF external prior, because current CMB alone provides only a weak constraint on f_ν.

Figure 3. As for Fig. 2, but for the parameter Ω_m.
Cosmological parameter estimation using VSA data

Figure 4. Marginalized distributions for n_1 and n_2 in the flat ΛCDM model with a broken power-law index. The line styles are as in Fig. 1. The left-hand column assumes the HST prior and the right-hand column assumed the 2dF prior.

Figure 5. Marginalized distributions for f_ν, n_S and n_{run} in the extended flat ΛCDM model, using the 2dF external prior and COBE + VSA (solid-line), WMAP alone (dotted line) and WMAP + VSA (dashed line).

Fig. 5 shows the marginalized distributions obtained for f_ν, n_S and n_{run} for the three CMB data sets COBE + VSA, WMAP and WMAP + VSA. We find that the 95 per cent upper limit provided by the COBE + VSA data set, $f_\nu < 0.132$, is only marginally larger than that obtained using WMAP data, $f_\nu < 0.090$. The combination WMAP + VSA gives similar limits to WMAP, namely $f_\nu < 0.087$, which corresponds to neutrino mass of $m_\nu < 0.32$ eV when the neutrino masses are degenerate.

For the parameters n_S and n_{run}, we see that, as compared with those plotted in Fig. 2 (middle row), the marginalized distributions have indeed been shifted and broadened by the inclusion of f_ν, although the effects are not very strong. In particular, we note that our earlier finding of a preference for a non-zero value of n_{run} has been weakened somewhat. A non-zero n_{run} is still preferred, but at reduced significance. For the WMAP + VSA data set, we obtain $n_S = 0.94^{+0.06}_{-0.06}$ and $n_{\text{run}} = -0.041^{+0.037}_{-0.036}$ with 68 per cent confidence limits.

In the above analysis, we used only 2dF as an external prior. It is of interest to investigate the effect of including different combinations of the additional external priors listed in Table 1. The effect of these additional priors has been calculated by importance sampling our previous results. We also investigate the effect of including all recent CMB data into our analysis. In Fig. 6, we plot confidence limits on all the model parameters for each of our four CMB data sets, each of which, in turn, includes four different combinations of external priors: 2dF, 2dF + f_{gal}, 2dF + f_{gal} + XLF, 2dF + HST and 2dF + CS. The points indicate the median of the corresponding marginalized distribution and the error bars show the 68 per cent confidence limits.
In addition to including limits. In this section, we consider a more general evidence knowns into the analysis in order to obtain conservative confidence models. In principle, one should properly include all the relevant unknowns. For example, excluded at around 96 per cent confidence 0.18 eV when the neutrino masses are degenerate, with a zero value pronounced, effect is seen for error bars for all CMB data set combinations. A similar, but less fitting value and the XLF prior significantly reduces the best-fitting value of the XLF prior for the parameters in this case is \(f_\nu \approx 0.05 \), which corresponds to neutrino mass of \(m_\nu \approx 0.18 \) eV when the neutrino masses are degenerate, with a zero value excluded at around 96 per cent confidence. For \(\sigma_8 \), the inclusion of the XLF prior significantly reduces the best-fitting value and the error bars for all CMB data set combinations. A similar, but less pronounced, effect is seen for \(\sigma_8 \).

3.2 General \(\Lambda\)CDM model

Thus far we have considered only a limited range of flat \(\Lambda\)CDM models. In principle, one should properly include all the relevant unknowns into the analysis in order to obtain conservative confidence limits. In this section, we consider a more general \(\Lambda\)CDM model. In addition to including \(f_\nu \) and \(n_{\text{run}} \), the standard six-parameter flat \(\Lambda\)CDM model is further extended by including \(\Omega_\Lambda \), \(\omega_c \), \(R = A_7/A_8 \) and \(n_S \). This gives 12 variable parameters in total, for which we adopt the top-hat priors listed in Table 1.

