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ABSTRACT
We investigate the impact of instrumental systematic errors on the potential of cosmic mi-
crowave background polarization experiments targeting primordial B-modes. To do so, we
introduce spin-weighted Müller matrix-valued fields describing the linear response of the im-
perfect optical system and receiver, and give a careful discussion of the behaviour of the
induced systematic effects under rotation of the instrument. We give the correspondence be-
tween the matrix components and known optical and receiver imperfections, and compare the
likely performance of pseudo-correlation receivers and those that modulate the polarization
with a half-wave plate. The latter is shown to have the significant advantage of not coupling
the total intensity into polarization for perfect optics, but potential effects like optical distor-
tions that may be introduced by the quasi-optical wave plate warrant further investigation. A
fast method for tolerancing time-invariant systematic effects is presented, which propagates
errors through to power spectra and cosmological parameters. The method extends previous
studies to an arbitrary scan strategy, and eliminates the need for time-consuming Monte Carlo
simulations in the early phases of instrument and survey design. We illustrate the method with
both simple parametrized forms for the systematics and with beams based on physical-optics
simulations. Example results are given in the context of next-generation experiments targeting
tensor-to-scalar ratios r ∼ 0.01.
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1 I N T RO D U C T I O N

There is currently a great deal of interest and activity in the field of
cosmic microwave background (CMB) polarimetry. Several recent
experiments (Kovac et al. 2002; Readhead et al. 2004; Barkats et al.
2005; Montroy et al. 2006; Page et al. 2006; Wu et al. 2007) have
reported detections of CMB polarization at a level consistent with
predictions in simple cold dark matter (plus �) models fit to the tem-
perature anisotropy data. In standard adiabatic models, polarization
measurements promise a further tightening of constraints inferred
from the temperature anisotropies, and the breaking of important de-
generacies (Zaldarriaga, Spergel & Seljak 1997). In particular, with
the recent release of the three-year Wilkinson Microwave Anisotropy
Probe (WMAP) data, the optical depth to reionization has been con-
strained to τ = 0.09 ± 0.03 (Spergel et al. 2006) with the large-angle
polarization signal (Zaldarriaga 1997). Polarization information is
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bjohnson@physics.ox.ac.uk (BRJ)

particularly valuable in non-standard models, for example it can sig-
nificantly improve constraints in the presence of isocurvature modes
(Bucher, Moodley & Turok 2001), and be used to constrain parity-
violating physics (e.g. Scannapieco & Ferreira 1997; Lue, Wang &
Kamionkowski 1999; Feng et al. 2006). Secondary effects, most no-
tably weak gravitational lensing (Zaldarriaga & Seljak 1998; Lewis
& Challinor 2006), further encode information on the low-redshift
Universe in CMB polarization.

Perhaps the most exciting aspect of CMB polarimetry is the win-
dow it may open on primordial gravitational waves (Kamionkowski,
Kosowsky & Stebbins 1997; Zaldarriaga & Seljak 1997). The curl
mode (or B-mode) of polarization is not produced by linear density
perturbations and so provides an observable signature of gravita-
tional waves at last scattering that is not limited by cosmic variance
from the dominant density perturbations. However, the situation
is clouded by several issues. First, the amplitude of gravitational
waves expected from inflation is unknown as the energy scale at
which inflation may have occurred is not (yet) determined by the-
ory. What is known is that any B-mode imprint will be very small:
the current limit on the amplitude of the gravitational wave power
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spectrum (expressed as a fraction of that for the density perturba-
tion) is r < 0.28 at 95 per cent confidence (Spergel et al. 2006),
from a combination of the temperature anisotropies and galaxy-
clustering data. This limit on r translates to an rms B-mode signal
<200 nK. Furthermore, gravitational lensing does produce B-mode
polarization at second order in the density perturbations, with a
spectrum that is almost white for multipoles l � 300. The ampli-
tude

√
C B

l,lens ≈ 5 µK arcmin means the lens-induced B-modes
dominate the primordial ones for r � 0.01 except on very large
scales where the latter is enhanced by reionization. For noise lev-
els much better than 5 µK arcmin, it will be worthwhile to try and
clean out the large-angle B-modes of lensing by making use of non-
Gaussianity (e.g. Hu & Okamoto 2002). Finally, polarized emission
from Galactic foregrounds will likely overwhelm the primordial B-
mode signal over a large fraction of the sky (Page et al. 2006), and
our ability to constrain gravitational waves will almost certainly
be limited by the accuracy at which Galactic foregrounds can be
subtracted.

The intrinsic weakness of the polarization signal presents a ma-
jor experimental challenge. The gradient (or E-mode) polarization
is now determined to be at least an order of magnitude smaller than
the temperature anisotropies for l � 1000, and the B-modes (in-
cluding lensing) are indirectly constrained to be at least an order
of magnitude smaller still. As well as the raw sensitivity require-
ments that this implies, any systematic errors present in B-mode
instruments will have to be controlled to an unprecedented level of
accuracy in order to ensure the signal is not fatally contaminated.
With this motivation, in this paper we develop a general framework
to describe and assess the impact of instrumental systematic errors
on experiments targeted at CMB polarization.

There is a growing literature discussing the impact of systematic
effects in CMB polarimetry; for discussions of the real-world issues
encountered in recent surveys, see Barkats et al. (2005), Jones et al.
(2006), Masi et al. (2006) and Page et al. (2006). There are typically
many sources of potential systematic error. Here we will be con-
cerned with the broad class of errors that produce a time-independent
residual signal for a given instrument pointing. These include imper-
fections in the receiver and optics, but exclude important effects such
as low-frequency noise from thermal fluctuations, readout electron-
ics or atmospheric fluctuations, and pointing jitter. Low-frequency
noise is best dealt with by a combination of signal modulation (ac-
tive or by scanning), a well cross-linked survey, and removal during
the map-making stage. Our aim is twofold: to give a careful anal-
ysis of the transformation properties of various systematic effects
under rotation of the instrument – a useful strategy for mitigating
some systematics; and to provide a fast, semi-analytic method for
tolerancing systematic effects that is flexible enough to deal with
arbitrary scan strategies and removes the need for time-consuming
simulations during the early stages of instrument and survey de-
sign. Our approach is similar to that of Hu, Hedman & Zaldarriaga
(2003), but we extend their analysis in several ways. We describe
the receiver systematics with Müller matrices and the optics with
Müller matrix-valued fields which allows us to deal with arbitrary
beam effects. To simplify the discussion of the rotation properties of
systematic effects, we introduce spin-weighted Müller matrices and
perform a further decomposition of the beam matrix-valued fields
into irreducible components. The latter singles out those features of
the beams that cannot be overcome with instrument rotation, and
easily reproduces the results of Carretti et al. (2004) for axisymmet-
ric systems. In addition, our analysis of the scientific impact of sys-
tematic effects works with an arbitrary scan strategy, and propagates

the effects through to biases in cosmological parameters and the in-
crease in their random errors. Carrying biases through to parameters
is potentially important: systematic errors often must be suppressed
further than the cosmic-variance limit in the CMB power spectra if
they are to have negligible impact on the science (Efstathiou & Bond
1999). Also, properly modelling the interaction between systematic
effects and the scan strategy is important as its effects cannot easily
be predicted, or constrained, from simpler scans (such as a raster
scan with no implied beam rotation). For example, a non-trivial scan
can cause leakage from the dominant E-modes into B-modes that is
not present for a raster scan, as a result of the non-local nature of
the E- and B-mode decomposition.

This paper is organized as follows. Section 2 introduces our no-
tation and some important assumptions. Propagation through the
receiver is described in Section 3 in terms of spin-weighted Müller
matrices, while the optics are described in terms of matrix-valued
fields in Section 4. We give illustrations for common receiver types
and optical imperfections, and compare their relative merits. In
Section 5, we present our method for propagating errors to biases
in power spectra and the enhancement of their variances, and fol-
low these through to cosmological parameters (specifically r) in
Section 6. Finally, in Section 7 we apply our methods to set toler-
ances on parametrized errors and compare these for different scan
strategies. We also examine the impact of realistic, simulated beam
profiles. Two appendices give further properties of the complex
Müller matrices and of the beam expansion in irreducible com-
ponents introduced in Section 4.

2 N OTAT I O N

For surveys covering a small fraction of the sky we can work in
the flat-sky limit where the CMB fields are considered on the tan-
gent plane to the celestial sphere. We adopt Cartesian coordinates
on this plane such that x points north–south and y points west–
east; the right-handed z-direction is then along the line of sight. We
define Stokes parameters using the x and −y directions for which
the radiation propagation direction completes a right-handed triad.
Our polarization conventions are then consistent with the IAU stan-
dards. If the electric field of the incident radiation at frequency ω is
�(Ee−iωt ), with these conventions we have〈

Ei E∗
j

〉 = 1

2

(
T + Q −U − iV

−U + iV T − Q

)
. (1)

We will only consider quasi-monochromatic systems here but our
discussion will still hold for broad-band systems if the non-ideal
instrument responds in the same way to all in-band radiation. Clearly
this ignores an important class of systematic effects, for example
bandpass mismatch (Jarosik et al. 2006).

The complex polarization P(x) ≡ (Q + iU)(x) is spin −2 in the
sense that under the transformation x̂ + iŷ �→ (x̂ + iŷ)eiψ , which
rotates the x-axis by ψ towards the negative y-axis, P �→P e−2iψ .
Decomposing P into its electric (E) and magnetic (B) parts, we have,
in Fourier space,

(Q ± iU )(x) = −
∫

d2l
2π

[E(l) ∓ iB(l)]e∓2iφl eil·x, (2)

where l = l(cos φl , sin φl ). For the cosmological examples we
give in this paper we only consider the CMB fields on the sky.
For observations in the quiet Galactic regions that will be the tar-
gets for future ground-based B-mode experiments, the CMB tem-
perature fluctuations and E-mode polarization should dominate
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Galactic emission. Ignoring the latter should therefore be harmless
for those most troubling systematic effects that couple temperature
and E-mode polarization into B.

3 R E C E I V E R M Ü L L E R M AT R I C E S

The Müller matrices describe the propagation of the Stokes pa-
rameters through the receiver element of a given observing system.
The optical coupling to the fields on the sky requires a description in
terms of Müller matrix-valued fields which we describe in Section 4.

