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ABSTRACT
We present numerical simulations of axisymmetric, magnetically driven outflows that repro-
duce the inferred properties of ultrarelativistic gamma-ray burst (GRB) jets. These results
extend our previous simulations of outflows accelerated to moderately relativistic speeds,
which are applicable to jets of active galactic nuclei. In contrast to several recent investi-
gations, which have employed the magnetodynamics approximation, our numerical scheme
solves the full set of equations of special relativistic, ideal magnetohydrodynamics, which
enables us to explicitly calculate the jet velocity and magnetic-to-kinetic energy conversion
efficiency – key parameters of interest for astrophysical applications. We confirm that the
magnetic acceleration scheme remains robust into the ultrarelativistic regime, as previously
indicated by semi-analytic self-similar solutions. We find that all current-carrying outflows
exhibit self-collimation and consequent acceleration near the rotation axis, but that unconfined
outflows lose causal connectivity across the jet and therefore do not collimate or accelerate
efficiently in their outer regions. We show that magnetically accelerated jets confined by an
external pressure that varies as z−α (0 < α ≤ 2) assume a paraboloidal shape z ∝ ra (where r, z
are cylindrical coordinates and a > 1), and we obtain analytic expressions for the one-to-one
correspondence between the pressure distribution and the asymptotic jet shape. We demon-
strate that the acceleration efficiency of jets with paraboloidal streamlines is �50 per cent, with
the numerical value being higher the lower the initial magnetization. We derive asymptotic
analytic expressions for the acceleration of initially cold outflows along paraboloidal stream-
lines and verify that they provide good descriptions of the simulated flows. Our modelled jets
(corresponding to 3/2 < a < 3) attain Lorentz factors � � 102 on scales ∼ 1010–1012 cm,
consistent with the possibility that long/soft GRB jets are accelerated within envelopes of
collapsing massive stars, and � � 30 on scales ∼9 × 108–3 × 1010 cm, consistent with the
possibility that short/hard GRB jets are accelerated on scales where they can be confined by
moderately relativistic winds from accretion discs. We also find that �θv ∼ 1 for outflows that
undergo an efficient magnetic-to-kinetic energy conversion, where θv is the opening half-angle
of the poloidal streamlines. This relation implies that the γ -ray emitting components of GRB
outflows accelerated in this way are very narrow, with θv � 1◦ in regions where � � 100, and
that the afterglow light curves of these components would either exhibit a very early jet break
or show no jet break at all.
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1 IN T RO D U C T I O N

In the ‘standard’ model of long-duration, soft-spectrum gamma-ray
bursts (GRBs; e.g. Piran 2005), the prompt high-energy emission
arises in ultrarelativistic (bulk Lorentz factor � � 102), highly
collimated (opening half-angle of a few degrees) jets. The high
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Magnetic acceleration of jets 1183

Lorentz factors are inferred from the requirement of a sufficiently
low opacity to photon–photon annihilation or to scattering by pho-
ton annihilation-produced electron–positron pairs (e.g. Lithwick
& Sari 2001), whereas the jet opening angle is deduced from
the detection of a panchromatic break in the light curve of the
lower energy afterglow emission (e.g. Rhoads 1999; Sari, Piran &
Halpern 1999). Recent observations by the Swift satellite have in-
dicated that various aspects of this model may need to be modified
(e.g. Mészáros 2006; Panaitescu 2007; Liang et al. 2008), but the
basic picture of a collimated � � 102 outflow is still the accepted
paradigm.

Observations of long/soft GRBs and their afterglows have re-
vealed that these events typically involve the release of a few
×1051 erg, although the fraction of this energy that corresponds
to the γ -ray emitting outflow component may vary from source
to source (e.g. Berger, Kulkarni & Frail 2003a; Frail et al. 2005).
The outflows in these GRBs have been argued to originate either
in a magnetar or in a rapidly accreting stellar mass black hole,
formed in the collapse of a massive star. The jets could tap into the
rotational energy of the neutron star, black hole or accretion disc
through the agency of an ordered magnetic field that threads the
source (e.g. Usov 1992; Thompson 1994; Katz 1997; Mészáros &
Rees 1997; Kluźniak & Ruderman 1998; Vlahakis & Königl 2001;
Blandford 2002; Drenkhahn & Spruit 2002; McKinney 2006; Proga
et al. 2003; Vlahakis & Königl 2003a,b; Vlahakis, Peng & Königl
2003; Levinson 2006; Lyutikov 2006b; Komissarov & Barkov 2007;
Bucciantini et al. 2008; Barkov & Komissarov 2008). For typical
burst energies and durations the field amplitudes should be ∼1014–
1015 G. Early models have postulated that GRB outflows are driven
purely thermally via annihilation of neutrinos emitted by the accre-
tion disc. Although this model remains very popular, some recent
studies have indicated that the neutrino heating may not be as ef-
ficient as previously thought (e.g. Di Matteo, Perna & Narayan
2002). At present, both the magnetic and the thermal mechanisms
seem equally possible and it may well be that in many cases they
operate simultaneously. In particular, neutrino heating may play an
important role in the initial acceleration of magnetized outflows
(e.g. Vlahakis & Königl 2003a) and in determining their mass load
(e.g. Levinson 2006; Barzilay & Levinson 2008).

While short/hard GRBs evidently have different progenitors
(quite possibly merging neutron stars or neutron star/black hole
pairs) and on average involve a smaller energy release, a lower
Lorentz factor, and weaker collimation than long/soft GRBs, they
may well represent the same basic phenomenon and arise in rela-
tivistic outflows that are driven in a similar way (e.g. Nakar 2007).

The magnetic acceleration and collimation of GRB outflows
needs to be studied within the framework of relativistic magneto-
hydrodynamics (MHD). Although general relativistic effects may
influence the conditions near the base of the flow, most of the action
takes place sufficiently far away from the central mass that the sim-
pler equations of special relativistic MHD can be employed. Since
our focus in this paper is on the global structure of GRB jets, we
henceforth consider only the special relativistic theory. However,
even in this case there are qualitatively new effects in comparison
with Newtonian MHD. These include the fact that, when the bulk
Lorentz factor becomes large, the electric force can no longer be
neglected relative to the magnetic force and, in fact, becomes com-
parable to it in magnitude. Correspondingly, one needs to retain the
displacement current and the electric charge density in Maxwell’s
equations. Another consequence of relativistic motion (which also
affects unmagnetized flows) is the coupling between different spa-
tial components of the momentum conservation equation brought

about by the appearance of the Lorentz factor (which is calculated
from the total velocity) in each of the component equations. Further-
more, in cases where the temperature (i.e. the characteristic velocity
of internal motions) is relativistic, one needs to take into account
the enthalpy contribution to the inertia of the flow. On account
of these various factors, relativistic MHD does not naturally yield
simple generalizations of results obtained in Newtonian MHD. To
simplify the treatment, various authors have adopted the force-free
electrodynamics (also termed ‘magnetodynamics’) approximation,
in which the matter inertia is neglected altogether. While this ap-
proach has led to useful insights and interesting exact solutions, it
is inherently limited in that one cannot explicitly calculate the fluid
velocity and hence the efficiency of transforming electromagnetic
energy into kinetic form, which are key parameters of interest for
astrophysical applications.

In a pioneering work, Li et al. (1992; see also Contopoulos 1994)
derived exact semi-analytic MHD solutions of steady, axisymmet-
ric, ‘cold’ relativistic flows patterned after the Newtonian radi-
ally self-similar outflow solutions of Blandford & Payne (1982).
In contrast with the Newtonian solutions, one cannot match the
flow in the relativistic case to a given power-law radial distribu-
tion of the rotation velocity of the source (e.g. the ∝r−1/2 rotation
law of a Keplerian accretion disc) because the relativistic equations
already contain the (constant) speed of light c. However, this con-
straint only affects the base of the flow (and, as shown by Vlahakis
& Königl 2003a, it is possible to approximate a Keplerian disc even
in this case by judiciously parametrizing the disc height above the
origin of the coordinate system), and one can proceed to obtain the
global structure of the outflow as in the Newtonian case. Li, Chiueh
& Begelman (1992) identified as a key property of the relativistic
outflow solutions the spatially extended nature of the acceleration
region, which continues well beyond the classical fast magnetosonic
surface. These results were further generalized to initially ‘hot’ out-
flows by Vlahakis & Königl (2003a,b), who went on to apply the
relativistic self-similar solutions to GRB outflows (see also Vlahakis
& Königl 2001 and Vlahakis et al. 2003) and to the lower � jets
imaged in active galactic nuclei (AGN; Vlahakis & Königl 2004).
The solutions obtained in these papers confirmed that spatially ex-
tended acceleration is a generic property of MHD outflows that dis-
tinguishes it from purely hydrodynamic, thermally driven winds.
Vlahakis & Königl (2001, 2003a) noted that this property can be
understood from the fact that the magnetic acceleration is deter-
mined from the joint solution of the Bernoulli equation (derived
from the momentum conservation equation along the poloidal mag-
netic field) and the trans-field equation (which describes the force
balance in the transverse direction). The effective singular surface
(the ‘event horizon’ for the propagation of fast magnetosonic waves)
is the so-called modified fast magnetosonic surface, which can lie
well beyond the corresponding classical surface. (The classical fast
magnetosonic surface is singular only when one solves the Bernoulli
equation alone, assuming that the shape of the field lines is given;
in Section 5 we further elaborate on the strong connection between
acceleration and poloidal field line shape in magnetically driven
flows.)