For this model, we consider the three CMB data sets WMAP, WMAP + VSA and AllCMB. In addition, we now use both 2dF and SNeIa as our basic external priors, which are required in order to set constraints on our 12-dimensional cosmological parameter space. For each CMB data set, the marginalized distributions for each parameter are shown in Fig. 7. In addition, marginalized distributions are plotted for the derived parameters \(\Omega_\Lambda \), \(\Omega_m \), \(t_0 \) and \(\sigma_8 \). The corresponding confidence limits on the parameter values are given in Table 4.

In this more general model, we see that the marginalized distributions of the parameters in our simpler models have broadened somewhat, but are still consistent with our earlier findings. Perhaps most interesting is the fact that some of the marginalized distributions change considerably as more CMB data are added beyond WMAP. For \(\Omega_\Lambda h^2 \), we see a clear trend towards a lower preferred value [closer to the big bang nucleosynthesis (BBN) estimate] as one adds first VSA data and then all remaining CMB data sets. This effect is accompanied by a gradual upwards trend in the preferred \(\Omega_m h^2 \) value. The other parameters exhibiting such trends are \(n_S \) and \(n_{\text{run}} \). As more CMB data are included, the preferred value of \(n_S \) moves slightly below unity, although this value is by no means excluded. Perhaps more importantly, the upper limit on \(n_S \) is significantly reduced as more CMB data are added. An analogous effect is observed for \(n_{\text{run}} \), for which the addition of VSA data significantly reduces the tail of the distribution for positive values of \(n_{\text{run}} \).
The remaining marginalized distributions have very similar forms for each of the three CMB data sets, indicating that, for these parameters, the addition of further CMB beyond WMAP does not have a significant effect on their derived values and confidence limits. It is worth noting in passing, however, that all CMB data sets are fully consistent with a zero curvature model. Moreover, we find $w = -1$ with an uncertainty of ± 24 per cent, which is consistent with dark energy in the form of a cosmological constant. As regards inflation models, we find that the inclusion of VSA data makes a modest reduction in the upper limit on the tensor-to-scalar ratio, which is reduced still further (albeit marginally) by the inclusion of all CMB data; in this last case, we obtain $R < 0.68$ at 95 per cent confidence. The power-law index of tensor modes n_T is fully consistent with zero.

As we did for the flat ΛCDM model, we may investigate the effect of including additional external priors in our analysis of the general model. In Fig. 8, we plot the confidence intervals on all the model parameters for each of our four CMB data sets, each of which, in turn, includes four different combinations of external priors: 2dF, 2dF + f_{gas}, 2dF + f_{gas} + XLF, 2dF + HST and 2dF + CS. Once again, we see that the inclusion of the f_{gas} and XLF external priors has the greatest effect on the confidence limits, and that this is most pronounced for the XLF prior and the parameters f_{ν}, σ_8 and z_{re}. It is reassuring, however, that the derived limits on f_{ν} for the general model are very similar to those obtained assuming the simpler flat model. We again find $f_{\nu} \approx 0.05$, with a zero value excluded at approximately 92 per cent confidence, which is slightly lower than for the flat case. The effect of the XLF prior on σ_8 and z_{re} in the general model is also similar to that observed in the simpler flat case.

4 DISCUSSION AND CONCLUSIONS

We have used recent data from the VSA, together with other CMB data sets and external priors, to set constraints on cosmological parameters. We have considered both flat and non-flat ΛCDM models and the results are consistent.