Gathering the Stokes parameters in a Stokes vector s ≡ (T , Q, U,
V)T, we have for the observed Stokes vector

sobs =




MT T MT Q MT U MT V

MQT MQ Q MQU MQV

MU T MU Q MUU MU V

MV T MV Q MV U MV V


 s. (3)

We adopt the convention here that Müller matrices are always ex-
pressed in the instrument basis. This coincides with the Cartesian
sky basis (x and −y) when the instrument is in its fiducial orienta-
tion. It is convenient to work with the complex Müller matrix whose
elements have definite spin, that is,

pobs =




MT T MT P MT P∗ MT V

MPT MP P MP P∗ MPV

MP∗T MP∗ P MP∗ P∗ MP∗V

MV T MV P MV P∗ MV V


 p. (4)

Here, the complex Stokes vector is p = (T , P, P∗, V)T. We denote
the matrix on the right of equation (4) by M. Its components are
related to those in equation (3) as follows: for the total intensity

MT P = 1
2 (MT Q − iMT U ), MT P∗ = 1

2 (MT Q + iMT U ), (5)

with analogous results for MV P and MV P∗ ; and for the polarization

MPT = MQT + iMU T , MPV = MQV + iMU V , (6)

and

MP P = 1
2 (MQ Q + MUU ) + 1

2 i(MU Q − MQU ),

MP P∗ = 1
2 (MQ Q − MUU ) + 1

2 i(MU Q + MQU ).
(7)

The components for the spin-2 polarization P∗ are related to those
for P:

MP∗T = M∗
PT , MP∗V = M∗

PV ,

MP∗ P = M∗
P P∗ , MP∗ P∗ = M∗

P P .
(8)

If we kept the instrument in a fixed orientation, but transformed
to a rotated basis in describing the polarization fields on the sky, the
Müller matrix elements would transform like the complex conjugate
of the field appearing in the second index, for example, MP P �→
MP P e2iψ so that MP P P remained constant. If we further rotated the
observed polarization from the instrument basis to the rotated sky
basis, we would pick up an additional factor eisψ where s is the spin
of the field associated with the first index. More relevant for our
purposes are the transformation properties of the Müller matrix un-
der (active) rotations of the instrument. Let us rotate the instrument
by ψ taking x towards the negative y-axis and simultaneously back-
rotate the observed polarization so we are describing the measured
polarization in the original sky basis. In its basis, the instrument
sees incoming radiation with complex Stokes vector Λ(ψ)p, where
Λ(ψ) ≡ diag (1, e−2iψ , e2iψ , 1), so the observed polarization on the

sky basis is pobs(ψ) = Λ†(ψ)MΛ(ψ)p. Note that only the diagonal
elements of M are invariant under M �→ Λ†(ψ)MΛ(ψ).

In the case of an ideal instrument, M is equal to the identity matrix
and any systematic errors that affect the Stokes parameters will lead
to small perturbations from this. It is convenient to introduce a more
concise notation for those elements describing coupling to P and P∗

(Hu et al. 2003): MPT = γ1 + iγ2, MP P = 1 + a + 2iω, MP P∗ =
f1 + i f2 and MPV = w1 + iw2, where all parameters on the right-
hand sides are real. For the perturbation to the linear polarization,
we then have

δ(Q ± iU ) = (a ± 2iω)(Q ± iU ) + ( f1 ± i f2)(Q ∓ iU )

+ (γ1 ± iγ2)T + (w1 ± iw2)V . (9)

These parameters are defined in the fiducial basis, and describe a
miscalibration of the polarization amplitude, a, a rotation of the
polarization orientation, ω, transformations between the two polar-
ization spin states, f1 and f2, leakage from total intensity to Q with
γ 1 and to U with γ 2, and leakage from circular polarization with
w1 and w2. The circular leakage terms were not considered in Hu
et al. (2003). Under a rotation of the instrument as described above,
we find

δ(Q ± iU ) = (a ± 2iω)(Q ± iU )

+ ( f1 ± i f2)(Q ∓ iU )e±4iψ

+ (γ1 ± iγ2)T e±2iψ

+ (w1 ± iw2)V e±2iψ . (10)

This suggests that the f , γ and w errors can be controlled with in-
strument rotation as these terms have different spin properties to the
fields they are perturbing. For example, if we average observations
of a point over all possible orientations these terms disappear. We
look at controlling systematics with beam rotation in more detail in
Section 4.1.

3.1 Receiver errors

In this section, we give examples of the polarization Müller matrix
elements for two common polarimeters that have particular rele-
vance to CMB polarimetry: the pseudo-correlation receiver and the
rotating half-wave-plate receiver. Block diagrams for these receivers
are shown in Fig. 1.

Quite generally, the propagation of radiation through a receiver
can be described by a Jones matrix, J, such that the electric field
after passing through the receiver, Erec, is

Erec = JE, (11)

where E is the incident electric field. In this section only, the ele-
ments of E are the complex amplitudes of the two linear polariza-
tions, A and B, which, for an ideal optical system, couple in the far-
field to the x and −y components of the electric field of the incident
radiation; see Section 4. For a receiver with several components, the
Jones matrix of the receiver is the product of the matrices for each
component provided that reflections can be ignored. The Müller
matrix for the receiver can be found from the relations sobs = Ms
and(

T + Q U + iV

U − iV T − Q

)
obs

= J

(
T + Q U + iV

U − iV T − Q

)
J†. (12)
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Figure 1. Block diagrams for a pseudo-correlation receiver (left-hand panel)
and a rotating half-wave-plate receiver (right-hand panel). For the pseudo-
correlation receiver, the incident radiation is split into two orthogonal com-
ponents by the ortho-mode transducer (OMT), and then propagates through
a 90◦ hybridizer. A time dependent phase shift is introduced along one arm,
and the radiation passes through a second 90◦ hybridizer before being de-
tected. For the rotating half-wave-plate receiver, the incident radiation simply
passes through a rotating half-wave plate before being split by the OMT and
detected.

For the pseudo-correlation receiver, the ideal Jones matrix is

Jpc = Jhybrid,2JphaseJhybrid,1Jomt

= 1√
2

(
1 i

i 1

)(
1 0

0 eiϕt

)

× 1√
2

(
1 i

i 1

)(
1 0

0 1

)

= 1

2

(
1 − eiϕt i(1 + eiϕt )

i(1 + eiϕt ) −1 + eiϕt

)
, (13)

where ϕt is the time-dependent phase shift, assumed to be continu-
ous here. After passing through the receiver, detectors measure the
power in the two components, Erec,A and Erec,B and, in the ideal,
noiseless case, their outputs for a particular pointing are

D1 ≡ 〈|Erec,A|2〉 = 1
2 (T − Q cos ϕt − U sin ϕt)

D2 ≡ 〈|Erec,B |2〉 = 1
2 (T + Q cos ϕt + U sin ϕt). (14)

The total intensity and linear polarization Stokes parameters can be
recovered by taking the sum and difference of the detector outputs
and demodulating. If we assume that the modulation frequency is
much higher than the maximum frequency in the incident signal
(which is determined by the scan speed and resolution), we can

approximate the demodulation step by

Tobs = 1

�

∫ �

0

(D1 + D2) dt

Qobs = 2

�

∫ �

0

(D2 − D1) cos ϕt dt

Uobs = 2

�

∫ �

0

(D2 − D1) sin ϕt dt, (15)

where � is long compared to 1/ϕ. We can now follow systematic er-
rors introduced in the Jones matrices through to the observed Stokes
parameters. We parametrize the systematic errors in the various re-
ceiver components as follows:

Jomt =
(

1 + g1 ε1eiθ1

ε2eiθ2 (1 + g2)eiα

)

Jphase =
(

1 0

0 ei(ϕt+δφ)

)

Jhybrid, j = 1√
2

(
(1 + A j )eia j i(1 + Bj )eib j

i(1 + C j )eic j (1 + D j )eid j

)
, (16)

where j = 1, 2 labels the two hybridizers. Each parameter corre-
sponds to a potential, physical systematic error, for example, g1 and
g2 represent gain errors in the two arms of the OMT. Following the
same process as in the ideal case, we find the effect of these errors
on the observed Stokes parameters. Assuming that the systematic
errors do not vary significantly over the time of the observation, and
expanding to linear order, the errors are related to the parameters
introduced in equation (9) by

a = 1
2 (A1 + B1 + C1 + D1 + A2 + B2 + C2 + D2)

+g1 + g2

2ω = 1
2 (a1 + b1 − c1 − d1 + a2 + c2 − b2 − d2)

+ε2 cos θ2 − ε1 cos θ1 − δφ

γ1 = g1 − g2 + 1
2 (A1 + C1 − B1 − D1)

γ2 = ε1 cos θ1 + ε2 cos θ2 + 1
2 (a1 + d1 − b1 − c1)

f1 = 0

f2 = 0

w1 = 1
2 (B1 + C1 − A1 − D1) + ε1 sin θ1 + ε2 sin θ2

w2 = 1
2 (b1 + d1 − a1 − c1 + 2α). (17)

As expected, we see that differential gain errors g1 − g2 lead to in-
strumental Q polarization, γ 1. ‘Spin-flip’ errors, coupling P to P∗,
are absent at first order but appear at second order in the perturbation
and higher. It should be noted that the validity of the perturbative ex-
pansion depends in part on the relative amplitudes of the polarization
and total-intensity fields. For example, we are implicitly assuming
that any parameter that contributes to a at first order and to γ 1 at
only second order is sufficiently small to suppress the total-intensity
leakage caused to well below the level of the polarization leakage.
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For the half-wave-plate receiver, with the plate rotating at an
angular velocity ϕ, the ideal Jones matrix is

Jrhwp = JomtJ
T
rotJhwpJrot

=
(

1 0

0 1

)(
cos ϕt − sin ϕt

sin ϕt cos ϕt

)

×
(

1 0

0 −1

)(
cos ϕt sin ϕt

− sin ϕt cos ϕt

)

=
(

cos 2ϕt sin 2ϕt

sin 2ϕt − cos 2ϕt

)
. (18)

This leads to similar ideal detector outputs as the pseudo-correlator,
but with Q and U modulated at a frequency of 4ϕ:

D1 = 1
2 (T + Q cos 4ϕt + U sin 4ϕt)

D2 = 1
2 (T − Q cos 4ϕt − U sin 4ϕt).

(19)

Systematic errors in the OMT are parametrized as in equation (16),
and for the other components,

Jhwp =
(

1 + h1 ζ1eiχ1

ζ2eiχ2 −(1 + h2)eiβ

)

Jrot =
(

cos (ϕt + δφ) sin (ϕt + δφ)

− sin (ϕt + δφ) cos (ϕt + δφ)

)
. (20)

Propagating these errors through to the observed Stokes parameters,
we find the only non-zero polarization couplings are

a = g1 + g2 + h1 + h2

2ω = ε1 cos θ1 − ε2 cos θ2 − 4δφ

− ζ1 cos χ1 − ζ2 cos χ2.

(21)

The observation that P couples only to P actually holds exactly for
this receiver, and not just to first order. By comparing equations
(17) and (21) we can begin to draw some useful conclusions as to
the relative suitability of these receivers for CMB polarimetry. The
half-wave-plate receiver has the potentially significant advantage of
having no total intensity leakage, given the assumptions made. The
large difference in the amplitude of the temperature and polarization
signals means that such leakage is potentially very damaging, and
hence any systematic errors that contribute to γ 1 and γ 2 will have
very strict tolerance limits. It should be noted that, in the presence
of realistic optics, it is likely that systematic errors in the half-wave-
plate receiver will contribute to such leakage, but not at first order,
as seen for the pseudo-correlation receiver. Also, for a quasi-optical
wave plate, further investigation is still required into potential effects
such as optical distortions introduced by the plate (Johnson et al.
2007).