The semi-analytic solutions have also established the collima-
tion properties of MHD outflows, demonstrating that they con-
verge asymptotically to cylinders for flows that are Poynting flux-
dominated at the source and to cones when the enthalpy flux is
initially dominant (e.g. Vlahakis & Königl 2003a,b). These solu-
tions are, however, limited by the self-similarity assumption, which,
besides restricting the angular velocity distribution at their base,
also requires the magnetic flux distribution to be a power law in
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radius and only enables one current regime (current carrying or
return current, but not a global current circuit) to be modelled by
any given solution. To validate the applicability of these results un-
der more realistic circumstances and to ascertain their dynamical
stability, one needs to resort to numerical simulations. However,
the large spatial extent of the acceleration region (which, according
to the semi-analytic solutions, typically covers several decades in
spherical radius) has posed a strong challenge for such calculations:
in fact, early attempts to simulate such flows were limited by nu-
merical dissipation to maximum Lorentz factors that were only a
small fraction (less than 1 per cent) of the potentially achievable
terminal value.

Komissarov et al. (2007; hereafter Paper I) have taken a major step
towards overcoming this challenge by employing a special relativis-
tic, ideal MHD numerical scheme that was specifically designed to
optimize accuracy and resolution and to minimize numerical dissi-
pation. A key element of their approach was the implementation of
a grid-extension method that made it possible to follow the flow up
to six decades in spatial scale while reducing the computation time
by up to three orders of magnitude. They were able to model cold
flows that converted nearly 80 per cent of the initial Poynting flux
into kinetic energy of �∞ � 10 baryons and demonstrated that the
results were consistent with the available data on the acceleration
of relativistic jets in AGN. They found that the numerical solutions
assumed a quasi-static configuration that was qualitatively in ac-
cord with the self-similar AGN jet models of Vlahakis & Königl
(2004). The simulations were, however, able to examine various
aspects of the flow that could not be studied within the framework
of a self-similar model (including the structure of outflows in which
both the current and the return current flow within the jet and the
dependence of the collimation properties on the shape of the jet
boundary) and uncovered new features (such as the formation of a
cylindrical core around the jet axis) that were inherently non-self-
similar.

In this paper we further extend the scheme presented in Paper I
to cover the regime of GRB outflows. In particular, we present
simulations of outflows that attain terminal Lorentz factors �∞ �
102, following them over up to eight decades in axial scale. Be-
sides cold jets, we also consider the case of an outflow in which
the enthalpy flux is a significant fraction of the injected energy flux.
Owing to the larger range in � in comparison with the solutions
presented in Paper I, the magnetic acceleration region can now
be better isolated, which enables us to more accurately compare
its behaviour with that of the self-similar solutions and to anal-
yse it using the asymptotic forms of the Bernoulli and trans-field
equations. We begin by reviewing the relativistic MHD formalism
(Section 2) and our numerical scheme (Section 3). We present key
simulation results in Section 4 and discuss them in the context of the
theory of magnetic acceleration in Section 5. Section 6 deals with
applications of our results to GRBs. Our conclusions are given in
Section 7.

2 BASIC EQUATIONS

Since most of the acceleration takes place far away from the source,
we assume that the space–time is flat. In an inertial frame at rest
relative to the source, the relativistic ideal MHD equations that
describe the flow take the following form:
(continuity equation)

(1/c)∂t (
√−gρut ) + ∂i(

√−gρui) = 0 , (1)

where ρ is the rest mass density of matter, uν is its 4-velocity and g
is the determinant of the metric tensor;
(energy-momentum equations)

(1/c)∂t

(√−gT t
ν

) + ∂i

(√−gT i
ν

) =
√−g

2
∂ν(gαβ )T αβ , (2)

where Tκν is the total stress–energy–momentum tensor;
(induction equation)

(1/c)∂t (B
i) + eijk∂j (Ek) = 0 , (3)

where eijk = √
γ εijk is the Levi–Civita tensor of the absolute space

(ε123 = 1 for right-handed systems and ε123 = −1 for left-handed
ones) and γ is the determinant of the spatial part of the metric tensor
(γij = gij );
(solenoidal condition)

∂i(
√

γBi) = 0 . (4)

The total stress–energy–momentum tensor, Tκν , is a sum of the
stress–energy–momentum tensor of matter,

T κν
(m) = wuκuν/c2 + pgκν , (5)

where p is the thermodynamic pressure and w is the enthalpy per
unit volume, and the stress–energy–momentum tensor of the elec-
tromagnetic field,

T κν
(e) = 1

4π

[
F καF ν

α − 1

4
(F αβFαβ )gκν

]
, (6)

where Fνκ is the Maxwell tensor. The electric and magnetic fields
are defined as measured by an observer stationary relative to the
spatial grid, which gives

Bi = 1

2
eijkFjk (7)

and

Ei = Fit . (8)

In the limit of ideal MHD

Ei = −eijkv
jBk/c , (9)

where vi = ui/ut is the usual 3-velocity of the plasma.
In all of our simulations we use an isentropic equation of state

p = Qρs, (10)

where Q= const and s = 4/3. This relation enables us to exclude
the energy equation from the integrated system. However, the mo-
mentum equation remains intact, including the non-linear advection
term. Therefore, if the conditions for shock formation were to arise,
our calculation would capture that shock.1 The enthalpy per unit
volume is

w = ρc2 + s

s − 1
p . (11)

1 Since entropy is fixed, the compression of our shocks would be the same
as for continuous compression waves. This would give a higher jump in
density for the same jump in pressure than in a proper (dissipative) shock.
Fortunately, we do not need to contend with this issue in practice as shocks
do not form in our simulations.
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Magnetic acceleration of jets 1185

2.1 Field line constants

The poloidal magnetic field is fully described by the azimuthal
component of the vector potential,

Bi = 1√
γ

εijφ ∂Aφ

∂xj
. (12)

For axisymmetric solutions Aφ = /2π, where (xi), the so-called
magnetic flux function, is the total magnetic flux enclosed by the
circle xi = const (xi being the coordinates of the meridional plane).
Stationary and axisymmetric ideal MHD flows have five quantities
that propagate unchanged along the magnetic field lines and thus are
functions of  alone. These are k, the mass flux per unit magnetic
flux; �, the angular velocity of magnetic field lines; l, the total
angular momentum flux per unit rest-mass flux; μ, the total energy
flux per unit rest-mass energy flux; and Q, the entropy per particle:

k = ρup

Bp
, (13)

� = vφ̂

r
− vp

r

Bφ̂

Bp
, (14)

l = − I

2πkc
+ r

w

ρc2
�vφ̂ , (15)

μ = μh + μm (16)

and

Q = P/ρs, (17)

where up = �vp is the magnitude of the poloidal component of the
4-velocity, Bp is the magnitude of the poloidal component of the
magnetic field, r is the cylindrical radius,

I = c

2
rBφ̂ (18)

is the total electric current flowing through a loop of radius r around
the rotation axis,

μh = w

ρc2
� (19)

is the total hydrodynamic energy (rest mass plus thermal plus ki-
netic) flux per unit rest-mass energy flux,

μm = μhσ = − �I

2πkc3
(20)

is the Poynting flux per unit rest-mass energy flux, and σ is the ratio
of the Poynting flux to the hydrodynamic (rest-mass plus thermal
plus kinetic) energy flux. For cold flows Q = 0, w = ρc2. (Here and
in the rest of the paper we use a hat symbol over vector indices to
indicate their components in a normalized coordinate basis.) From
equation (16) it follows that the Lorentz factor � cannot exceed μ.

3 N U M E R I C A L S I M U L AT I O N S

To maintain a firm control over the jet’s confinement and to prevent
complications related to numerical diffusion of the denser plasma
from the jet’s surroundings, we study outflows that propagate inside
a solid funnel of a prescribed shape.2 Specifically, we consider

2 As was already noted in Paper I, in real astrophysical systems the shape
of the boundary is determined by the spatial distribution of the pressure
or the density of the confining ambient medium. The effective ambient
pressure distributions implied by the adopted funnel shapes are considered
in Section 5.3.

axisymmetric funnels

z ∝ ra ,

where z and r are the cylindrical coordinates of the funnel wall and
a = 2/3, 1, 3/2, 2 and 3. We employ elliptical coordinates {ξ , η,
φ}, where

ξ = rz−1/a (21)

and

η2 = r2

a
+ z2 (22)

(see Paper I for details).
We use a Godunov-type numerical code based on the scheme de-

scribed in Komissarov (1999a). To reduce numerical diffusion we
apply parabolic reconstruction instead of the linear one of the orig-
inal code. Our procedure, in brief, is to calculate minmod-averaged
first and second derivatives and use the first three terms of the
Taylor expansion for spatial reconstruction. This simple procedure
results in a noticeable improvement in the solution accuracy even
though the new scheme is still not third-order accurate because of
the non-uniformity of the grid.