Within the flat ΛCDM model, we find that the inclusion of VSA data suggests that the initial fluctuation spectrum is not described by a single power law. As we have pointed out already, the value of n_{run} preferred by the data is incompatible with the basic premises of slow-roll inflation. Moreover, the negative running, which reduces the amount of power on small scales and hence the amount of structure at early times, leads to predictions for the epoch of reionization at odds with the best fit to the CMB data (see, for example, the discussion of Sugiyama, Zaroubi, Silk 2003). This comes almost directly from the temperature-polarization cross-correlation power spectrum observed by WMAP (Kogut et al. 2003). Given the
Table 4. Parameter estimates and 68 per cent confidence intervals for various cosmological parameters as derived from Fig. 7. For f_{ν} and R, the 95 per cent upper limits are quoted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>WMAP</th>
<th>WMAP + VSA</th>
<th>AllCMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Omega_b h^2$</td>
<td>$0.025^{+0.003}_{-0.003}$</td>
<td>$0.024^{+0.003}_{-0.002}$</td>
<td>$0.023^{+0.002}_{-0.002}$</td>
</tr>
<tr>
<td>$\Omega_{dm} h^2$</td>
<td>$0.108^{+0.022}_{-0.021}$</td>
<td>$0.111^{+0.021}_{-0.019}$</td>
<td>$0.113^{+0.017}_{-0.017}$</td>
</tr>
<tr>
<td>h</td>
<td>$0.66^{+0.07}_{-0.06}$</td>
<td>$0.66^{+0.06}_{-0.06}$</td>
<td>$0.65^{+0.07}_{-0.07}$</td>
</tr>
<tr>
<td>z_{re}</td>
<td>18^{+7}_{-7}</td>
<td>19^{+7}_{-7}</td>
<td>17^{+7}_{-7}</td>
</tr>
<tr>
<td>Ω_k</td>
<td>$-0.02^{+0.03}_{-0.03}$</td>
<td>$-0.01^{+0.03}_{-0.03}$</td>
<td>$-0.02^{+0.03}_{-0.03}$</td>
</tr>
<tr>
<td>f_{ν}</td>
<td><0.093</td>
<td><0.083</td>
<td><0.083</td>
</tr>
<tr>
<td>w</td>
<td>$-1.00^{+0.24}_{-0.27}$</td>
<td>$-0.99^{+0.24}_{-0.27}$</td>
<td>$-1.06^{+0.24}_{-0.25}$</td>
</tr>
<tr>
<td>n_S</td>
<td>$1.04^{+0.12}_{-0.11}$</td>
<td>$0.99^{+0.09}_{-0.09}$</td>
<td>$0.96^{+0.07}_{-0.07}$</td>
</tr>
<tr>
<td>n_T</td>
<td>$0.26^{+0.53}_{-0.60}$</td>
<td>$0.13^{+0.41}_{-0.41}$</td>
<td>$0.12^{+0.48}_{-0.51}$</td>
</tr>
<tr>
<td>n_{un}</td>
<td>$-0.02^{+0.07}_{-0.05}$</td>
<td>$-0.04^{+0.05}_{-0.04}$</td>
<td>$-0.04^{+0.04}_{-0.05}$</td>
</tr>
<tr>
<td>$10^{10} A_{S}$</td>
<td>27^{+8}_{-5}</td>
<td>26^{+9}_{-5}</td>
<td>25^{+6}_{-5}</td>
</tr>
<tr>
<td>R</td>
<td><0.78</td>
<td><0.77</td>
<td><0.68</td>
</tr>
<tr>
<td>Ω_X</td>
<td>$0.71^{+0.07}_{-0.09}$</td>
<td>$0.76^{+0.06}_{-0.08}$</td>
<td>$0.69^{+0.07}_{-0.09}$</td>
</tr>
<tr>
<td>t_0</td>
<td>$14.1^{+1.4}_{-1.1}$</td>
<td>$14.3^{+1.3}_{-1.2}$</td>
<td>$14.4^{+1.4}_{-1.3}$</td>
</tr>
<tr>
<td>Ω_m</td>
<td>$0.31^{+0.09}_{-0.07}$</td>
<td>$0.31^{+0.08}_{-0.06}$</td>
<td>$0.33^{+0.10}_{-0.07}$</td>
</tr>
<tr>
<td>σ_8</td>
<td>$0.76^{+0.14}_{-0.14}$</td>
<td>$0.77^{+0.13}_{-0.13}$</td>
<td>$0.76^{+0.11}_{-0.12}$</td>
</tr>
<tr>
<td>r</td>
<td>$0.20^{+0.13}_{-0.11}$</td>
<td>$0.20^{+0.15}_{-0.10}$</td>
<td>$0.17^{+0.12}_{-0.10}$</td>
</tr>
</tbody>
</table>