4 B E A M M Ü L L E R F I E L D S

The Müller matrices of the previous section describe propagation of
the Stokes parameters through the receiver. The propagation through
the entire instrument, including the optics, is described by matrix-
valued fields. These couple the polarization fields on the sky to
the observed polarization that we assign to the nominal pointing
direction. If we ignore the effects of reflections from different stages
of the receiver (and the associated standing waves they set up), we
can multiply the Müller matrices for the various stages and the optics
to get the matrix describing transfer through the entire system. In this

section we consider the Müller matrix associated with the instrument
optics (and horn, if present).

For a dual-polarization system, let the two orthogonal polariza-
tions have associated far-field radiation patterns EA(n̂) and EB(n̂). It
is convenient to define the fiducial orientation such that the nominal
directions on the sky defined by EA and EB (i.e. their co-polar parts)
are along the x and negative y-axis of the sky coordinate system,
which, recall, is the basis we are using to define Stokes parameters.
Of course, for a non-ideal system there will also be cross-polar com-
ponents of EA and EB perpendicular to the co-polar components. If
we adopt the Ludwig-III standard for the co- and cross-polar basis,
the cross-polar direction for A is along −y and for B is along −x. We
will express the components of the radiation patterns in terms of co-
and cross-polar (complex) amplitudes. The coupling of polarization
A to the incident radiation along a line of sight n̂ is ∝ EA(n̂) · E(n̂)
and similarly for B. The coherency of these signals defines Stokes
parameters that are weighted integrals of the Stokes parameters on
the sky and from which we can extract the beam Müller fields:

MT T = 1
2

(|EA|2 + |EB |2)
MT Q = 1

2

(|E A co|2 − |E A cross|2 + |EB cross|2 − |EB co|2
)

MT U = 1
2

(
E A co E∗

A cross − EB co E∗
B cross

) + c.c.

MT V = 1
2 i
(

E A co E∗
A cross + EB co E∗

B cross

) + c.c.

MQT = 1
2

(|EA|2 − |EB |2)
MQ Q = 1

2

(|E A co|2 − |E A cross|2 + |EB co|2 − |EB cross|2
)

MQU = 1
2

(
E A co E∗

A cross + EB co E∗
B cross

) + c.c.

MQV = 1
2 i
(

E A co E∗
A cross − EB co E∗

B cross

) + c.c.

MU T = 1
2

( − E A co E∗
B cross + E A cross E∗

B co

) + c.c.

MU Q = 1
2

( − E A co E∗
B cross − E A cross E∗

B co

) + c.c.

MUU = 1
2

(
E A co E∗

B co − E A cross E∗
B cross

) + c.c.

MU V = 1
2 i
(

E A co E∗
B co + E A cross E∗

B cross

) + c.c.

MV T = 1
2 i
(

E A co E∗
B cross − E A cross E∗

B co

) + c.c.

MV Q = 1
2 i
(

E A co E∗
B cross + E A cross E∗

B co

) + c.c.

MV U = 1
2 i
( − E A co E∗

B co + E A cross E∗
B cross

) + c.c.

MV V = 1
2

(
E A co E∗

B co + E A cross E∗
B cross

) + c.c. . (22)

Expressions for the complex Müller matrices, obtained from
linear combinations of the components above, are given in
Appendix A.

With suitable normalization, the (complex) Stokes vector for the
signal at the input to the receiver when the beam is translated by x
is

pobs(x) =
∫

d2x′ M(x′)p(x + x′). (23)

If we first rotate the beam by ψ (from x towards −y) and then
translate by x, the observed signal after back-rotating to the sky
basis is

pobs(x; ψ) =
∫

d2x′ Λ†(ψ)M
(
R−1

ψ x′)Λ(ψ)p(x + x′), (24)

where Rψ generates a rotation through ψ . In general, the behaviour
of the observed polarization under rotations of the instrument de-
pends not only on the spin of the appropriate Müller matrix terms
but also on the beam shapes.
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For theoretical work it is convenient to decompose the beam
Müller fields into components that transform irreducibly under
rotation of the instrument. For co-polar main beams that are
approximately Gaussian, the following expansion is particularly
useful:

M(x) = 1

2πσ 2

∑
mn

Mmnσ
m+n(∂x + i∂y)m(∂x − i∂y)n

×e−x2/2σ 2
, (25)

where the sum is over integers m, n � 0, and σ is the nominal
beam width. We show in Appendix B that this is related to a Gauss–
Laguerre expansion and detail the inversion to obtain the matrix-
valued coefficients Mmn . Note that the symmetries in equation (8)
hold for the irreducible components if we interchange m and n,
for example [Mmn]P∗T = [Mnm]∗PT . The m = n = 0 components
describe pure Gaussian Müller fields; their effect is the same as a
receiver Müller matrix acting after ideal Gaussian optics. Under a
rotation of the instrument, we have

Λ†(ψ)M
(
R−1

ψ x
)
Λ(ψ) = 1

2πσ 2

∑
mn

[
ei(m−n)ψσ m+n

×Λ†(ψ)MmnΛ(ψ)

× (∂x + i∂y)m(∂x − i∂y)n
]
e−x2/2σ 2

. (26)

Inserting the beam expansion into equation (24) and integrating by
parts we can express the observed polarization in terms of a local ex-
pansion in derivatives of the Gaussian-smoothed polarization field,
p (x ;σ ):

pobs(x; ψ) =
∑

mn

[
ei(m−n)ψΛ†(ψ)MmnΛ(ψ)(−σ )m+n

× (∂x + i∂y)m(∂x − i∂y)n
]

p(x; σ ).

(27)

The derivative terms have spin m − n plus the intrinsic spin of
the polarization field, and the coefficients Mmn have spin n − m
plus the difference of spin between the fields involved, for example,
the Müller element [Mmn]PT has spin n − m + 2. This expansion
generalizes the local expansion introduced by Hu et al. (2003). For
optical systems where the non-ideal behaviour can be parametrized
by only a few Mmn matrices, equation (27) leads to a fast way to
simulate the signal component of polarization maps contaminated
by systematics for an arbitrary scan strategy (encoded in the angles
ψ). We discuss this further in Section 5.

4.1 Polarization calibration with beam rotation

Instrument rotation is a powerful way of reducing the impact of im-
perfections in the polarimeter. Structure in M(x) that is not invariant
under rotation produces systematic effects in the maps of observed
Stokes parameters that can be suppressed by a carefully designed
scan strategy, involving multiple visits to sky pixels in a range of
orientations. However, there remain a class of systematics that are
not averaged out in this way: those for which

Λ†(ψ)M
(
R−1

ψ x
)
Λ(ψ) = M(x) (28)

for all ψ . It is only these contributions to the Müller matrix that
would survive in the ideal case of a scan strategy where every pixel
is visited in all orientations, and for which the effective Müller matrix
is

Msym(x) ≡
∫

dψ

2π
Λ†(ψ)M

(
R−1

ψ x
)
Λ(ψ). (29)

If we focus on the element of M that couples a spin-s′ field into a
spin-s one, equation (28) is satisfied by those irreducible components
for which s − s′ + n − m = 0, that is, those which are spin-0.
Alternatively, if we think of expressing the Müller fields in terms of
polar coordinates |x|, φ, where x + iy = |x|eiφ ,

[Msym]ss′ (x) =
∫

dψ

2π
ei(s′−s)ψ [M]ss′ (|x|, φ + ψ)

= ei(s−s′)φ
∫

dφ

2π
ei(s′−s)φ[M]ss′ (|x|, φ),

(30)

which is just the s − s′ (angular) Fourier component.
As an example, consider the conversion of temperature to polar-

ization which is potentially very troubling for CMB polarimetry. It
is the quadrupole part of MPT (∝ e−2iφ) that generates instrument
polarization that transforms like a true polarization under rotation
of the instrument, and for this we have, using equation (27)

�Pobs(x) = (∂x − i∂y)2

×
∑

m

[Mm m+2]PT σ 2(m+1)∇2m T (x; σ ). (31)

If the summation is real, this is only E-mode contamination which
can be tolerated at a relatively higher level than B-mode contami-
nation. If there is no cross-polarization, inspection of equation (A3)
of Appendix A shows that MPT (x) is real, and equation (B2) of
Appendix B shows that [Mm m+2] will then be real provided that the
quadrupolar part of MPT has its planes of symmetry aligned with the
x- and y-axes. Under these conditions, the leakage of temperature
to polarization is pure E-mode (Hu et al. 2003).

Axisymmetric optical systems have the property that their leakage
described by MPT is a pure quadrupole and so is not suppressed by
rotation (Carretti et al. 2004). To see this, we note that axisymmetry
and reflection symmetry demand that the beam fields generated by
a constant field h across the beam-defining element (e.g. a horn) are
related to h by a tensor-valued field that can only be constructed
from δi j , x̂i x̂ j and scalar functions of |x|. This implies that EA(n̂)
and EB(n̂) can be derived from two radial functions, E1(|x|) and
E2(|x|) as

EA =
( E1 + 1

2E2 cos 2φ

1
2E2 sin 2φ

)

EB =
( − 1

2E2 sin 2φ

−E1 + 1
2E2 cos 2φ

)
. (32)

For an alternative derivation in the CMB context, see Bunn (2006).
The PT Müller matrix element evaluates to

MPT (x) = �(E1E∗
2

)
e−2iφ, (33)

which is a quadrupole. Although the leakage cannot be mitigated
by instrument rotation, it is pure electric (Carretti et al. 2004) since
[Mm m+2 ]PT is purely real. Note also that the coupling is only to
anisotropies in T so a uniform unpolarized brightness would produce
no leakage.

4.2 Optical errors

In this section we illustrate the ideas developed above by analyzing
some simple, but common, beam patterns. Taking the ideal radiation
fields as co-polar Gaussians of width σ , we consider the true co-
polar beams to have pointing errors, and ellipticities aligned with
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the instrument axes, that is,

E A co = 1√
2πσ 2

(
1 − e2

A

) e
− 1

4σ2

(
(x−bA,x )2

(1+eA )2
+ (y−bA,y )2

(1−eA )2

)

EB co = 1√
2πσ 2

(
1 − e2

B

) e
− 1

4σ2

(
(x−bB,x )2

(1+eB )2
+ (y−bB,y )2

(1−eB )2

)
. (34)

These are normalized so their squares integrate to unity. The errors
can be conveniently reparametrized in terms of the average and
differential ellipticity and pointing errors (Hu et al. 2003),

p = 1

2σ
(bA + bB)

bd = 1

2σ
(bA − bB)

es = 1

2
(eA + eB)

q = 1

2
(eA − eB). (35)

Cross-polar beam patterns tend to be design-specific and are not
easily generalized. We gave one example in Section 4.1 where we
discussed axisymmetric systems; here we consider two simple toy-
models instead based on low-order quasi-optical approximations.
The first model has the cross-polar beams as co-pointing Gaussians
with the same width as the ideal co-polar beam:

E A cross = νA√
2πσ 2

e− x2+y2

4σ2 +iχA

EB cross = νB√
2πσ 2

e− x2+y2

4σ2 +iχB ,

(36)

where the parameters νA and νB control the amplitudes, and χA and
χB the phases, relative to the co-polar beams. In our second model
the cross-polar beams have a line of symmetry along one axis:

E A cross = νA y√
2πσ 4

e− x2+y2

4σ2 +iχA

EB cross = νB y√
2πσ 4

e− x2+y2

4σ2 +iχB . (37)

In all cases the fields are normalized so the integrals of their absolute
squares are ν2

A and ν2
B . As with the co-polar case, it is useful to

reparametrize in terms of average and differential quantities, in this
case the real and imaginary parts of νAeiχA and νBeiχB – the average
and differential components of cross polarization in phase and π/2
out of phase with the main beams:

νa,R = 1
2 (νA cos χA + νB cos χB)

νd,R = 1
2 (νA cos χA − νB cos χB)

νa,I = 1
2 (νA sin χA + νB sin χB)

νd,I = 1
2 (νA sin χA − νB sin χB).