The grid is uniform in the ξ direction (the polar angle direction
when we use spherical coordinates), where in most runs it has a total
of 60 cells. To check the convergence, some runs were repeated with
a doubled resolution. The cells are elongated in the η direction (the
radial direction when we use spherical coordinates), reflecting the
elongation of the funnel. Very elongated cells lead to a numerical
instability, so we imposed an upper limit of 40 on the length/width
ratio.

To speed up the simulations, we implement a sectioning of the
computational grid as described in Komissarov & Lyubarsky (2004).
In each section, which is shaped as a ring, the numerical solution
is advanced using a time-step based on the local Courant condition.
It is twice as large as the time-step of the adjacent inner ring and
twice as small as the time-step of the adjacent outer ring. This
approach is particularly effective for conical flows but less so for
highly collimated, almost cylindrical configurations.

The equations are dimensionalized in the following manner. The
unit of length, L, is such that ηi = 1, where the subscript i refers to
the inlet boundary. The unit of time is T = L/c. The unit of mass
is M = L3B2

0/4πc2, where B0 is the dimensional magnitude of the
η component of magnetic field at the inlet (so the dimensionless
magnitude of Bη̂ at the inlet is

√
4π). In applications, L is the

typical length-scale of the launch region, T is the light crossing time
of that region and B0 is the typical strength of the poloidal magnetic
field at the origin. Note that L does not have to be the size of the
rotating object at the base of the jet and in particular it cannot be
identified with the radius of the black hole event horizon which
allows only inflows. When dimensional estimates are required we
use the expected magnitude of the light cylinder radius, rlc ≡ c/�.
The mass scale M does not represent the mass of the central object
but rather the rest-mass equivalent of the magnetic energy within
the magnetosphere.

3.1 Boundary conditions

3.1.1 Inlet boundary

We treat the inlet boundary, ηi = 1, as a surface of a perfectly
conducting rotator with either a uniform angular velocity � = �0

or with

� = �0

[
1 + a2(ξ/ξj )2 + a3(ξ/ξj )3

]
, (23)
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1186 S. S. Komissarov et al.

where the subscript j refers to the jet boundary (funnel wall). In this
paper we set a2 = 0.778 and a3 = −1.778. The angular velocity
profile is directly related to the distribution of the electric current in
the jet, which for r 
 rlc is given by

I ≈ −1

2
�Bpr

2 (24)

(see Paper I, or equation 34 in Section 5.2). In fact, the current
is driven by the electric field associated with the rotating poloidal
field, and the electric charge conservation requires the circuit to
eventually close. In the case of a constant � the return current flows
over the jet boundary, whereas in the case of differential rotation
with �(ξj ) = 0 it flows mainly inside the jet (within 0.75 < ξ/ξj < 1
for the � distribution given by equation 23). The solid-body rotation
law provides a very good description of the behaviour of magnetic
field lines that thread the horizon of a black hole or the surface of
a magnetized star. This choice is therefore entirely appropriate for
the black hole or magnetar theory of GRB jets. On the other hand,
differential rotation is a natural choice for jets that are launched
from an accretion disc, and although the distribution (23) does not
correspond to a realistic disc model, it should nevertheless capture
the qualitative aspects of such a system.3

The condition of perfect conductivity allows us to fix the az-
imuthal component of the electric field and the η component of the
magnetic field:

Eφ = 0, Bη̂ = B0 at η = ηi . (25)

From the first of these conditions we derive

vξ̂ = vη̂

Bη̂
Bξ̂ (26)

and (using equation 14)

vφ̂ = r� + vη̂

Bη̂
Bφ̂ . (27)

The adopted uniform distribution of Bη̂ is consistent with transverse
mechanical equilibrium at the inlet. We have also experimented with
non-uniform distributions of the magnetic field, in particular with
Bη̂ decreasing with ξ . The results were not significantly different
as the field distribution downstream of the inlet underwent a rapid
rearrangement that restored the transverse force balance.

To have control over the mass flux, the flow at the inlet boundary is
set to be superslow magnetosonic. This means that both the density
and the radial component of the velocity can be prescribed some
fixed values:

ρ = ρ0 , vη̂ = vp0 .

In the simulations we use vp0 = 0.5 c or 0.7 c, which is a choice of
convenience. On one hand, this value is sufficiently small to insure
that the flow at ηi = 1 is sub-Alfvénic and hence that the Alfvén and
fast magnetosonic critical surfaces are located downstream of the
inlet boundary. On the other hand, it is large enough to promote the
rapid establishment of a steady state (in which the outflow speed
remains constant along the symmetry axis). Because of the sub-
Alfvénic nature of the inlet flow, we cannot fix the other components
of the magnetic field and the velocity – they are to be found as part of
the global solution. Following the standard approach we extrapolate

3 Note in this connection that Tchekhovskoy, McKinney & Narayan (2008)
simulated a force-free black hole/disc outflow in which current flowed out
along field lines that threaded the uniformly rotating hole and returned along
field lines attached to the differentially rotating disc.

Table 1. Parameters of simulation models.

Model a Rotation w0/ρ0c2 ξj or θj μmax

A 1 Uniform 1.0 θj = 0.2 560
AW 1 Uniform 1.0 θj = π/2 560
B1 3/2 Uniform 1.0 ξj = 2.0 620
B2 3/2 Uniform 1.0 ξj = 2.0 310

B2H 3/2 Uniform 55 ξj = 2.0 370
B3 3/2 Uniform 1.0 ξj = 2.0 155
B4 3/2 Uniform 1.0 ξj = 2.0 78
B5 3/2 Uniform 1.0 ξj = 2.0 39
C 2 Uniform 1.0 ξj = 2.0 620
D 3/2 Differential 1.0 ξj = 2.0 600
E 2/3 Uniform 1.0 ξj = 0.1 300
F 3.0 Uniform 1.0 ξj = 2.0 540

Bφ̂ and Bξ̂ from the domain into the inlet boundary cells. We then
compute vφ̂ and vξ̂ from equations (26) and (27).

The magnitude of the angular velocity is chosen in such a way that
the Alfvén surface is encountered close to the source. Specifically,
in the case of solid-body rotation the light cylinder radius, rlc, is
�50 per cent larger than the initial jet radius. In the differential
rotation case, the closest point of the Alfvén surface is located at a
distance of � 1 initial jet radius from the inlet surface.

The inlet density varies from model to model in order to cover
a wide range of initial magnetizations. Table 1 gives the key pa-
rameters of all the jet models constructed in this study. Most of the
models, denoted by the letter B, correspond to the wall shape z ∝
r3/2 and differ only by the value of the magnetization parameter: μ

varies from the relatively small value of 39, which is more suitable
to AGN jets (see Paper I), all the way up to 620. Model B2H is
included to study the effects of a high temperature at the source.
The initial effective thermal Lorentz factor in this model is �t0 =
w0/ρ0c2 = 55. Models A and AW have a wall of conical shape. In
model AW the opening half-angle of the cone is 90◦, which allows us
to model the case of an unconfined outflow (which could be relevant
to pulsar winds). The remaining models help to explore the effects
of differential rotation (model D), of various other paraboloidal wall
shapes (z ∝ r2 in model C, z ∝ r3 in model F) and of a wall shape
whose opening angle increases with distance (model E).

3.1.2 Other boundaries

The computational domain is always chosen to be long enough
for the jet to be superfast magnetosonic when it approaches the
outlet boundary η = ηo. This justifies the use of radiative boundary
conditions at this boundary (i.e. we determine the state variables of
the boundary cells via extrapolation of the domain solution).

At the polar axis, ξ = 0, we impose symmetry boundary condi-
tions for the dependent variables that are expected to pass through
zero there,

f (−ξ ) = −f (ξ ) .

These variables include Bξ̂ , Bφ̂, uξ̂ and uφ̂ . For other variables we
impose a ‘zero second derivative’ condition,

∂2f /∂ξ 2 = 0 ,

which means that we use linear interpolation to calculate the values
of these variables in the boundary cells.

We do this in order to improve the numerical representation of
a narrow core that develops in all cases as a result of the magnetic
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Magnetic acceleration of jets 1187

hoop stress. Within this core the gradients in the ξ direction are very
large and the usual zero-gradient condition, f (−ξ ) = f (ξ ), results
in increased numerical diffusion in this region. We have checked
that this has a noticeable effect only on the axial region and that the
global solution does not depend on which of these two conditions
is used.

At the wall boundary, ξ = ξj , we use a reflection condition,

f (ξj + �ξ ) = −f (ξj − �ξ ) ,

for Bξ̂ and uξ̂ and a zero-gradient condition for all other variables.

3.2 Initial set-up

The initial configuration corresponds to a non-rotating, purely
poloidal magnetic field with approximately constant magnetic pres-
sure across the funnel. The plasma density within the funnel is set
to a small value so that the outflow generated at the inlet boundary
can easily sweep it away. In order to speed this process up the η

component of velocity inside the funnel is set equal to 0.7 c, whereas
the ξ component is set equal to zero.