Another possible systematic effect is the residual point-source correction as a result of sources below our subtraction limit of 20 mJy. This was computed by normalizing the point-source model of Toffolatti et al. (1998) to the observed VSA source counts, which can then be extrapolated to lower flux densities. There are clearly some uncertainties in this procedure. It is possible that an imperfect subtraction, either an overestimate or an underestimate, could lead to inaccuracies in the derived limits on the cosmological parameters, in particular on n_S and n_{un}. In order to investigate possible effects of such uncertainties, we have performed our likelihood analysis with the inclusion of the parameter A_X, which was discussed in Section 2.1. This is treated as a parameter and is accordingly marginalized over in our subsequent analysis. We note that it is also possible that for Galactic foregrounds might contribute to this. However, it was shown in Dickinson et al. (2004) that the level of foreground contamination of the VSA fields was negligible.

We find that the derived limits on n_S and n_{un} in this case are less stringent than without including A_X for WMAP + VSA. The marginalized distributions for n_S, n_{un} and A_X are presented using CMB data from WMAP and WMAP + VSA for the external priors from HST and 2dF in Fig. 9 and the derived limits are presented in Table 6. In fact, the likelihood curves and derived limits for WMAP and WMAP + VSA are almost identical when A_X is included in the analysis and the WMAP limits are very similar to when A_X is constrained to be zero (see Table 3). We see that there are essentially no limits on A_X when just considering WMAP and that, in the case of WMAP + VSA, A_X is compatible with zero suggesting that to within at least ≈ 100 (μK^2) the source subtraction procedure has been successful. For the HST prior $A_X < 214$ (μK^2) at 95 per cent confidence and for the 2dF prior $A_X < 155$ (μK^2).

Assuming that the subtraction is perfect and that the SZ contribution to the power spectrum is $\propto \ell^2$ for $\ell < 4000$ then our results on A_X can be used to derive a limit on $(\Delta T/\ell)^2$ in a flat bandpower, B_{3000}, covering $2000 \leq \ell \leq 4000$ as observed by CBI. Under the assumption that $(\Delta T/\ell)^2 \propto \ell^2$, we find that

$$B_{3000} = \frac{28}{3} A_X.$$

This leads to a limit of $B_{3000} < 197$ (μK^2) using the HST prior and $B_{3000} < 1446$ (μK^2) for the 2dF prior. The value quoted by Mason et al. (2003) is $B_{3000} = (508 \pm 168) (μK^2, which is more stringent than our limit. However, this value and our limit are derived in very different ways. The measurement of Mason et al. (2003) is a direct limit from high-resolution imaging of three deep fields. While it is direct, the measurement the global power spectrum could be significantly affected by sample variance; one could have observed a field in which there are more or less clusters than the global average and hence obtain a biased estimation of the global power spectrum. Our limit is indirect, coming from the power spectrum measured over 82 deg2 at lower angular resolution and it requires that the power spectrum be $\propto \ell^2$ as well as the cosmological model to be correct. It is likely that this represents a reliable upper bound because the power spectrum will grow less rapidly than ℓ^2 for $\ell \geq 1500$ as a result of the fact that the clusters responsible for the SZ effect are not point sources. Moreover, it is not as sensitive to the Poisson distributed number of clusters in an individual field. A more realistic modelling of the SZ effect using accurate power spectra could yield a more stringent upper bound. The two methods provide useful complimentary information and it is possible that a much more stringent constraint on A_X will be possible when the VSA observes with higher resolution in the near future.
Cosmological parameter estimation using VSA data

As for Fig. 6, but for the general 12-parameter non-flat ΛCDM model.

Table 5. Limits on n_S and n_{run} in the flat ΛCDM model with a running spectral index for different absolute calibration schemes. The uncertainty refers to that in the power. See text for discussion.