(38)

It is cumbersome to proceed exactly in the presence of the pointing
errors, so instead we expand in the small systematic parameters. For
the pointing and ellipticity parameters, such a low-order expansion is
only useful above the beam scale σ . Even small pointing errors (rel-
ative to σ ) and ellipticities can produce large effects below the beam
scale. This is a clear driver, quite apart from the secondary scientific
benefits, for increasing the resolution of CMB polarization exper-
iments. The next-generation of ground-based B-mode experiments
have planned resolution �10 arcmin, so a perturbative treatment

should be sufficiently accurate on the scale of a primordial B-mode
signal.

The Müller fields follow from equation (22) and their irreducible
components, Mmn , are given in Appendix B to first-order in small
parameters. (The second-order terms that are needed for a consis-
tent polarization power spectrum calculation are also given; see
Section 5.) From these, we can construct the observed Stokes fields
when the instrument is observing at angle ψ from equation (27). The
result for the linear polarization for Gaussian cross-polar beams is

Pobs = [
1 − 2iνa,R + 1

2 e−iψσ 1 p(∂x − i∂y)

+ 1
2 eiψσ−1 p(∂x + i∂y) + 1

2 e−2iψσ 2es(∂x − i∂y)2

+ 1
2 e2iψσ 2es(∂x + i∂y)2

]
P(σ )

+ [
2ie2iψνd,R + 1

2 eiψσ 1bd (∂x − i∂y)

+ 1
2 e3iψσ−1bd (∂x + i∂y) + 1

2 σ 2q(∂x − i∂y)2

+ 1
2 e4iψσ 2q(∂x + i∂y)2

]
T (σ )

+ 2e2iψνd,I V (σ ), (39)

where ±1bd ≡ bd · (x̂ ± i ŷ) are the spin-±1 components of bd , and
similarly for p. In the fiducial orientation, ψ = 0, this reduces to

Pobs = [
1 − 2iνa,R + σ p · ∇ + σ 2es

(
∂2

x − ∂2
y

)]
P(σ )

+[
2iνd,R + σbd · ∇ + σ 2q

(
∂2

x − ∂2
y

)]
T (σ )

+2νd,I V (σ ), (40)

in agreement with Hu et al. (2003) if we drop the cross-polar terms.
We see that a pointing offset in both beams, p, couples to the polar-
ization gradient, whilst a differential pointing error, bd , couples to
the temperature gradient. Average and differential ellipticity errors,
es and q, couple to local quadrupole-like patterns in the polarization
and temperature respectively. As the cross-polar beams have the
same shape as the ideal co-polar ones, the cross-polar errors couple
to the Stokes fields directly, and not through gradients. Hence, these
errors are similar in form to those introduced by the receiver, and
their effect on polarization can be represented by a rotation error,
ω = −νa,R , temperature leakage, γ 2 = 2νd,R , and circular polariza-
tion leakage, w1 = 2νd,I .

For our second, parity-odd, model of cross-polar beams, the ν

terms in equation (39) should be replaced by

�Pobs = [
e−iψσνa,R(∂x − i∂y) − eiψσνa,R(∂x + i∂y)

]
P(σ )

− [
eiψσνd,R(∂x − i∂y) − e3iψσνd,R(∂x + i∂y)

]
T (σ )

+ i
[
eiψσνd,I (∂x − i∂y) − e3iψσνd,I (∂x + i∂y)

]
V (σ ), (41)

so that, for ψ = 0, the odd-parity cross-polar beams contribute errors

�Pobs = −2iνa,Rσ∂y P(σ ) + 2iσνd,R∂y T (σ )

+ 2σνd,I ∂y V (σ ).
(42)

That is, the average and differential components of cross polariza-
tion in phase with the main beams couple to the gradient of linear
polarization and total intensity in the direction parallel to the line of
symmetry, respectively, and the differential component π/2 out of
phase with the main beams couples to the circular polarization in a
similar manner.

For an ideal scan, all terms with ψ dependence in equations (39)
and (41) average to zero. The only terms to remain are then

Pobs = P(σ ) − 2iνa,R P(σ ) + 1
2 qσ 2(∂x − i∂y)2T (σ ), (43)

where the second term on the right is only relevant for the Gaussian
cross-polar case.
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5 P OW E R S P E C T RU M A NA LY S I S F O R
T I M E - I N VA R I A N T S Y S T E M AT I C S

In the previous sections we have described the impact of various sys-
tematic errors on the observed Stokes parameters. To assess fully
the cosmological consequences of these errors, we should propa-
gate them through to power spectra and, indeed, to cosmological
parameters. In this section we consider the impact of systematics
on the B-mode power spectrum. Characterizing this spectrum is a
major goal of future CMB polarization experiments and control-
ling systematic effects will be of critical importance. The case of
systematic effects whose projection on to Stokes maps can be de-
scribed as a statistically isotropic and homogeneous random process
was considered in Hu et al. (2003). This is useful for benchmarking
and is probably a reasonable approximation for some errors such
as the pointing jitter/nutation felt by many space and balloon-borne
experiments. However, the statistical description is unrealistic for
many other systematic effects. For example, optical imperfections
can reasonably be expected to be time-invariant and their projec-
tion on to the map is systematic and determined only by the scan
strategy. Here, we will concentrate on such time-invariant system-
atics, and develop semi-analytic methods for predicting their effect
on the power spectra for arbitrary scan strategies. This is useful for
assessing the impact of uncalibrated constant errors and to inform
methods for removing the effects of calibrated errors to a reason-
able level. We also consider the raster scan (where the instrument
is always in its fiducial orientation) and an ideal scan, as defined
earlier, as special cases for which simple analytic results can be
found.

The raster and ideal scan treat each pixel identically, and we can
define effective Müller matrix fields that are independent of the
position on the sky being observed. For the raster scan these are just
the Müller fields in the fiducial orientation; for the ideal scan they
are Msym. The observed Stokes maps are simply the convolution of
the Müller fields with the Stokes fields on the sky and so in Fourier
space:

pobs(l) = 2πMeff(−l)p(l). (44)

Here, M(l) is the Fourier transform of the Müller matrix-valued
field. In terms of the irreducible components, Mmn , we have

2πM(l) =
∑

mn

(ilσ )m+nMmnei(m−n)φl e−l2σ 2/2, (45)

and for an ideal instrument 2πM(l) = e−l2σ 2/2I where I is the iden-
tity matrix. For these simple scans the observed fields in the flat-sky
limit are realizations of a statistically-homogeneous but generally
anisotropic process, where the anisotropies arise from the contami-
nation fields. Equation (44) allows us to calculate the Fourier trans-
form of the B-mode map, B(l), since

B(l) = 1

2i
[e2iφl P(l) − e−2iφl P∗(l)] (46)

from equation (2).
To estimate the power spectrum we use a simple pseudo-Cl esti-

mator approach, giving an estimate of the smoothed (band-)power
spectrum

Ĉ B
b,obs = 1

2 fsky

∫
b

l dl

∫
b

d2l |Bobs(l)|2 (47)

where f sky is the fraction of the sky that has been observed and b la-
bels the band. We denote the denominator, 2 fsky

∫
b

ldl by Nb since it
is a measure of the number of independent Fourier modes in the band

given the sky coverage. The estimator ignores several important ef-
fects, such as leakage from E- to B-modes as a result of incomplete
sky coverage (Lewis, Challinor & Turok 2002), but here we can
ignore these as their interaction with systematic effects will be of
secondary importance. (In our simulations below we adopt periodic
boundary conditions to avoid the complications of E-B mixing.) We
also assume implicitly that any noise bias is removed from the es-
timated spectrum, and that the effects of smoothing with an ideal,
symmetric Gaussian beam are taken account of by multiplying by
el2σ 2

.
By averaging over CMB realizations (denoted by angled brackets)

we find the mean recovered B-mode spectrum, 〈Ĉ B
b,obs〉, as a function

of the true band-power spectra, CT
b , CE

b , CB
b and CTE

b (all other spectra
are taken to be zero as the CMB is not expected to be circularly
polarized, and we assume parity is not violated). Making use of
equations (44) and (46), and ignoring the variation of Meff(l) over
the radial extent of the band, we find

〈
Ĉ B

b,obs

〉 = π

2

3∑
j, j ′=2

∫
dφl (−1) j+ j ′[Λ†(φl )Meff(−l)Λ(φl )

×FlΛ†(φl )M
†
eff(−l)Λ(φl )

]
j j ′ ,

(48)

where the sum is over the P and P∗ elements. We have introduced
the matrix of true power spectra

Fl =




CT
l −CT E

l −CT E
l

−CT E
l C E

l + C B
l C E

l − C B
l

−CT E
l C E

l − C B
l C E

l + C B
l


 , (49)

and have dropped the V Stokes parameter from Stokes vectors and
Müller matrices.