3.3 Grid extensions

The inner rings of the grid, where the grid cells are small and,
therefore, so is also the time-step, are the computationally most
intensive regions of the simulation domain. If we kept computing
these inner rings during the whole run then we would not be able to
advance very far from the jet origin. Fortunately, the transonic nature
of the jet flow allows us to cease computations in the inner region
once the solution there settles to a steady state. To be more precise,
we cut the funnel along the ξ -coordinate surfaces into overlapping
sectors with the intention of computing only within one sector at
any given time, starting with the sector closest to the inlet boundary.
Once the solution in the ‘active’ sector settles to a steady state
we switch to the subsequent sector, located further away from the
inlet. During the switch the solution in the outermost cells of the
active sector is copied into the corresponding inner boundary cells
of the subsequent sector. During the computation within the latter
sector these inner boundary cells are not updated. This procedure is
justified only when the flow in a given sector cannot communicate
with the flow in the preceding sector through hyperbolic waves, and
thus we ensure that the Mach cone of the fast magnetosonic waves
points outward at the sector interfaces (see Paper I).

In these simulations we used up to seven sectors, with each ad-
ditional sector being 10 times longer than the preceding one. This
technique has enabled us to reduce the computation time by more
than three orders of magnitude. Although the grid extension can in
principle be continued indefinitely, there are other factors that limit
how far along the jet one can advance in practice. First, once the
paraboloidal jets become highly collimated the required number of
grid cells along the jet axis increases, and each successive sector
becomes more computationally expensive than the previous one.
Secondly, errors due to numerical diffusion gradually accumulate
in the downstream region of the flow and the solution becomes
progressively less accurate (see Fig. 1).

4 R ESULTS

As is generally the case in numerical simulations, our computations
are subject to numerical errors, mainly the truncation errors of our
RMHD scheme. The field line constants described in Section 2.1 can
be used for a straightforward evaluation of the absolute error. Fig. 1

shows the ideal MHD constants k, � and μ as functions of magnetic
flux at the inlet and near the outer boundary of the computational
domain for models A and B1. If the curves do not exactly coincide,
this is indicative of computational errors. Although the plots exhibit
noticeable deviations, they remain relatively small, and we conclude
that the results are trustworthy.

Figs 2–5 show the general 2D structure of the derived jet solutions
for models A, D, B2 and B2H mid-way from the inlet surface.
We selected these particular cases since they represent the most
significant variations in the model parameters, namely the transition
(i) from conical to paraboloidal shape of the confining wall (A and
B2), (ii) from uniform to differential rotation at the base (A and D)4

and (iii) from cold to initially hot flows (B2 and B2H). In general,
the structure of the simulated ultrarelativistic jets is very similar to
that of the moderately relativistic conical jets studied in Paper I. All
models show the development of a central core where the source-
frame mass density ρ ′ = �ρ peaks. The mass concentration is
accompanied by a bunching-up of the poloidal magnetic field lines
near the axis, as further illustrated in Fig. 6. The development of
an axial core is a generic property of axisymmetric MHD outflows
from a rotating source (e.g. Bogovalov 1995) and was also a feature
of the jets simulated in Paper I.

The distribution of the Lorentz factor across the jet varies from
case to case. In model A � has its maximum value at the jet boundary
(Fig. 2). In model D the maximum is located approximately mid-
way between the symmetry axis and the boundary (Fig. 3). This
reflects the fact that the angular velocity of magnetic field lines,
and hence the electromagnetic energy flux (equation 20), vanishes
at the boundary in this model, resulting in μ ≈ μh ≈ 1 near the
wall (see Fig. 7). The Lorentz factor of the initially cold jet in
model B2 at first peaks near the axis, with its value decreasing
slightly on the way to the jet boundary. However, further down-
stream the maximum shifts towards the boundary and eventually
disappears. In the initially hot jet of model B2H the Lorentz factor
at first peaks right on the symmetry axis, where the acceleration
is due to the by the gas pressure. However, further downstream its
evolution is similar to that of model B2.

Fig. 8 shows the efficiency of plasma acceleration along the
magnetic surface  = 0.8max (located near the jet boundary)
for models B1–B4, which differ only by the strength of the ini-
tial magnetization. One can see that in all four cases the kinetic
energy flux, �μhρupc2 � �ρupc2, eventually exceeds the Poynt-
ing flux, μm ρ up c2. This magnetic surface is not exceptional and
a similar behaviour is exhibited along other flux surfaces. This
is illustrated by Figs 7 and 9. These figures also show that soon
after reaching equipartition the plasma acceleration slows down
significantly: this is consistent with the relation μ ≈ �(1 + σ )
obtained from equations (16), (20) and (19), in which crossing the
equipartition point corresponds to the magnetization parameter σ

dropping below 1. Fig. 8 further indicates that the efficiency of
magnetic acceleration is higher the lower the initial magnetization.
This is reflected in the behaviour of σ , the ratio of the Poynting
flux to the matter energy flux (see Section 2.1). The left-hand panel
of Fig. 10 shows that the fast initial decrease of σ slows down at
a higher value of σ when the initial magnetization is larger. If this
behaviour in fact extends to values of μm0 ≈ μ that are low enough
for the maximum attainable speed to remain non-relativistic then

4 Note that, when displaying results for model D, we define the fiducial light
cylinder radius in terms of the angular velocity �0 of the innermost field
line.
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1188 S. S. Komissarov et al.

Figure 1. Computational errors for models A (top row) and B1 (bottom row). The plots show the flow parameters k(), �() and μ() at the inlet (solid
lines) and at η = 1 × 105 for model A and η = 5 × 107 for model B1 (dashed lines).

Figure 2. Model A. Left-hand panel shows log10 ρ′ (colour), where ρ′ = �ρ is the jet density as measured in the frame of the jet’s source, and the magnetic
field lines. Right-hand panel shows the Lorentz factor (colour) and the current lines. The light cylinder radius is rlc = 0.29.

the indicated inverse correlation is consistent with the very high
acceleration efficiency exhibited by MHD outflow solutions in the
Newtonian regime (e.g. Vlahakis et al. 2000).

The high efficiency of magnetic acceleration is not unique to
models in which the magnetic field lines rotate uniformly. Fig. 7, in

which the results for model B1 are compared with those for model
D, shows that equally effective acceleration is achievable in the case
of a differentially rotating source.

The geometry of the bounding wall has a pronounced effect on
the acceleration efficiency, as demonstrated by Fig. 9. A larger value
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Magnetic acceleration of jets 1189

Figure 3. Same as in Fig. 2, but for model D. The closest to the inlet point of the Alfvén surface has the radius rlc = 1.3.

Figure 4. Same as in Fig. 2, but for model B2. The light cylinder radius is rlc = 1.6.

of the power-law index a in the shape function z ∝ ra corresponds
to a more rapidly rising function �(r/rlc) along a given magnetic
flux surface = const. Whereas in the model B1 (a = 3/2) the
acceleration slows down only after the equipartition point, in model
A (a = 1) this occurs much earlier and, as a result, equipartition
between magnetic and kinetic energy is reached only near the jet
axis. Equipartition is not reached in model C (a = 2) either (see
Fig. 9), but for a different reason. Due to the higher degree of

external collimation, this jet eventually becomes very thin. This
makes our simulation increasingly expensive and we are forced to
terminate it before reaching sufficiently large jet radii. (Moreover,
the computational errors are accumulated over a longer path along
the jet and would become rather high if we continued.) However,
Fig. 9 shows that in this model the Lorentz factor is a faster growing
function of cylindrical radius compared to model B1. Finally, in
model E (a = 2/3) we consider a jet propagating in a channel with
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1190 S. S. Komissarov et al.

Figure 5. Same as in Fig. 2, but for model B2H. The light cylinder radius is rlc = 1.6.

Figure 6. Distribution of the poloidal magnetic field across the jet of model
B1, showing the development of an axial core as the distance from the origin
increases. From top to bottom, the curves correspond to η = 1, 50, 5 × 102,
5 × 103, 5 × 104, 5 × 105, 5 × 106 and 5 × 107, respectively.

a progressively diverging wall, which in practice may correspond
to the polar funnel of a thick accretion disc (e.g. Paczyńsky & Wiita
1980). In this case the jet eventually becomes detached from the wall
and then expands as a conical outflow (Fig. 11). The acceleration
rate is similar to that of model A (see Fig. 12).

The initially hot jet, model B2H, is subject to both magnetic
and thermal acceleration, so, as expected, the Lorentz factor in this
case grows faster compared to the corresponding cold jet (see the
right-hand panel of Fig. 13). But a closer inspection reveals that the
acceleration process exhibits a new mode of behaviour in this case
(one that was, however, found before in semi-analytic self-similar

solutions; see Vlahakis & Königl 2003b). It is seen that a significant
fraction of thermal energy is at first converted into Poynting flux.
The middle panel of Fig. 13 shows that the Poynting-to-mass flux
ratio μm c2 grows until r � 102rlc and only then starts to decline.
However, this decrease is quite fast and the terminal value of μm for
the chosen magnetic flux surface ( = 0.5max) is, in fact, lower
than in the corresponding cold jet (model B2) shown in the left-
hand panel of this figure, with a correspondingly higher asymptotic
Lorentz factor.