<table>
<thead>
<tr>
<th>T_{map}</th>
<th>Uncertainty</th>
<th>External</th>
<th>n_S</th>
<th>n_{run}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mason et al. (1999)</td>
<td>3 per cent</td>
<td>HST</td>
<td>$0.93^{+0.05}_{-0.05}$</td>
<td>$-0.05^{+0.03}_{-0.03}$</td>
</tr>
<tr>
<td>Mason et al. (1999)</td>
<td>3 per cent</td>
<td>2dF</td>
<td>$0.93^{+0.05}_{-0.05}$</td>
<td>$-0.02^{+0.03}_{-0.03}$</td>
</tr>
<tr>
<td>WMAP</td>
<td>10 per cent</td>
<td>HST</td>
<td>$0.93^{+0.05}_{-0.05}$</td>
<td>$-0.05^{+0.03}_{-0.03}$</td>
</tr>
<tr>
<td>WMAP</td>
<td>10 per cent</td>
<td>2dF</td>
<td>$0.95^{+0.06}_{-0.06}$</td>
<td>$-0.04^{+0.03}_{-0.03}$</td>
</tr>
</tbody>
</table>

One important feature of the power spectrum observed by WMAP is the apparent absence of power at very low ℓ. This could be the result of some as yet unknown physics, or it could be a manifestation of the interaction between the subtle systematic effects caused by the side lobes, the Galactic cut and the power spectrum estimation algorithm used by the WMAP team (Efstathiou 2003). It is worth assessing to what extent our result is dependent on the measured anisotropies with $\ell < 10$. By excluding the multipoles with $\ell < 10$ from our analysis we find that $n_S = 1.01 \pm 0.07$ and $n_{\text{run}} = 0.007 \pm 0.049$, strongly suggestive of an $n_S = 1$, scale invariant initial power spectrum for WMAP with the 2dF prior, whereas $n_S = 0.97 \pm 0.06$ and $n_{\text{run}} = -0.015 \pm 0.047$ for WMAP + VSA and the same prior. The weakening of the constraint on n_{run} should not be a surprise because excluding multipoles with $\ell < 10$ cuts out nearly a whole power of ten in k and n_{run} is the coefficient of a power series in $\log(k/k_c)$. However, we see that the inclusion of the VSA tends to prefer a spectral index lower than just WMAP. It is clear from this that the reason for the preference for a negative running of the power spectrum when multipoles with $\ell < 10$ are included is the tension between the measurements at $\ell < 10$ by WMAP and for $\ell > 1000$ by the VSA.

We should comment briefly on one aspect of our analysis of the running spectral index models that is not ideal: the preferred values of z_{re} and τ. Most recent analyses of CMB data include an upper bound on one of these parameters. In Spergel et al. (2003), a flat prior of $\tau < 0.3$ was used when in some cases the data had a preference for a high value of τ by virtue of the low-ℓ TE correlation power spectrum; our analysis is no different and we believe that this is responsible for the differences between our analysis and that of Spergel et al. (2003). All the likelihood curves and derived limits have made the not unreasonable assumption that $z_{\text{re}} < 30$. However, in some cases, particularly those for which we have included no prior from 2dF, the preferred values of z_{re} are close to this limit, uncomfortably so in some cases and one might be concerned that our results are sensitive to this. We find that the models with n_{run} significantly less than zero tend to have larger values of z_{re}, which explains why our derived limit of $n_{\text{run}} = -0.060 \pm 0.037$ from WMAP is larger
Figure 9. Marginalized distributions for n_S, n_{run} and A_X when A_X is allowed to vary. The line styles are as in Fig. 1, but COBE + VSA is excluded. The left-hand column is for the HST prior and the right-hand column is for the 2dF prior.

Table 6. Limits on n_S, n_{run} and A_X in the flat ΛCDM model with a running spectral index when the parameter A_X is included. The final column is the 95 per cent confidence upper limit on A_X. The units of A_X are in $(\mu K)^2$.