For a raster scan, the receiver errors introduced in equation (9)
give a recovered power spectrum〈

Ĉ B
b,obs

〉 = [
(1 + a)2 + 1

2

(
f 2
1 + f 2

2

)]
C B

b

+ [
4ω2 + 1

2

(
f 2
1 + f 2

2

)]
C E

b + 1
2

(
γ 2

1 + γ 2
2

)
CT

b . (50)

Due to the zeroth-order CB
b term, the perturbation is first order in a,

but second order in the remaining parameters. Therefore, we must
be careful with any physical systematics that contribute to a only at
second order but to ω, f or γ at first order, as their resulting power
spectrum contributions will be of the same order. For the errors
due to the optics we proceed from equations (45) and (48) and the
Müller-matrix components given in Appendix B (or directly from
the perturbations in the observed fields given in Section 4.2). To
get a consistent result to second order in the systematic parameters,
it is necessary to retain second-order terms in the isotropic part
of MP P and the hexadecapole part of MP P∗ . Although these are
subdominant effects in the map domain, they produce second-order
corrections to B(l) that are proportional to the true B-modes, and so
produce second-order effects in the observed power proportional to
CB

l . For Gaussian cross-polar beams the result is

〈
Ĉ B

b,obs

〉 =
[

1 − e2
s

(
σ 2l2 − σ 4l4

) − q2

(
2 − σ 2l2 − σ 4l4

8

)

− b2
d

2 + σ 2l2

4
− 2

(
ν2

a,R + ν2
a,I

)]
C B

b

+
(

b2
dσ

2l2

4
+ q2σ 4l4

8
+ 2ν2

d,R

)
CT

b

+ 4ν2
a,RC E

b . (51)
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Note that, as the perturbation fields are derivatives of the Stokes
parameter fields for the co-polar errors, the power spectrum per-
turbations couple to the true power spectra via polynomials in σ l.
There is no contribution for the co-polar pointing error, p, which
is as expected as, for a raster scan, this simply leads to a global
spatial translation of the Stokes parameter fields. Note also that
there is no generation of B-mode power at leading order from E
for the raster scan if the optics are pure co-polar. Quite generally,
with no optical cross-polarization, the coupling of linear polariza-
tion to linear polarization is diagonal in the instrument basis and,
moreover, is equal for Q and U to first order in beam perturbations.
(This follows from inspection of the relevant Müller elements in
equation (22).) The first-order coupling is through the average of
the absolute squares of the two co-polar beams and, provided this is
parity symmetric, will not produce B-modes from E for a raster scan.
The form of the cross-polar errors in equation (51) follows directly
from that for the receiver case, equation (50), with ω = −νa,R , γ 2 =
2νd,R and the second-order map term for a given by a = −(ν2

a,R +
ν2

a,I ). In the presence of receiver and optical errors, the mean ob-
served power spectrum is the sum of equations (50) and (51) (with
the zero-order CB

b term included only once) plus cross-terms be-
tween the receiver and beam errors; to second-order the cross-terms
contribute

〈
�Ĉ B

b,obs

〉 = (2γ2νd,R − 2w1νd,I + 8ωνa,R)C B
b

+ 2γ2νd,RCT
b − 8ωνa,RC E

b

+ σ 2l2 f1q

2
CT E

b .
(52)

Note that the cross-terms vanish with the cross-polar beams. The
terms entering with CT

b and CE
b follow simply from making the

replacements γ 2 �→ γ 2 + 2νd,R and ω �→ ω − νa,R in equa-
tion (50). The terms entering with CB

b are from the second-order
isotropic (m = n) parts of the PP and P∗ P∗ elements of the com-
bined Müller matrix for the receiver and optics (i.e. the product
of their matrices). Finally, the CTE

b term comes from correlating
the B-modes produced from real E-modes by spin-flip (f1) errors
in the receiver with those from differential ellipticity acting on the
temperature.

For our odd-parity toy-model for cross-polar beams, the ν terms
in equation (51) are replaced by

〈
�Ĉ B

b,obs

〉 = −(
ν2

a,R + ν2
a,I

)
(2 − σ 2l2)C B

b + σ 2l2ν2
d,RCT

b

+(
σ 2l2νa,Rbd,x − 2σ 2l2νa,Rνd,R

)
CT E

b

+ 2σ 2l2ν2
a,RC E

b , (53)

correct to second-order in the systematic parameters. Note the ap-
pearance now of the cross-power CTE

b that arises from E–B con-
version due to νa,R and T–B conversion from bd or νd,R . If we
also include the receiver errors, the only cross term to arise now
is σ 2l2q f 1CTE

b /2.
As we have seen in Section 4.1, an ideal scan in which each pixel

is visited in every orientation suppresses systematic errors that are
not invariant under instrument rotation. The effective Müller matrix
for this scan is Msym, as defined in equation (29). Hence, we can
calculate the recovered B-mode spectrum in a similar manner as for
the raster scan, but now only contamination fields with the correct
spin will contribute. For Gaussian cross-polar beams and receiver

errors we find〈
Ĉ B

b,obs

〉 =
[

(1 + a)2 + 2γ2νd,R − 2w1νd,I + 8ωνa,R

− e2
s

(
σ 2l2 − σ 4l4

2

)
− q2

(
2 − σ 2l2 − σ 4l4

8

)

− σ 2l2 p2

2
− b2

d

(
2 + σ 2l2

4

)

− 2
(
ν2

a,R + ν2
a,I

)]
C B

b

+ 4(ω − νa,R)2C E
b . (54)

The qualitatively new effect here is the appearance of the pointing
error. A fixed (in the instrument frame) average displacement of the
pointing centre from its assumed position leads to a symmetric beam
distortion on averaging over all orientations. For a small pointing
error the tendency is to increase the effective beam size and so reduce
the power spectrum below the beam scale. For the odd-parity cross-
polar case, the ν-dependent terms in equation (54) are replaced by〈
�Ĉ B

b,obs

〉 = −(
ν2

a,R + ν2
a,I

)
(2 − σ 2l2)C B

b . (55)

These results suggest that, at least to second order in the parame-
ters considered, the effects of total-intensity leakage can be entirely
removed from the recovered B-mode spectrum by an appropriately
designed scan strategy.

However, there are other sources of constraints on the scan. In
particular, for the ground-based experiments we are immediately
concerned with, the strategy needs to be designed to best target
patches of the sky free from foregrounds, and to aid the removal
of atmospheric emission from the data, which generally involves
constant-elevation scans. This will limit the amount of cross-linking
in each pixel that can be achieved (i.e. the spread of ψ over which
we can observe each pixel). Since each pixel is treated differently
for a realistic scan, the map-domain effects cannot be represented
by a simple convolution with an effective Müller matrix. This raises
the possibility that systematic errors that, for the raster and ideal
scans only produce contamination proportional to true B-modes,
may cause leakage of E into B due to the non-trivial geometric pat-
tern of the scan. That is, certain errors may lead to more significant
biases when considered with a realistic scan than for either of the
extreme cases we have so far considered. Note also that the observed
fields are neither statistically homogeneous nor isotropic for general
scans.

In order to investigate this, we derive the mean estimated power
spectrum for an arbitrary scan strategy, defined by a list of values of
ψ for each pixel, using the Müller matrix decomposition introduced
in Section 4. Introducing appropriate notation, the pixel at x is visited
Nx times during the scan, and the angle of the instrument basis
relative to the fiducial basis on the ith visit is ψi (x), where i runs
from 1 to Nx . Averaging over the observations for each visit, the
observed Stokes vector is

pobs(x) = 1

Nx

Nx∑
i=1

pobs[x; ψi (x)]. (56)

Re-writing this in component form, and using equation (27) we have

pobs, j (x) =
∑
nmk

{
(−σ )m+n Rm−n+sk−s j (x)[Mmn] jk

×(∂x + i∂y)m(∂x − i∂y)n
}

pk(x; σ ).

(57)
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Here, s j is the spin associated with the jth element of the complex
Stokes vector, and

Rs(x) = 1

Nx

N (x)∑
i=1

exp[isψi (x)]. (58)

This leads to a mean estimated power spectrum of

〈
Ĉ B

b,obs

〉 = 1

8 fsky

∫
b

l dl

∫
b

d2l
2π

3∑
j, j ′=2

{
(−1) j+ j ′ ei(s j ′ −s j )φl

×
∑

mnm′n′

∑
kk′

(−1)m+n[Mmn] jk

[
[Mm′n′ ]∗j ′k′

×
∫

d2l ′

2π

(
Rm−n+sk−s j (l − l ′)R∗

m′−n′+sk′ −s j ′ (l − l ′)

×(iσ l ′)m+n+m′+n′
ei(m−n−m′+n′+sk−sk′ )φl′ [Fl ′ ]kk′

)]}
,

(59)

where Rs(l) is the Fourier transform of Rs(x). For a raster scan,
Rs(l) = 2π δ(l) and equation (59) properly reduces to equation (48)
after summing over m, n, m′, n′ with equation (45). If the optical
errors are smooth enough that only a few terms Mmn in the beam
Müller fields are significant, equation (59) is an efficient way to
calculate the mean observed B-mode spectrum from a set of ori-
entations ψi (x) avoiding the need for simulations. It is one of the
main results of this paper and we will make further use of it in
Section 7.1.

As well as biasing our power spectrum estimates, systematic
errors will alter their covariance structure. There will generally
be an increase in the random error in the estimates, and, for in-
homogeneous scans, additional correlations in the power spectra
above those due to the survey geometry and any inhomogeneities
in the instrument noise properties. These changes may also im-
pact upon the usefulness of an experiment. To assess their extent,
we can calculate the covariance of the observed spectrum over
realizations,

cov
(

Ĉ B
b,obs, Ĉ B

b′,obs

) = 2

N 2
b

∫
b

∫
b′

d2l d2l ′ |〈Bobs(l)Bobs(l ′)〉|2, (60)

where we have ignored the non-Gaussianity of the lens-induced B-
modes (Smith, Hu & Kaplinghat 2004; Smith, Challinor & Rocha
2006). For the case of an ideal instrument, the off-diagonal terms
vanish and

var
(

Ĉ B
b,obs

) = 1

fsky

( ∫
b

ld l
)2

∫
b

(
C B

b

)2
l dl = 2

Nb

(
C B

b

)2
, (61)

which is the standard result for cosmic variance. If we also include
the effects of homogeneous white noise with a power spectrum N B

b ,
this expression still holds, with C B

b �→ C B
b + N B

b . For the raster
and ideal scans it is quite straightforward to determine analytically
the variance in the presence of the specific systematic errors de-
fined in previous sections. To avoid overcluttering our formulae, we
ignore any cross terms between different systematic parameters so
the following expressions are only applicable when all but one of
the parameters are set to zero. These results are given to fourth or-
der in the parameters but with some necessarily subdominant terms
neglected: the co-efficients of each quadratic power spectrum term

are only given to leading order in each parameter. For a raster scan,
the receiver errors lead to a change in the variance in the recovered
power spectrum of

�
[
var

(
Ĉ B

b,obs

)] = 2

Nb

{[
4a + 3

(
f 2
1 + f 2

2

)](
C B

b

)2

+
[

16ω4 + 3
f 4
1 + f 4

2

8

](
C E

b

)2

+ 3
(
γ 4

1 + γ 4
2

)
8

(
CT

b

)2

+ [
8ω2 + (

f 2
1 + f 2

2

)]
C B

b C E
b

+ (
γ 2

1 + γ 2
2

)
C B

b CT
b

}
,

(62)

whilst for the optical errors with Gaussian cross-polar beams, the
change in variance is

�
[
var

(
Ĉ B

b,obs

)] = 1

Nb

{[
4e2

s

(
2σ 4l4 − σ 2l2

)

+q2

(
σ 4l4

2
+ 4σ 2l2 − 8

)

−(
b2

d,x + b2
d,y

)
(2 + σ 2l2)

−8
(
ν2

a,R + ν2
a,I

)
+6

(
ν4

d,R + ν4
d,I

)](
C B

b

)2

+32ν4
a,R

(
C E

b

)2

+
[

3q4σ 8l8

64
+ 12ν4

d,R

+7
(

b4
d,x + b4

d,y

)σ 4l4

32

](
CT

b

)2

+
[

q4

(
2 − 4σ 2l2 + 5σ 4l4

2

−σ 6l6

2
+ 5σ 8l8

128

)