The distribution of the terminal bulk Lorentz factor across these
two jet models is shown in right-hand panel of Fig. 13. One can
see that on the axis the Lorentz factor of the hot jet is higher than
that of the cold jet by approximately the value of the initial thermal
Lorentz factor, �t0 = 55. This is as expected given that magnetic
acceleration does not operate along the axis. However, at the wall
the difference is only half as large and in the middle of the jet it
is higher than 40. These traits are evidently a consequence of the
thermal-to-Poynting energy conversion and its effect on the poloidal
magnetic field distribution, as discussed in Section 5.5.

Although the case of an unconfined wind may not be directly
relevant to GRB flows, which are inferred to undergo a fairly ef-
ficient collimation (see Section 1), it is certainly of interest to the
pulsar community. Furthermore, it is worth investigating from a
purely theoretical point of view. The acceleration details for this
case (model AW) are presented in Fig. 14. The lower efficiency
of magnetic acceleration noted in the conical-wall case (model A),
particularly near the jet boundary, is even more pronounced in this
instance. As can be seen in the right-hand panel of Fig. 14, only
�5 per cent of the Poynting flux injected at �12◦ to the equatorial
direction has been converted into kinetic energy by the time the
cylindrical radius grew to r = 106rlc. Although, as shown in the
left-hand panel of Fig. 14, the efficiency is higher near the symme-
try axis, the terminal Lorentz factor there remains comparatively
low because of the reduced effectiveness of magnetic acceleration
as the polar angle approaches zero.
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Magnetic acceleration of jets 1191

Figure 7. Distribution of � and μm = μhσ across the jet in models B1 (left-hand panel) and D (right-hand panel). Solid lines show � at η = 5 × 104, 5 ×
105, 5 × 106, 5 × 107 (increasing upward), dashed lines show μhσ at the same locations (increasing downward), and the dash–dotted line shows μ.

Figure 8. � (solid line), μm = μhσ (dashed line) and μ (dash–dotted line) along the magnetic field line with  = 0.8max as a function of cylindrical radius
for models B1 (top left-hand panel), B2 (top right-hand panel), B3 (bottom left-hand panel) and B4 (bottom right-hand panel).
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1192 S. S. Komissarov et al.

Figure 9. � (increasing functions of r) and μm = μhσ (decreasing functions of r) along the magnetic field lines  = 0.8max (solid lines),  = 0.5max

(dashed lines) and  = 0.2max (dash–dotted lines) in models A (left-hand panel), B1 (middle panel) and C (right-hand panel).

Figure 10. Left-hand panel: Evolution of σ along the magnetic field line  = 0.8max in models B1 (solid line), B2 (dashed line), B3 (dash–dotted line),
B4 (dotted line) and B5 (dash–triple dotted line). Right-hand panel: Evolution of the bunching function S = πBpr

2/ for the same models along the same
magnetic field line.

5 A NA LY SIS O F THE RESULTS

5.1 The MHD acceleration mechanism

The steady state structure of a magnetized relativistic outflow can
be understood by analysing the momentum equation. After the par-
tial integration described in Section 2.1, two more equations remain
to be considered, corresponding to the two components of the mo-
mentum equation in the poloidal plane. Since the main part of the
acceleration occurs in the super-Alfvénic region of the flow, it is
sufficient to examine only this regime. We further simplify the dis-
cussion by taking the flow to be cold. Thermal effects, when present,
in any case only affect the initial acceleration region of the flow; we
consider them in Section 5.5. We now proceed to extend the dis-
cussion in Paper I by taking the � 
 1 of the constituent equations,
appropriate for the ultrarelativistic flows simulated in this paper,
which enables us to derive analytic scalings.

For cold flows μh ≈ � (equation 19), and from equation (16)
one finds that � ≈ μ − μm. Substituting the electric current from

equation (24) into equation (20), we get

μm ≈ �2

4π2kc3
S , (28)

where

S = πr2Bp∫
Bp ·dS

= πr2Bp


= r|∇|

2
. (29)

Thus, the flow Lorentz factor can be written as

� ≈ μ − �2

4π2kc3
S . (30)

All the quantities except for S on the right-hand side of this equa-
tion are field line constants, so an increase in � along a field line
necessarily requires S to decrease. The function S is a measure
of how bunched the poloidal field lines are – indeed, it is equal to
the ratio of Bp at some cylindrical radius r along the field line to
the mean magnetic field within that radius, /πr2. For example,
for a flow confined within a sufficiently small angle that satisfies
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Magnetic acceleration of jets 1193

Figure 11. Colour image shows log 10 ptot (with the total pressure given
by ptot = p + B2

co/8π, where Bco is the comoving magnetic field) and the
contours show the magnetic field lines for model E. In this model the light
cylinder radius is rlc = 0.29.

Figure 12. Lorentz factor along the magnetic field line with  = 0.5max

for model A (solid line) and model E (dashed line).

Bp ∝ rλ,  ∝ rλ+2 and

S = λ + 2

2
.

For a uniform distribution of Bp this yields S = 1, whereas one
has S > 1 if Bp increases with r and S < 1 if it decreases. This
shows that magnetic acceleration requires a gradual concentration
of magnetic flux in the central part of the flow. In the case of a
collimating flow this can be achieved through a faster collimation

of the inner magnetic flux surfaces than of the outer ones, and in the
case of a decollimating flow a faster decollimation of the outer flux
surfaces is required. Fig. 6 illustrates the concentration of magnetic
flux towards the axis in one of our simulations. In this case, at large
distances the poloidal magnetic field scales roughly as Bp ∝ r−1.2,
corresponding to S∞ ∼ 0.4. This is indeed the asymptotic value of
S, as shown in Fig. 15.

Equation (30) is a consequence of the momentum equation along
the flow. It shows how � increases by the action of the (1/c) J p × Bφ

force when the function S decreases along the flow, thereby demon-
strating the intimate connection between the acceleration efficiency
and the evolution of the poloidal shape of the flow. In evaluating
this efficiency we can use Sf , the value of S at the fast surface, as
a convenient proxy for the initial value of S. This is because, for
μ 
 1, � remains �μ on this surface (e.g. Komissarov 2004). In
this case the two terms on the right-hand side of equation (30) are
comparable, and we obtain

Sf = 4π2kμc3

�2
.

We can legitimately use equation (30) since the fast surface lies well
outside the light cylinder and hence is in the super-Alfvénic domain
for most of the simulated field lines. We now utilize this equation to
write the asymptotic Lorentz factor in the form

�∞ ≈ μ(1 − S∞/Sf ) . (31)

In our simulations Sf ≈ 0.9 (see Figs 10 and 15). This value re-
flects the adopted uniform distribution of Bη̂ at the inlet.5 Beyond
the Alfvén surface the azimuthal magnetic field component becomes
dominant, and its hoop stress causes the inner flux surfaces to col-
limate faster than the outer ones. As a result S decreases, attaining
asymptotic values S∞ ≈ 0.25–0.4 for paraboloidal jets (see Figs 10
and 15).

The implied asymptotic Lorentz factors thus satisfy

�∞/μ ≈ 0.55 − 0.72 ,

which are indeed the values reached by our simulated flows (see
Figs 7–9). This result indicates that �50 per cent of the initial
Poynting flux is converted into kinetic energy of bulk motion (see
also Vlahakis 2004b). The significantly lower efficiency found in
our simulations of flows inside conical and diverging funnels, down
to 25 per cent near the boundary (models A and E), is most likely due
to the loss of causal connection across the flow (see Section 5.4).

5.2 Spatial evolution of the Lorentz factor

5.2.1 Trans-field equation

The asymptotic form of the trans-field component of the momentum
equation in the highly relativistic limit is

�2r

R ≈
(

2I

�Bpr2

)2
r∇ln

∣∣ I

�

∣∣· ∇

|∇|

1 + w

ρc2
4πρu2

p

B2
p

r2
lc

r2

− �2 r2
lc

r2

∇r ·∇

|∇| , (32)

where R is the curvature radius of poloidal field lines (see equa-
tion 16 and related discussion in Vlahakis 2004a). The three terms
of this equation are the poloidal curvature term (left-hand side),

5 As we already in Section 3.1.1, we have experimented with other distribu-
tions that put more flux near the axis and observed a quick ‘uniformization’
of magnetic flux in the immediate vicinity of the inlet under the action of
magnetic pressure.
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1194 S. S. Komissarov et al.

Figure 13. Effects of thermal acceleration. Left-hand panel: cold jet of model B2. Middle panel: hot jet of model B2H (with w0/ρ0c2 = 55). The lines show
� (solid line), μ (dash–dotted line), μm = μhσ (dashed line) and (w/ρc2 − 1)� (dotted line) along the magnetic field line with  = 0.5max as a function
of cylindrical radius. Right-hand panel: Lorentz factor across the jet at η = 4 × 106rlc for the cold jet of model B2 (solid line) and the hot jet of model B2H
(dashed line).