<table>
<thead>
<tr>
<th>CMB</th>
<th>External</th>
<th>n_S</th>
<th>n_{run}</th>
<th>A_X</th>
<th>$A_X(2\sigma)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMAP</td>
<td>HST</td>
<td>0.95$^{+0.06}_{-0.06}$</td>
<td>$-0.059^{+0.039}_{-0.039}$</td>
<td>Unconstrained</td>
<td></td>
</tr>
<tr>
<td>WMAP + VSA</td>
<td>HST</td>
<td>0.93$^{+0.06}_{-0.06}$</td>
<td>$-0.06^{+0.038}_{-0.038}$</td>
<td>-46 ± 132</td>
<td><214</td>
</tr>
<tr>
<td>WMAP</td>
<td>2dF</td>
<td>0.96$^{+0.06}_{-0.06}$</td>
<td>$-0.036^{+0.048}_{-0.038}$</td>
<td>Unconstrained</td>
<td></td>
</tr>
<tr>
<td>WMAP + VSA</td>
<td>2dF</td>
<td>0.94$^{+0.06}_{-0.06}$</td>
<td>$-0.043^{+0.035}_{-0.038}$</td>
<td>-86 ± 123</td>
<td><155</td>
</tr>
</tbody>
</table>

than the one quoted in Spergel et al. (2003). It also suggests that, by excluding $z_{\text{re}} > 30$, we have weakened the constraint on n_{run} rather than artificially modifying the preferred value away from zero. An epoch of reionization with $z_{\text{re}} \approx 30$ would seem unlikely in the context of early structures being the source of ionization, but it is clear that the data suggest it.

For the general 12-parameter ΛCDM model, we find that our marginalized distributions for n_S and n_{run} are broadened, as one would expect. Nevertheless, even in this case, the addition of VSA data significantly reduces tails of the distributions for n_S greater than unity and for positive n_{run}, as compared with using WMAP as the only CMB data set. Indeed, these effects are reinforced by the use of the AllCMB data set. The inclusion of additional CMB data beyond WMAP also leads to a noticeable reduction in the preferred value of ω_b and a corresponding increase in ω_{dm}.

To summarize, we find that there is evidence for $n_{\text{run}} < 0$ in a limited class of models, but within the general ΛCDM model with 12 parameters the evidence is much weaker. Standard models of inflation are generally incompatible with such large negative values of n_{run}, but the data appears to point in that direction, although not totally conclusively. The inclusion of an external prior from 2dF appears to weaken the result by fixing $\Omega_m \approx 0.3$ in conjunction with the CMB data. The measurement of $\Omega_m h$ using the galaxy power spectrum is responsible for this shift. It is an interesting question as to how reliable this measurement is because a slight shift in the results, a preference for $\Omega_m h \approx 0.17$ rather than $\Omega_m h \approx 0.21$, would bring their preferred value in line with that suggested by the CMB alone and would uphold the possibility of $n_{\text{run}} < 0$. Because none of the galaxy redshift surveys have conclusively observed the turnover in the power spectrum on which this determination of $\Omega_m h$
is based, we assert that there is still room for some doubt. We have also investigated the possible systematic effects that could weaken our result. We believe that the assumptions behind the power spectrum measurements presented in Dickinson et al. (2004) are the best available using the observations that we have made and the other information from the literature we have used. Certainly, we have shown that measurements of the CMB power spectrum beyond $\ell = 1000$ can have an impact on the estimation of cosmological parameters and that future measurements in this region by the VSA, the PLANCK satellite and others will enable us in the future to make more definitive statements.

ACKNOWLEDGMENTS

We acknowledge S. Allen for permission to use his XLF probability curves and H. Hoekstra for providing probability curves for CS. The VSA is supported by PPARC and IAC. Partial financial support was provided by the Spanish Ministry of Science and Technology project AYA2001-1657. JAR-M acknowledges the hospitality of the IAC during several visits, and the financial support provided through the European Community’s Human Potential Programme under contract HPRN-CT-2002-00124, CMBNET. KL, RS and CD acknowledge support by PPARC studentships. YAH is supported by the Space Research Institute of KACST. AS acknowledges the support of St. Johns College, Cambridge. RR thanks the IAC Computer Centre for the intense use of the BEOIAC computer cluster during its commissioning phase.

REFERENCES

This paper has been typeset from a TEX/LaTEX file prepared by the author.