+(
b4

d,x + b4
d,y

)8 − 8σ 2l2 + 3σ 4l4

64

+16ν2
a,R + 2

(
ν4

d,I + ν4
d,R

)]
C B

b C E
b

+
[

q2σ 4l4

2
+ (

b2
d,x + b2

d,y

)
σ 2l2

+8ν2
d,R

]
C B

b CT
b

+q3(2σ 2l2 − 2σ 4l4 + σ 6l6)C B
b CT E

b

}
. (63)
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For the odd-parity cross-polar case, the ν dependent terms in equa-
tion (63) are replaced by

�
[
var

(
Ĉ B

b,obs

)] = 1

Nb

{[(
ν4

d,R + ν4
d,I

)(
6 − 6σ 2l2 + 9σ 4l4

4

)

+(
ν2

a,R + ν2
a,I

)
(4σ 2l2 − 8)

](
C B

b

)2

+12ν4
a,Rσ 4l4

(
C E

b

)2

+11ν4
d,Rσ 4l4

2

(
CT

b

)2

+
[

(ν4
d,R + ν4

d,I )

(
2 − 2σ 2l2 + 3σ 4l4

4

)

+8ν2
a,Rσ 2l2

]
C B

b C E
b

+4ν2
d,Rσ 2l2C B

b CT
b

}
. (64)

For an ideal scan, only the receiver error terms in a and ω remain, and
for the optical errors with Gaussian cross-polar beams, the change
in the variance is given by

�
[
var

(
Ĉ B

b,obs

)] = 1

Nb

{[
2e2

s (σ 4l4 − 2σ 2l2)

+q2

(
σ 4l4

2
+ 4σ 2l2 − 8

)
−(

b2
d,x + b2

d,y

)
(2 + σ 2l2)

−2
(

p2
x + p2

y

)
σ 2l2

−8
(
ν2

a,R + ν2
a,I

)](
C B

b

)2

+32ν4
a,R

(
C E

b

)2

+16ν2
a,RC B

b C E
b

}
. (65)

For the odd-parity cross-polar case, the ν dependent terms in equa-
tion (65) are replaced by

�
[
var

(
Ĉ B

b,obs

)] = 1

Nb

(
ν2

a,R + ν2
a,I

)
(4σ 2l2 − 8)

(
C B

b

)2
. (66)

In Section 7.1, we assess the relative importance of the bias and the
increase in random error.

We can also investigate the impact of systematic errors on the
mean and variance of the estimated spectra through simulations.
For an arbitrary scan, performing simulations by directly smooth-
ing simulated maps with the beam in the appropriate orientation
for each observation is computationally intensive. For optical er-
rors that can be parametrized with only a few low-order irreducible
components, a more efficient method is to evaluate the summation in
equation (27) directly with simulated Stokes maps and their deriva-
tives.1 Alternatively, the simulated maps can be convolved with the
real beams in a small number of orientations, ψ , and these con-
volved maps can then be interpolated off to implement the required
scan. This second method requires that the beams do not have rapid
angular variations. Both methods allow one to test the semi-analytic
results presented here for the power spectrum, and, for the variance,

1 The derivative maps can be easily formed in Fourier space.

allow calculation for arbitrary scans (which is cumbersome to do
analytically). Having found the observed maps, the power spectrum
can be estimated using equation (47) and compared to estimates ob-
tained from the input sky maps. By combining the results for a large
number of sky simulations to estimate the mean and covariance of
the recovered spectra, equivalent results to those presented above
for the semi-analytic approach are found. Importantly, the interpo-
lation method provides a means to check the validity of low-order
expansions in irreducible components.

6 B I A S E S I N C O S M O L O G I C A L PA R A M E T E R S

One of the major goals of CMB experiments is to measure or con-
strain cosmological parameters. In the present context, the most
important parameter is r, and so it is necessary to follow systematic
errors through to r. As discussed in Section 1, it is often necessary
to control systematic errors to much better than the random (in-
strument noise plus sample variance) errors in the power spectrum
since, typically, many power spectrum estimates are combined into
relatively few cosmological parameters. It is important to note that
the effects we are considering properly apply to the residual effect of
systematics after any attempt to remove them coherently during data
analysis. Dealing with known receiver errors is reasonably straight-
forward in the time domain – for a recent example application to
real data see Jones et al. (2006) – but dealing with optical errors is
considerably more difficult.

We begin by assuming that no statistical correction is made in
the power spectrum for systematic effects. The systematics will then
typically lead to parameter biases that we can estimate as follows.
A simple estimator for r, equivalent to the maximum-likelihood
estimate for a Gaussian likelihood, is

r̂ =
∑

b ∂r C B
b

(
Ĉ B

b,obs − C B
b,lens

)
/σ 2

b∑
b

(
∂r C B

b

)2
/σ 2

b

, (67)

where the true CB
b has been written as a sum from gravitational

waves, r∂r CB
b , and weak gravitational lensing, CB

b,lens. The variances
σ 2

b are our best approximation to var(Ĉ B
b,obs). The bias in r is the

average shift in position due to systematics,

�rsys =
∑

b ∂r C B
b

〈
�Ĉ B

b,obs

〉
/σ 2

b∑
b

(
∂r C B

b

)2
/σ 2

b

, (68)

where 〈�Ĉ B
b,obs〉 is the bias in the power spectrum, and we can ignore

any contribution from �var(Ĉ B
b,obs) to σ 2

b at leading order. A large
bias in r compared to the ideal random error,

σr =
[∑

b

(
∂r C B

b

)2

σ 2
b

]−1/2

, (69)

would demand that a statistical correction be made in the power spec-
trum for the systematics. In principle, this can be done for known
(but unremoved) systematic effects if the statistics of the true fields
are known a priori, either by simulation or with the methods de-
veloped in this paper. For systematic parameters whose values are
uncertain, it may be possible to fit their effect in the power spectrum
with a few parameters that can be marginalised over when estimating
cosmological parameters. An example of the latter is the treatment
of beam uncertainties in the recent WMAP analysis (Jarosik et al.
2006).

However, even if such statistical corrections can be made accu-
rately, systematic effects will generally still increase the random
errors in parameters. We can estimate this increase by looking at
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the variance of the estimator in equation (67) in the presence of
systematics. Linearising in �cov(Ĉ B

b,obs, Ĉ B
b′,obs), we have

�σr ≈
∑

bb′ ∂r C B
b ∂r C B

b′�cov
(

Ĉ B
b,obs, Ĉ B

b′,obs

)/(
σ 2

b σ 2
b′
)

2
[∑

b

(
∂r C B

b

)2
/σ 2

b

]3/2 . (70)

The impact of systematic effects will be negligible if both �rsys and
�σr are much less than the ‘ideal’ random error σr .

7 A P P L I C AT I O N S

7.1 Finding limits

In this section we set tolerances on the systematic parameters in-
troduced in Sections 3 and 4.2 such that the bias and increase in
random error on r are below some small fraction of the ideal ran-
dom error. We work in the context of next-generation ground-based
CMB polarimeters, and take the fractional threshold to be 10 per
cent. This should ensure that the sensitivity of an experiment to r
is not significantly compromised. The implications of these criteria
depend on the true value of r and also the noise and scan properties
of the instrument. Here we take r = 0.01, a realistic limit for the
next-generation of CMB polarization experiments. Of course, if the
true r is greater than 0.01 the impact of systematic effects will be
less. Given these criteria, it is useful to define,

α = �rsys

σr

∣∣∣∣
r=0.01

(71)

and

β = �σr

σr

∣∣∣∣
r=0.01

, (72)

so that we demand |α| � 0.1 and β � 0.1.
For the properties of the instrument and survey, we use values ap-

propriate to upcoming ground-based experiments like QUIET2 and
Clover.3 Specifically, we assume around 500 useable detectors each
with 200 µKs1/2 NET, and a total integration time of one year over a
survey region ∼ 600 deg2. For simplicity, we analyse a single square
patch of side 25◦ and adopt periodic boundary conditions to avoid
geometric mixing of E- and B-modes. We note that planned ground-
based experiments that are not situated at polar sites will necessarily
require a less contiguous survey geometry than that assumed here,
but this will have little effect on our conclusions. We take the ideal
Gaussian beams to have full-width at half-maximum of 10 arcmin
and use 5122 pixels. The noise is assumed white and the entire array
gives a one-year sensitivity of 3.3 µK arcmin. We assume that every
pair of detectors suffers exactly the same systematic effect which
can be thought of as the worst-case limit. We adopt a simple cosmo-
logical model consistent with the recent WMAP three-year analysis
(Spergel et al. 2006). Under these circumstances, if r = 0.01 then
σr = 0.005 (with no attempt to clean out the lens-induced B-modes)
and an ideal instrument might expect a 2σ ‘detection’ of such an
r. We further assume that only primordial fields are present on the
sky. Our simulations include lens-induced B-modes by direct remap-
ping of Gaussian realizations of the primary CMB polarization with
a Gaussian lensing-deflection field.

2 http://quiet.uchicago.edu/
3 http://www-astro.physics.ox.ac.uk/research/expcosmology/groupclover.
html
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Figure 2. The path of the central focal-plane pixel for the semirealistic scan.
The scan is based on a 24-h constant-elevation scan from Dome-C. The green
(solid) square shows the region used in the analysis and over which the fields
were taken to be periodic.

We will consider three different scan strategies: a raster scan,
an ideal scan and a semirealistic scan. The raster scan is a useful
fiducial scan, and the ideal scan represents the best-case scenario.
The semirealistic scan allows us to assess the likely impact of beam
rotation on controlling contamination fields. Since the construction
of a realistic scan is very instrument- and site-specific, here we
consider only a toy-model scan that provides for some variation
in the angles ψ between pixels across the field. The scan path is
shown in Fig. 2; it is based on a constant-elevation scan from Dome-
C in Antarctica – a leading candidate to site future ground-based
CMB experiments.4 In using this scan, the effects of differential sky
coverage on the noise are ignored, that is, we assume that each pixel
is observed to the same depth.

We use a combination of the analytic results in Section 5 and
simulations to find the mean change in the power spectrum and
its variance and hence find tolerance limits for each systematic pa-
rameter considered in Sections 3 and 4.2. We vary each parameter
individually and so do not account for cross-terms between param-
eters. The results are summerized in Table 1 for our toy-model of
odd-parity cross-polar optics. The corresponding power spectrum
perturbations for the semirealistic scan are shown in Figs 3–5. For
all parameters apart from es and p, the power spectrum perturba-
tions and tolerance limits were evaluated using the semi-analytic
and both of the simulation methods outlined in Section 5, with the
different methods showing good agreement. Fig. 3 compares the
power spectrum perturbations obtained using the analytic and in-
terpolation simulation method for a selection of the parameters for
the semirealistic scan. The good agreement of these methods val-
idates the low-order expansions used in our analytic work, and is
representative of all the parameters considered. Power spectrum
perturbations for the remaining parameters for the semirealistic
scan, calculated with the semi-analytic method, are shown in Fig. 4.
For es and p, the assumption that the parameters are small breaks

4 The Clover experiment was originally planned to be sited at Dome-C but
this has since changed to Atacama, Chile. The BRAIN pathfinder experiment
was deployed at DOME-C for the 2005–06 austral summer.
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Table 1. Tolerance limits for systematic errors. Three different scan strate-
gies are considered: a raster scan, an ideal scan, and a semirealistic scan (see
text for details). The cross-polar results are for our odd-parity toy-model.