Figure 14. Unconfined wind solution (model AW). Left-hand panel: Lorentz factor (increasing function) and μhσ (decreasing function) along five different
magnetic field lines:  = 0.8max (solid line),  = 0.5max (dashed line),  = 0.2max (dash–dotted line),  = 0.1max (dotted line),  = 0.027max

(dash–triple dotted line), the last line originating from the same point at the inlet as the  = 0.8max line of model A. Right-hand panel: � (solid line), μhσ

(dashed line) and μ (dash–dotted line) along the magnetic field line with  = 0.8max as a function of cylindrical radius.

the electromagnetic term (first on the right-hand side), which is
of the order of 1, and the centrifugal term (second on the right-
hand side). This important equation, with the centrifugal term omit-
ted, was derived by Chiueh, Li & Begelman (1991), Lyubarsky &
Eichler (2001) and Okamoto (2002), while Bogovalov (1995), Be-
skin & Malyshkin (2000) and Tomimatsu & Takahashi (2003) de-
rived the same equation with the centrifugal term included but the
poloidal curvature term omitted.

Well outside the light cylinder, where r� 
 vφ̂ and v � c,
equations (26) and (27) imply

rBφ̂ = −1

c
�Bpr

2 . (33)

From this equation and equation (18) one finds that

I = −1

2
�Bpr

2, (34)

where Bp is the magnitude of the poloidal magnetic field. Substitut-
ing this result into equation (20) one also finds that

μm = 1

4π

r2

r2
lc

B2
p �

ρu2
p

. (35)

Thus, in this regime one can rewrite equation (32) as

�2r

R ≈
r∇ln

∣∣ I

�

∣∣· ∇

|∇|
1 + μh

μm

− �2 r2
lc

r2

∇r ·∇

|∇| . (36)

In the magnetically dominated case, where μm 
 μh, order-of-
magnitude evaluation of the last two terms in this equation gives
the useful result

�2r

R ≈ 1 − �2 r2
lc

r2
. (37)
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Magnetic acceleration of jets 1195

Figure 15. Evolution of the function S = πBpr
2/ along the magnetic

field line with  = 0.5max in models A (solid line), B1 (dashed line),
C (dash–dotted line) and D (dotted line).

5.2.2 General classification of acceleration regimes

Depending on which term in equation (32) can be neglected, we can
isolate the following three cases (ordered by increasing importance).

(i) Ballistic regime: If the electromagnetic part is negligible then
the shape of the flow is determined by the centrifugal term, resulting
in a hyperbolic line shape, a characteristic of ballistic motion (see
equation 20 and related discussion in Vlahakis 2004a; see also
Sections 5.3.1 and A1.3). None of the end states of our simulations
has this property.

(ii) Linear acceleration regime: If the poloidal curvature term is
negligible, the electromagnetic and centrifugal terms balance each
other. This is the case very close to the rotation axis (inside the
cylindrical core) as well as for a quasi-conical flow like our model
A and for paraboloidal flows with a > 2 as in our model F (see
Section 5.3). This regime also generally applies during the initial
acceleration phase of paraboloidal flows, including those with 1 <

a < 2, as discussed in Section 5.2.3. In this case equation (37) gives

� ≈ r

rlc
. (38)

Figure 16. The exponent b of the poloidal shape function z ∝ rb for models A (left-hand panel), B2 (middle panel) and B2H (right-hand panel) across the
jet. For model A the depicted cross-sections are at R = 10 (solid line), R = 102 (dashed line), R = 103 (dash–dotted line), R = 104 (dotted line) and R = 105

(dash–triple dotted line). For models B2 and B2H the plotted cross-sections are at η = 5 × 102 (thin solid line), η = 5 × 103 (dashed line), η = 5 × 104

(dash–dotted line), η = 5 × 105 (dotted line), η = 5 × 106 (dash–triple dotted line) and η = 5 × 107 (thick solid line).

Following different methods, this linear acceleration regime was
found by Contopoulos & Kazanas (2002), who analysed radial
force-free flows beyond the light cylinder (and hence their analysis
holds in the regime between the Alfvén and the fast magnetosonic
surfaces), and by Beskin, Kuznetsova & Rafikov (1998), who per-
turbed a quasi-conical flow (and found that � ≈ r/rlc applies in the
subfast magnetosonic regime). Our results for models A and F agree
with the scaling � ≈ r/rlc; see the top left-hand panel of Fig. 17.

(iii) Power-law acceleration regime: If the centrifugal term is
negligible then the shape of the flow is determined by the electro-
magnetic force. This regime applies to the case of paraboloidal wall
with a ≤ 2 (see Section 5.3). Equation (37) implies that in this case

�2 ≈ R/r . (39)

We now investigate this regime in greater detail. We consider field
lines of the form z ∝ rb, which provide a good description of the
characteristic shapes of the magnetic flux surfaces in our models.
(In what follows we use the superscript b to indicate the power-law
index that describes the shape of given magnetic field lines, whereas
the superscript a is reserved for the power-law index that gives the
shape of the funnel wall in our numerical models. Note that the
interior field lines in these models have b that is slightly larger than
a, although b → a as the wall is approached; see Fig. 16.) The
curvature radius of such lines satisfies

r

R = −r

(
Bz

Bp

)3
∂2r

∂z2
≈ b − 1

b2

(
r

z

)2

, (40)

where the final form is valid when Bp ≈ Bz. Combining this with
equation (39) we get

� ∼ b√
b − 1

z

r
∝ rb−1 ∝ z(b−1)/b (41)

(see also Vlahakis & Königl 2003b), which applies when the power-
law index lies in the range 1 < b ≤ 2 and shows that the spatial
growth of the Lorentz factor is also a power law in this case (in
either r or z). Assuming that the flow is not too collimated within
the light cylinder, so that zlc � rlc for most of the field lines (an
assumption that is well satisfied in our numerical models), we can
write the above result in the following useful forms:

� � (r/rlc)
b−1 or � � (R/rlc)

(b−1)/b. (42)

This acceleration regime operates in our 1 < a ≤ 2 numerical
models before the flow reaches approximate equipartition, as can
be verified by inspecting Figs 17 and 18.
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1196 S. S. Komissarov et al.

Figure 17. Lorentz factor along three different magnetic field lines of models A (top left-hand panel), B1 (top right-hand panel), C (middle left-hand panel),
D (middle right-hand panel), F (bottom left-hand panel) and B2H (bottom right-hand panel) as a function of the cylindrical radius r. Solid line:  = 0.8max;
dashed line:  = 0.5max; dash–dotted line:  = 0.2max.

The direct dependence of the flow acceleration on the poloidal
curvature of the magnetic field lines in the regime (iii) leads to an
inverse correlation between the jet Lorentz factor and its opening
angle. For a line shape z ∝ rb (1 < b ≤ 2) we find

� tan θv = 1/
√

b − 1 , (43)

where θv ≡ arctan(dr/dz) is the local opening half-angle of the
magnetic flux surface. Fig. 19 shows the variation of � tan θ v along

the flux surface  = 0.8max of model B1. One can see that this
product is indeed close to 1/

√
b − 1. It is, however, not exactly

a constant, for the following reasons: the power-law acceleration
regime is not really applicable at small and large spherical radii,
the electromagnetic term in equation (32) is not exactly equal to 1,
and the power-law index b varies along the flow. The figure nev-
ertheless indicates that equation (43) provides a useful estimate of
the relationship between � and θ v. We note in this connection that
this relation can also be derived without explicitly specifying the
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Figure 18. Lorentz factor along three different magnetic field lines of models A (top left-hand panel), B1 (top right-hand panel), C (middle left-hand panel),
D (middle right-hand panel), F (bottom left-hand panel) and B2H (bottom right-hand panel) as a function of the spherical radius R. Solid line:  = 0.8max;
dashed line:  = 0.5max; dash–dotted line:  = 0.2max.

shape of the poloidal field lines.6 These arguments demonstrate that
the inverse proportionality between � and θ v is a general prop-

6 To see this, note that, when the flow is superfast magnetosonic, the Mach
half-angle is given by equation (61), which can be written as θv/θm � θv �

(�/μ)1/2. Causality requires this ratio to be ≤ 1, implying θv � ≤ (μ/�)1/2.
Efficient conversion of magnetic to kinetic energy results in � becoming a
significant fraction of μ, and hence the right-hand side of the above relation
is ∼1. (For example, if the flow reaches equipartition so that � ≈ μ/2, the
right-hand side becomes

√
2.) This shows that θv � � 1 by the end of the

energy conversion phase, which in turn implies that the opening half-angle
θv of an MHD flow can be significantly larger than 1/� only if the flow
remains Poynting dominated.

erty of magnetically accelerated outflows that undergo an efficient
magnetic-to-kinetic energy conversion.

5.2.3 Transition between linear and power-law regimes

Equation (37) can be rewritten as

1

�2
= r2

lc

r2
+ r

R ⇔ � � min

{
r

rlc
,

√
R
r

}
, (44)

or, in cases with b ≥ 1,

1

�2
= r2

lc

r2
+ b − 1

b2

r2

z2
⇔ � � min

{
r

rlc
,

brb−1zlc√
b − 1rb

lc

}
, (45)
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1198 S. S. Komissarov et al.

Figure 19. Left-hand panel: variation of � tan θv along the flux surface  = 0.8max of model B1. Right-hand panel: the diamonds show the equipartition
radius (where the Poynting and kinetic energy fluxes are equal) along  = 0.8max as a function of the magnetization parameter μ for models B1–B5. The
solid line shows the function log 10(r/rlc) = 2 log 10(μ/2).

which combines both the scalings (38) and (41). This was shown
in Tchekhovskoy et al. (2008) in the case of magnetodynamic jets,
for which � corresponds to the E × B drift velocity, but it is
an exact result also in the more general MHD case, for which �

represents the actual Lorentz factor of the bulk flow. Using the
relation B2

co = B2 − E2 ≈ (Bφ̂)2/�2 (see e.g. equation 13 in
Vlahakis 2004a) and (Bφ̂)2 ≈ (r2/r2

lc)B
2
p (see equation 33), we can

write

1

�2
≈ B2

p

(Bφ̂)2
+ (Bφ̂)2 − E2

(Bφ̂)2
≈ r2

lc

r2
+ (Bφ̂)2 − E2

(Bφ̂)2
. (46)

Thus, the linear acceleration regime � ∝ r corresponds to B2
p 


(Bφ̂)2 − E2 and B2
co ≈ B2

p, whereas the power-law scaling � ∝ rb−1

corresponds to (Bφ̂)2 − E2 
 B2
p and B2

co ≈ (Bφ̂)2 − E2. As was
found in Tchekhovskoy et al. (2008), both cases may coexist in
different parts of the same outflow, with the regime � ∝ r holding
for distances up to some transition radius rtr and the behaviour � ∝
rb−1 taking over at r > rtr, where

rtr

rlc
=

(
b√

b − 1

zlc

rlc

)1/(2−b)

. (47)

In our simulated uniform-rotation flows (which have a cylindrical
light surface) the ratio rtr/rlc cannot be 
 1 except for field lines
close to the rotation axis. Since the integral of motion μ increases
linearly with  (see Fig. 1), its value near the axis remains small.
As a result, we do not clearly observe the linear acceleration phase
in the parts of the flow that reach high Lorentz factors. However,
one can discern this phase in the solution curves of model B1 (top
right-hand panel of Figs 17 and 18) for small values of .7 On the
other hand, in the simulated differentially rotating case (model D)
the integral μ increases faster with  near the axis (see the top row
in fig. 4 of Paper I) and the values of rtr/rlc become large enough to
make the linear acceleration regime clearly noticeable. For example,
along the field line corresponding to  = 0.2 max in this model (see

7 The line shape z = zlc(r/rlc)b with rlc = c/� implies zlc/rlc = (zi/ri) (c/ri

�)b−1, where the subscript i denotes the inlet boundary. One can therefore
increase the size of the linear acceleration zone by increasing the factor
zlc/rlc that appears in the expression (47) for the transition radius, e.g. by
decreasing the normalized value of �0 so as to move the inlet boundary
away from the light surface.

the middle right-hand panel of Fig. 17) the Lorentz factor changes
from � ∝ r to � ∝ r1/2 at rtr/rlc ∼ 10. Fig. 20 confirms that around
this location the (Bφ̂)2 − E2 part of B2

co begins to dominate the B2
p

part.

5.2.4 Acceleration efficiency

As expected from our discussion in Section 5.1 of the close con-
nection between the acceleration efficiency and the evolution of
the poloidal field line shape, the trans-field force balance equation,
which determines the variation of the flux-surface shape along the
flow, is seen to provide information on how fast the Lorentz factor
increases with distance from the source. For all shape functions
z ∝ rb with 1 < b ≤ 2, the corresponding power-law dependence
of � leads to a high (�50 per cent) magnetic-to-kinetic energy
conversion efficiency over astrophysically relevant distances. Us-
ing equation (42) we find that equipartition between the Poynting
and kinetic energy fluxes is attained at a cylindrical radius

req = r0

(
μ

2�0

)1/(b−1)

. (48)

After substitution r0 = rlc and �0 = 1, this equation reads

req = rlc

(μ

2

)1/(b−1)
, (49)

which, in fact, agrees very well with our results for models B (see
Fig. 19). In terms of the spherical radius, assuming again that Rlc �
rlc, we can write this expression as

Req = rlc

(μ

2

)b/(b−1)
. (50)

For b > 2 the corresponding relations are (using equation 38) req =
(μ/2) rlc and Req = (μ/2)brlc.

The derived scaling for the Lorentz factor can be used to find the
behaviour of other quantities. For example, for the main part of the
flow in which the Poynting flux dominates the energy flux, one has
σ � ≈ μ and hence, for 1 < b ≤ 2,

σ ≈ μ/� ∝ r/z ∝ r−(b−1) . (51)

The predicted behaviour is indeed seen in the left-hand panel of
Fig. 10. This figure further shows that the ‘self-similar’ structure
of the magnetization curves extends also beyond the equipartition
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Figure 20. The quantities log10[(Bφ̂ )2 − E2]1/2 (solid line) and log10Bp

(dashed line) along the flux surface  = 0.2max of model D.

radius, where they flatten out; in particular, they do not cross each
other even in that regime. Consequently, the magnetization beyond
the turning point of the curve is lower the smaller the inlet value,
which goes along with our finding that the efficiency ∼1/(1 + σ∞)
of magnetic-to-kinetic energy conversion in cold flows decreases
with increasing initial magnetization.

The high acceleration efficiencies attained by our simulated flows
appear to be inconsistent with the conclusion of Chiueh, Li &
Begelman (1998) that a transition to a low-σ configuration can-
not occur gradually in regions well beyond the light cylinder, where
the flow has become ultrarelativistic. Their analysis was, however,
based in part on an estimate of the change in the angle θ v be-
tween the poloidal flow and the rotation axis as one moves through
a length �� along the flow (see text after equation 14 in their
paper): this estimate is not generally valid since it assumes that
�� ∼ �r, which only applies to quasi-radial flows. If instead we
use �� ∼ �z in equation (14) of Chiueh et al. (1998) and concen-
trate on paraboloidal flows (z ∝ rb) with b ≤ 2, we get �θ v ∼ �(z/r)
b/�2 (b − 1), which yields the scaling � ∝ z/r found above. On
the other hand, the lower acceleration efficiency exhibited by our
model A, in which the flow morphology is quasi-radial (see Figs 2,
9 and 15), appears to be consistent with the Chiueh et al. (1998)
inference of logarithmic collimation and slower acceleration. We
note in this connection that, beyond the end of the power-law accel-
eration phase analysed in this subsection, it is possible to have an
additional, logarithmic acceleration regime in which potentially up
to 100 per cent of the Poynting flux could be converted into matter
kinetic energy flux (see Vlahakis 2004a and references therein).
However, this acceleration is too slow to be of astrophysical interest
since it requires exponentially large distances for completion.

5.3 Dependence on the external pressure distribution

Although we have chosen, for numerical convenience, to prescribe
the shape of the funnels that guide our simulated flows, in reality
the boundary shape of pressure-confined flows will be determined
by the ambient pressure distribution, pext, and we expect a one-
to-one correspondence between the shape of the boundary and the
parameters of the confining medium, enforced through the pressure-
balance condition at the boundary, pint = pext. Here we analyse this
issue for the asymptotic region of a magnetically accelerated flow,
where the internal jet pressure, pint, is dominated by the contribution

due to the azimuthal component of magnetic field, pint = p +
B2

co/8π � (Bφ̂)2/8π�2. Thus,

�−2 = 8πpext

(Bφ̂)2
.

In the following we assume that the external pressure distribution
is a power law

pext = pext,lc(z/zlc)−α ,

which is consistent with the funnel shape z ∝ ra adopted in our
numerical simulations. Moreover, since μm ∝ I ∝ rBφ̂ (see equa-
tions 18 and 20) is a weak function of distance, we may assume that

at the jet boundary Bφ̂ = B
φ̂

lc(r/rlc)−1. Then we have

�−2 = Cx2Z−α , (52)

where x ≡ r/rlc and Z ≡ z/rlc are the dimensionless coordinates of
the jet boundary and

C =
(

8πpext

B2
φ̂

)
lc

(
zlc

rlc

)α

= (zlc/rlc)α

�2
lc

. (53)

It is easy to see that C is a positive dimensionless constant of
the order of 1. Provided that dr/dz � 1 we can approximate the
curvature radius of the jet boundary via

R−1 ≈ −d2r

dz2
= − 1

rlc

d2x

dZ2
(54)

and rewrite equation (37) as

x
d2x

dZ2
+ 1

�2
− 1

x2
≈ 0 . (55)

After the substitution of � from equation (52) this yields an ordinary
differential equation for the jet boundary

d2x

dZ2
+ C

x

Zα
− 1

x3
= 0 . (56)

The first term on the left-hand side of equation (56) represents the
effect of poloidal curvature, the second is the electromagnetic term
and the third is the centrifugal term.