Parameter Raster Ideal Semirealistic

a 5.10 × 10−3 5.10 × 10−3 5.10 × 10−3

ω 4.30 × 10−3 4.30 × 10−3 4.30 × 10−3

f1 1.27 × 10−2 ∞ 5.33 × 10−2

f2 1.18 × 10−2 ∞ 5.23 × 10−2

γ 1 1.61 × 10−4 ∞ 2.22 × 10−4

γ 2 1.51 × 10−4 ∞ 2.10 × 10−4

es 5.6 × 10−1 5.5 × 10−1 3.1 × 10−1

q 1.20 × 10−2 7.26 × 10−2 5.39 × 10−2

px − 7.3 × 10−1 1.0 × 10−1

py − 7.3 × 10−1 6.0 × 10−1

bd,x 2.05 × 10−3 1.15 × 10−1 2.82 × 10−3

bd,y 2.05 × 10−3 1.15 × 10−1 2.84 × 10−3

νa,R 2.55 × 10−2 7.26 × 10−2 2.77 × 10−2

νd,R 1.02 × 10−3 ∞ 1.41 × 10−3

νa,I 7.26 × 10−2 7.26 × 10−2 7.25 × 10−2

νd,I 1.12 × 10−1 ∞ 2.31 × 10−1

10 100 1000
l
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1x10-3

1x10-2

1x10-1

l(
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C
l|/

2π
 (µ

K
2 )

Figure 3. Power spectrum perturbations for bd,x and q for the semirealis-
tic scan calculated with our semi-analytical method (black, solid and blue,
dashed, respectively) and with 1000 simulations (orange, dash–dotted and
green, long-dashed, respectively). The error bars are estimates of the theo-
retical error in the mean of the 1000 simulations due to their finite number.
Note the good agreement between the two methods. For the simulations the
scan is interpolated at intervals of 3.◦6, and it is this interpolation that leads to
the small deviations between the two methods evident for q at l < 200. The
B-mode power spectrum from gravitational waves with r = 0.01 is shown
in red (dotted) for comparison.

down below the tolerance limit, and so we rely on the interpolation
simulation method to obtain limits and power spectrum perturba-
tions (shown in Fig. 5) for these parameters.

In every case, the limiting criterion is the bias in r which is always
at least an order of magnitude greater than the increase in the random
error, σr . This is a result of the lensing induced B-modes dominating
the variance in the power spectrum on large scales. To see this it is
useful to write α and β as

α ≈ r 2

2

∑
b

(
∂r C B

b

σb

)2 〈
�Ĉ B

b,obs

〉
C B

b,prim

∣∣∣∣∣
r=0.01

(73)

β ≈ r 2

8

∑
b

(
∂r C B

b

σb

)2
�var

(
Ĉ B

b,obs

)
σ 2

b

∣∣∣∣∣
r=0.01

, (74)

where we have made use of equations (68)–(72) and the fact that
σr |r=0.01 ≈ r/2 by design. CB

b,prim is the primordial B-mode power
spectrum due to gravitational waves. Written like this we see that
α depends on the ratio of the bias in the power spectrum to the pri-
mordial spectrum, whilst β depends on the ratio of the change in
the variance to the ideal variance in a similar manner. As a result,
the large contribution of gravitational lensing to the B-modes sup-
presses β relative to α. Taking an ω error as an example, from the re-
sults of Section 5 we find 〈�Ĉ B

b,obs〉/C B
b,prim = 4ω2C E

b /C B
b,prim whilst

�var(Ĉ B
b,obs)/σ

2
b = 8ω2C E

b /C B
b to leading order in ω. As CB

b >

CB
b,prim at all scales of interest, α > β. Note that this assumes we

cannot access the reionization information: for an experiment with
sufficient sky coverage, the reionization peak, which is expected to
dominate the power spectrum at very large scales, will be resolved
and so the increase in random error will be more significant.

As expected, the limits for a and ω are independent of the scan
strategy, as they simply rescale the Q ± iU spin states and the
errors they introduce transform like a true polarization. The limit
for a is more strict than might naı̈vely be expected, as the error not
only amplifies the primordial spectrum, but also leads to imperfect
subtraction of the lensing contribution. For the raster scan, there
are no limits for an average co-polar pointing error, p, as a global
displacement has no effect on the power spectrum. For the ideal
scan, γ 1, γ 2, f 1, f 2, νd,R and νd,I are not constrained since the errors
they produce disappear when averaged over all orientations.

Comparing the semirealistic scan to the raster scan, many of the
tolerances are relaxed as a result of the cross-linking, but the im-
provement is relatively modest. In the case of the tightest tolerances,
those for γ 1 and γ 2 which leak temperature into linear polarization,
the limits are only relaxed by around 40 per cent, which suggests
that our ability to control these errors with beam rotation is limited.
Although an ideal scan removes these errors completely, a scan that
covers 90 per cent of basis orientations only relaxes the limits by a
factor of 10. That is, the cross-linking needs to be almost complete
before we see significant changes in the tolerances, and so demand-
ing such improvement would put considerable constraints on the
scan strategy. Such constraints are unlikely to be compatible with
other constraints such as the desire to use constant-elevation scans to
avoid gradients in the average atmospheric signal. Having the ability
to rotate the instrument directly about its boresight, rather than re-
lying on rotation induced by scanning (and sky rotation), will likely
prove very useful for efficient suppression of some systematics in
future ground-based surveys.

The semirealistic scan introduces a further new feature over the
raster and ideal scan: not every pixel is seen at the same angles ψ ,
so there is differential beam rotation across the field. This gives rise
to new effects, such as transformation of E-modes into observed
B-modes even for an experiment with no cross-polarization, and
identical coupling to the sky and propagation through the receiver
for the two polarizations. Consider an otherwise ideal instrument
with equal elliptical co-polar beams for the A and B polarizations. If
the range of ψ were the same in every pixel, the observed Q and U
maps would simply be the true maps convolved with some effective
beam; this does not produce any transformation of E-modes into B.
Similar comments apply to a common pointing error, p, with oth-
erwise ideal optics. The effect of differential beam rotation in the
errors from the average ellipticity, es , and pointing parameters can
be seen in Fig. 5, which shows the power spectrum perturbations for

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 376, 1767–1783

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/376/4/1767/1017168 by guest on 24 April 2024



1780 D. O’Dea, A. Challinor and B. R. Johnson

100 1000
l

1x10-6

1x10-5

1x10-4

1x10-3

1x10-2

1x10-1

l(
l+

1)
|∆

C
l|/

2π
 (µ

K
2 )

100 1000
l

1x10-6

1x10-5

1x10-4

1x10-3

1x10-2

1x10-1

l(l+
1)∆C

l/2π
 (µK

2 )

Figure 4. Power spectra perturbations for the semirealistic scan corresponding to the tolerance limits for: (left-hand panel) a (black, solid), ω (green, long-
dashed), γ (orange, dash–dotted) and f (blue, dashed); and (right-hand panel) νa,R (black, solid), νd,R (green, long-dashed), νa,I (orange, dash–dotted) and νd,I

(blue, dashed). The B-mode power spectrum from gravitational waves with r = 0.01 is shown in red (dotted) for comparison.
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Figure 5. Simulated power spectra perturbations for es (left-hand panel) and px (right-hand panel) for 1000 simulations for a raster (green, long-dashed), ideal
(blue, dashed) and semirealistic (black, solid) scan. On the left, the perturbation for py for a semirealistic scan is also shown (orange, dash–dotted). The B-mode
power spectrum from gravitational waves with r = 0.01 is shown in red (dotted) for comparison.

these parameters for all three scan strategies. For both parameters,
transformation of E-modes to B-modes leads to an increase in the
bias at low l. However, this does not lead to a significant tighten-
ing of the tolerances. This is partly fortuitous, as the E-to-B errors
from differential beam rotation contribute with opposite sign to the
B-to-B errors that the parameters contribute for an ideal scan. The
E-to-B effect may be more significant for a more realistic scan, per-
haps requiring multiple elevation scans to cover the survey region.
(Interestingly, demanding better cross-linking to control tempera-
ture leakage, and suppress low-frequency noise, is likely to result in
a more complex scan strategy with increased differential rotation.)
As an extreme example, we can examine the effects of a scan in
which the basis orientation for each sky pixel is selected at random,
as we might expect this to maximize differential rotation. With such
a scan, the limits become 0.024 for es and 0.058 for |p| which are
still not particularly tight. These results suggests that, provided we
avoid pathologically-constructed scans, transformation of E-modes
to B-modes from differential rotation is unlikely to be significant.
However, transformation of E-to-B through cross-polarization al-
ways warrants careful control.

7.2 Real beams

So far we have considered the impact of specific beam non-idealities
that can be simply parametrized. However, there may be significant

effects from beam characteristics that are unexpected, or not eas-
ily parametrized and are not present in our simple beam models.
Therefore, in this section we will extend our scope to examine the
effects of real, or simulated, beam patterns. For simplicity, we will
only consider raster and ideal scans. From simulations of the far-
field patterns, EA and EB , we can form the beam Müller fields using
equation (22). Then, from equation (48), we can calculate the bias in
the recovered power spectrum, and from that the bias in r. We simu-
lated beam patterns for a realistic optical setup with a physical-optics
code. (Specifically, the simulations were done in the context of the
Clover experiment.) Beams were simulated for three different focal
plane positions: the central pixel and two pixels at the edge of the
array, displaced from the centre along the optical axes. These pixels
are expected to be representative of the entire array. A re-calibration
of the beam centres and axes was performed to remove simulation
artifacts. The power profiles in co- and cross-polarization for the
two polarization states of the central pixel and one edge pixel are
shown in Fig. 6 (the remaining edge pixel having similar features
to the one shown). One new feature, not considered in our previ-
ous analysis, that is immediately evident from these profiles is the
subsidiary maxima present in the co-polar beams. These sidelobe
features would not be easy to parametrize, particularly for the pix-
els at the focal plane edge where the effect breaks the azimuthal
symmetry of the profiles. When evaluating systematic effects, we
assumed the data analysis would be performed with Gaussian
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Figure 6. Simulated (power) beam patterns for a realistic optical setup.
Panels (a)–(d) show |EA co|2, |EB co|2, |EA cross|2 and |EB cross|2 for a central,
on-axis pixel, and panels (e)–(h) show the same for a pixel at the edge of the
focal plane array. The average total power in the cross-polar beams, relative
to the corresponding co-polar beams is 2.2 × 10−7 for the central pixel and
2.3 × 10−6 for the shifted pixel. The contours are at −3 dB intervals, down
to −57 dB for the co-polar beams, and −30 dB for the cross-polar beams.

co-polar beams, with relative powers and beam sizes matched to
the simulated beams. We analysed each pixel separately, but scaled
the noise down to a value appropriate for a 500-element array. This
is equivalent to assuming that every pixel in the focal plane has the
same imperfect optical response. We performed our analysis with
an ideal receiver.

For the central focal plane pixel α is around 2 per cent, irrespec-
tive of the scan strategy. Of the pixels considered, this is the worst
case (with α well below the per cent level for the remaining pixels)
and is well within the tolerance limits we have previously suggested.
Furthermore, this bias is mainly a result of our assumption of sim-
ple Gaussian beams in the analysis, and could be reduced by a more
sophisticated treatment of the average, symmetric co-polar beam
profiles. Fig. 7 shows the perturbations to the power spectrum for
a raster scan. The perturbations are largely independent of the scan
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Figure 7. Perturbations to the B-mode power spectrum for the central focal
plane pixel (black, solid) and the edge pixels (blue, dotted and green, dash–
dotted) for a raster scan. (For the edge pixels, the perturbations are negative
below the kink at l ∼ 200.) The B-mode power spectrum from gravitational
waves with r = 0.01 is shown in red (dotted) for comparison.

strategy, and due almost entirely to the true B-modes: the contribu-
tion from total intensity and E-modes is always below 10−6 µK2.
These results were confirmed by direct convolution of simulated
Stokes maps with the Müller beams. These simulations also con-
firmed that the increase in the random error in r is subdominant to
the bias, as expected from Section 7.1.

8 D I S C U S S I O N

We have presented a framework to describe, in a general manner,
the scientific impact of instrumental systematic errors in CMB po-
larimetry experiments surveying small sky areas. A major focus
was the behaviour of systematic errors under instrument rotation.
We introduced spin-weighted Müller matrices to describe the prop-
agation of the Stokes parameters through the receiver to simplify the
transformation properties of the systematic effects under rotations.
The optical coupling of the receiver to the incoming radiation field
is described by Müller matrix-valued fields. We gave expressions
for these in terms of the vector-valued field pattern of the antenna,
and introduced a convenient decomposition of the matrix fields into
components that transform irreducibly under rotations. The decom-
position is useful for analytical work and also provides an efficient
means of simulating the effect in Stokes maps of systematic effects
for an arbitrary scan strategy.

We compared two popular receiver architectures for CMB po-
larimetry and showed that modulating the polarization with a half-
wave plate has the advantage over a pseudo-correlation receiver of
producing no instrumental polarization for ideal optics. It should be
noted that, in the presence of realistic optics, the half-wave-plate
receiver will contribute to instrumental polarization, but at a higher
order in the parameters describing systematics than the pseudo-
correlation receiver. This result holds for a waveplate in waveguide
– further analysis is required for a quasi-optical approach where the
waveplate is before the beam-defining element (and typically is at
the beam waist). We also analysed simple parametrized models for
imperfect co- and cross-polar beams and presented the irreducible
components of their Müller fields.

We presented an efficient, semi-analytic method for calculat-
ing the bias in the power spectra from time-invariant instrument
systematics described by an arbitrary Müller response, and for a
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general scan strategy. This should prove useful for setting tolerance
limits during the design phase of an experiment. However, since
the analysis is entirely in the map domain, detailed simulations will
still be required for data analysis to account properly for the inter-
action of non-trivial map-making with systematic effects. We also
analysed the extreme cases of scans with no and complete beam
rotation and obtained simple results for the biases induced in the
B-mode power spectrum, and the increase in the random error in
the power spectrum. Several important effects are missed by these
extreme scans, such as the generation of B-modes from E-modes,
even in the absence of cross-polarization, by differential beam ro-
tation across the observed field. It is often important to propagate
the effects of systematic errors through to cosmological parameters
to assess properly their effect on the scientific returns. We did this
for the tensor-to-scalar ratio for a survey representative of that from
next-generation ground-based instruments, and set tolerance limits
for simple parametrized forms of the receiver and optical systemat-
ics. The formalism can also be applied to non-parametric, simulated
or measured beam models and we illustrated this with the results of
physical optics simulations.

Although instrument rotation is potentially a powerful way to
mitigate against stable instrumental systematic effects, we showed
that for a typical scan that can be obtained reasonably from the
ground, the limited range of angles at which a pixel is revisited
limits the extent to which systematics can be controlled. For the
semirealistic scan considered here we found that tolerance limits on
systematics could be relaxed by between 40 and 400 per cent over
those for a simple raster scan. For all cases considered here, the
tolerance limits for a realistic scan are never significantly stricter
than for a raster scan. The distribution of scan angles ψ can be
improved considerably for constant-elevation scans by including z-
axis rotation, rather than relying on sky rotation. This may prove
to be an important element of future campaigns to detect primary
B-mode polarization in the CMB.

As previously noted, this paper does not directly consider some
important time-invariant systematic errors. For example, as we have
restricted our analysis to quasi-monochromatic systems, errors such
as bandpass mismatch, and other variations in instrumental response
with frequency have been ignored. However, the methods and anal-
ysis introduced in this paper can be straightforwardly extended to
accommodate such errors by splitting the bandwidth up into a num-
ber of sub-bands in which the instrumental response can reasonably
be modelled as constant, and allowing systematics to vary between
the sub-bands. Each sub-band can be treated independently and the
Müller matrix used to describe the whole instrument simply be-
comes an appropriately weighted sum over the matrices for each
band, and the analysis can proceed unhindered.
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A P P E N D I X A : C O M P L E X B E A M
M Ü L L E R F I E L D S

We can extract the complex beam Müller fields from the real com-
ponents in equation (22). Those fields for which the second index
has non-zero spin are best expressed in terms of the spin-±1 com-
ponents of EA and EB :

±1 E A ≡ EA · (x̂ ± iŷ) = E A co ∓ iE A cross

±1 EB ≡ EB · (x̂ ± iŷ) = −EB cross ∓ iEB co,
(A1)

whereas those with spin-0 component can be expressed directly in
terms of scalar products of EA, EB and their duals

�EA ≡ −
(

E A cross

E A co

)
, �EB ≡

(−EB co

EB cross

)
, (A2)

which are obtained by a right-handed rotation through 90◦ about
the radiation propagation direction. The independent components
of the complex Müller fields are

MT T = 1
2

(|EA|2 + |EB |2)
MT P = 1

4

(
1 E A−1 E∗

A + 1 EB −1 E∗
B

)
MT V = 1

2 i
(

�EA · E∗
A + �EB · E∗

B

)
MPT = 1

2 (EA + iEB) · (EA − iEB)∗

MP P = 1
4 (1 E A + i1 EB)(−1 E A − i−1 EB)∗

MP P∗ = 1
4 (−1 E A + i−1 EB)(1 E A − i1 EB)∗

MPV = 1
2 i(�EA + i�EB) · (EA − iEB)∗

MV T = 1
2 i
( − EA · E∗

B + EB · E∗
A

)
MV P = − 1

4 i
(

1 E A−1 E∗
B − 1 EB −1 E∗

A

)
MV V = 1

2

(
�EA · E∗

B − �EB · E∗
A

)
. (A3)
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Expressed this way, the transformation properties under a rotation
of the coordinate basis on the sky are manifest.

A P P E N D I X B : B E A M E X PA N S I O N

The expansion of the beam in equation (25) can be written as

M(x) = e−x2/2σ 2

2πσ 2

∑
mn

[
Mmn(−1)n2mm!

(
x − iy

σ

)n−m

× Ln−m
m

(
x2

2σ 2

)]
, (B1)

where Lα
n is the Laguerre polynomial (Gradshteyn & Ryzhik 2000),

familiar from the radial wavefunctions of the Hydrogen atom. Each
term in the sum is a Gaussian multiplying a polynomial in x and
y. Equation (B1) can be inverted using the orthogonality of the
Laguerre polynomials:

Mmn = (−1)n

2nn!

∫
d2x M

(
x + iy

σ

)n−m

Ln−m
m

(
x2

2σ 2

)
. (B2)

Note that, for m > n with m and n � 0, Ln−m
m (x) = O(xm−n) so that

the integrand in this equation is always regular at the origin.
In Section 4.2, we introduced a simple parametrization for offset,

elliptical co-polar beams and two toy-model examples of cross-
polar beams. Here we give the Mmn matrices for these parametrized
beams to first order in the parameters. Generally, if the maximum
order of the polynomials appearing in equation (B1) is l, then there
are terms present with m and n taking all integer values �0 such
that m + n � l. For a first-order expansion of the beam models of
Section 4.2, l = 2. Adopting a matrix notation for the indices m and
n, we find for the case of Gaussian cross-polar beams that

[Mmn]T T =




1 −(1 p/2) es/2

−(−1 p/2) 0 0

es/2 0 0




[Mmn]T P =




−iνd,R −(1bd/4) q/4

−(−1bd/4) 0 0

q/4 0 0




[Mmn]PT =




2iνd,R −(1bd/2) q/2

−(−1bd/2) 0 0

q/2 0 0




[Mmn]P P =




1 − 2iνa,R −(1 p/2) es/2

−(−1 p/2) 0 0

es/2 0 0




[Mmn]V V =




1 −(1 p/2) es/2

−(−1 p/2) 0 0

es/2 0 0


 ;

(B3)

the remaining independent, non-zero elements are [M00]T V =
2νa,R = [M00]V T , [M00]PV = 2νd,I = −2[M00]V P and [M00]V T =
2νa,I . Here, for example, ±1 p ≡ p · (x̂ ± iŷ) are the spin-±1 com-
ponents of p. For the power spectrum analysis in Section 5 we need
some elements of MP P and MP P∗ to second-order in the systemat-
ics as these appear multiplying the zero-order Müller matrix. The
relevant second-order, non-zero terms are

[M00]P P = −
(

b2
d

4

)
− q2 − (

ν2
a,R + ν2

a,I

)
[M11]P P = p2

4
+ b2

d

8
+ e2

s

2
− q2

2

[M22]P P = e2
s

4
+ q2

8

[M04]P P∗ = q2

16
= [M40]P P∗ . (B4)

For the cross-polar beams with a single line of symmetry, [Mmn]T T

and [Mmn]V V are unchanged from equation (B3) but

[Mmn]T P = −1

4




0 1bd + 2νd,R −q

−1bd − 2νd,R 0 0

−q 0 0




[Mmn]PT = −1

2




0 1bd − 2νd,R −q

−1bd + 2νd,R 0 0

−q 0 0




[Mmn]P P = −1

2




−2 1 p + 2νa,R −es

−1 p − 2νa,R 0 0

−es 0 0


 . (B5)

The remaining independent non-zero elements are [M01]T V =
−iνa,I = −[M10]T V , [M01]PV = −iνd,I = −[M10]PV , [M01]V T =
−iνa,I = −[M10]V T and [M01]V P = iνd,I /2 = −[M10]V P . The
second-order terms required for a consistent power spectrum calcu-
lation are, in this case,

[M00]P P = −
(

b2
d

4

)
− q2 − (

ν2
a,R + ν2

a,I

) − ipyνa,R

[M11]P P = p2

4
+ b2

d

8
+ e2

s

2
− q2

2

− ν2
a,R + ν2

a,I

2
− ipyνa,R

2

[M22]P P = e2
s

4
+ q2

8

[M04]P P∗ = q2

16
= [M40]P P∗ . (B6)
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