Equation (56) can be solved in closed form in various limits,
as described in Appendix A. Here we simplify the discussion by
looking for almost power-law solutions

x = K−1Z1/a , (57)

with K being positive constants and a varying very slowly. Substi-
tuting this ansatz into equation (56) and ignoring all terms including
derivatives of a, we obtain

1

a

(
1

a
− 1

)
+ CZ2−α − K4Z2−4/a = 0 . (58)

We now proceed to analyse this equation for different values of the
exponent α.

5.3.1 α > 2

In this case the second term on the left-hand side of equation (58)
vanishes as Z → ∞ and the only acceptable asymptotic value of
a is unity. Indeed, for a > 2 the third term diverges, for a = 2 it is
constant but negative and so is the first term, for a < 2 it vanishes
and so must the first one, implying a → 1. Thus, asymptotically the
boundary adopts conical shape.

(i) When α < 4 the electromagnetic term of equation (58) dom-
inates over the centrifugal term, and thus a → 1+ (since the first
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term must be negative in order to cancel the second). The bound-
ary shape is therefore paraboloidal (with conical asymptotes). An
explicit solution of equation (56) in this limit is given in Appendix
A.

(ii) When α > 4 the centrifugal term dominates over the elec-
tromagnetic term in equation (58) and thus a → 1− (since the first
term must be positive in order to cancel the third). This is case (i) of
our analysis of equation (36), which corresponds to a hyperboloidal
shape (with conical asymptotes), as demonstrated in Appendix A
through an explicit solution of equation (56) in this limit.

(iii) When α = 4 one can obtain a solution that is conical (a =
1) from the start, with K4 = C. This solution corresponds to our
conical model A during the acceleration phase, when � ∝ r (see
equation 38). Fig. 21 verifies the predicted scaling (pext ∝ Z−4) and
also shows that, after the growth of � saturates, a conical shape
can be maintained only if the ambient pressure scales as z−2, which
follows directly from the scaling pint ∝ �−2 r−2 discussed at the
beginning of this subsection.

In summary, for α > 2 the boundary does not simply adjust to
the ambient pressure profile but instead asymptotes to a conical
shape. This result is consistent with the expectation that in this case
the transverse expansion time of the jet becomes shorter than the
propagation time of magnetosonic waves across the flow, leading to
a loss of causal connectivity and hence to a ‘free’ ballistic expansion
in a cone (Begelman, Blandford & Rees 1984; see also Section 5.4).
This is essentially the behaviour exhibited by our Model E (see
Fig. 11).

5.3.2 α = 2

In this case the second term on the left-hand side of equation (58)
is a positive constant. This implies that 1 < a ≤ 2. (Indeed, for
a > 2, the third term diverges and hence is unbalanced; for a ≤ 1
it vanishes, but then the first term is non-negative and hence cannot
balance the second one.) We can distinguish between the following
two cases:

(i) a = 2 – the power-law solution with K4 = C − 1/4 is exact.
This implies C > 1/4.

Figure 21. Evolution of total pressure along the jet boundary in models A
(solid line), B1 (dashed line), C (dash–dotted line), D (dotted line) and F
(dash–double dotted line).

(ii) 1 < a < 2 – the third term becomes negligible at large Z and
balancing of the first two terms requires a → 2/(1 + √

1 − 4C).
This implies C ≤ 1/4.

In other words, for C < 1/4 the centrifugal term is negligible and
the resulting shape is Z = (zlc/rlc)x2/(1+√

1−4C), whereas for C >

1/4 the centrifugal term is comparable to the other two terms and
the solution is Z = √

C − 1/4x2. Fig. 21 verifies that the confining
pressure in our simulated flows scales as Z−2 irrespective of the
precise value of a so long as the shape exponent lies in the range
1 < a ≤ 2. The figure also corroborates the prediction that the Z−2

scaling is attained only gradually when a < 2 (models B and D,
corresponding to a = 3/2) but that it is present almost from the start
when a = 2 (model C).

As shown in Appendix A, the asymptotic solution for C = 1/4 is
x = Z1/2 (C1 + C2 ln Z), where C1 and C2 �= 0 are constants. (We
kept the constant C1 to accommodate the possibility that the solution
extends all the way down to the light cylinder radius, where Z ≈ 1.)
This solution is similar to the C < 1/4 solutions of equation (56) in
having a negligible centrifugal contribution.

Although all the funnel shapes whose power-law indices lie in
the range 1 < a ≤ 2 correspond to a single exponent (α = 2) of
the confining pressure distribution, there is nevertheless a one-to-
one match between a given pressure distribution and the resultant
funnel shape. This is because both the power-law index α and
the magnitude of the confining pressure (as expressed in relation
to the internal magnetic pressure at the light cylinder radius by
the parameter C; see equation 53) play a role in determining the
functional form of the boundary: when C < 1/4 the magnitude of
C fixes the exponent of the boundary paraboloid, whereas when
C > 1/4 it fixes the normalization constant K. The parameter C is
evaluated at the effective base of the asymptotic region of the flow
and it conveys physical properties (e.g. zlc and �lc; see equation 53)
imprinted on the outflow before it reaches the asymptotic regime.
Thus, the asymptotic shape of a jet propagating through a power-
law pressure distribution is determined both by the exponent of that
distribution and by the evolution of the outflow before entering the
asymptotic region.

5.3.3 α < 2

In this case the second term on the left-hand side of equation (58)
diverges as Z → ∞. To balance this term, the third term must also
diverge in this limit, which implies that a = 4/α > 2 and C = K4.
Thus, the jet shape is paraboloidal, Z = C1/αx4/α . Like in the α =
2 case, both the parameters α and C are needed to uniquely fix the
functional form of the jet shape. For α = 4/3 we have a = 3, the
funnel shape index of our numerical model F. Fig. 21 verifies that
the boundary pressure for this model indeed scales as Z−4/3.

We can collect the results derived in this subsection into a concise
description of the correspondence between the exponent α of the
ambient pressure distribution and the exponent a of the asymptotic
jet shape:

(i) α < 2 ⇔ a = 4/α > 2 ,
(ii) α = 2 ⇔ 1 < a ≤ 2 ,
(iii) α > 2 ⇔ a = 1.

Similar results for the behaviour of the ambient pressure in a con-
fined jet (α ≤ 2) were found by Tchekhovskoy et al. (2008) in the
force-free limit, which is consistent with the fact that our expres-
sions for the spatial profile of � were obtained in effectively the
same approximation.
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As we have seen, α = 2 leads to the asymptotic balance be-
tween the electromagnetic and poloidal curvature forces (regime
iii) whereas α < 2 leads to the balance between the electromagnetic
and centrifugal forces (regime ii; see Section 5.2). These regimes
are characterized by different evolution of many flow parameters,
which may have observable consequences (see also Section 6). For
example, in regime (ii) the product � tan θ v is predicted to be a
constant O(1) in the acceleration region, whereas in regime (iii) it is
expected to decrease with distance as Z−(1−2/b), with b being slightly
larger than a due to the stronger collimation of the flow inside the
jet. The evolution of the Lorentz factor in regime (ii) is given by
� ∝ r (equation 38) rather than by the � ∝ rb−1 scaling of regime
(iii). However, in practice this may not translate into a significant
difference in how fast the jet accelerates (for example, � ≈ z1/3 for
both the α = 4/3 and α = 2, b = 3/2 cases).

After the end of the acceleration the internal pressure scales as
r−2 (since � = �∞= const). If the external pressure continues to
decline as z−α , the pressure balance implies that the radial coordinate
r increases faster compared to its variation during the acceleration.
The new flow shape is Z = C1/α �2/α

∞ x2/α as a result of equation (52).
For example, in the cases α = 2, 1 < a < 2, the flow becomes radial
and the opening angle of the jet remains constant. The quantity �

tan θ v is also constant and equal to C−1/2 = a/
√

a − 1 (using the
relation between C and a, see Section 5.3.2). Thus, � tan θ v is a
times larger compared to its value during the acceleration phase
(see equation 43).8

5.4 Magnetic acceleration and causality

We have found that the acceleration efficiency is smaller when
the wall has a conical shape (model A) than in the cases when
its shape is paraboloidal (see Fig. 9). In the conical-wall case the
flow attains equipartition only along field lines that are close to the
rotation axis ( ≤ 0.2max). In accordance with our discussion in
Section 5.1, the variation in the acceleration efficiency is tied to the
difference in the degree of the collimation across the outflow, as
seen in Fig. 16. Only for small values of  does the exponent b
become significantly larger than 1, corresponding to the innermost
field lines bending towards the rotation axis, which implies that the
bunching functionS decreases along this portion of the outflow. The
paraxial bunching of the field lines could be expected to promote
collimation also in the outer region of the jet. However, for this to
occur, the inner region must be able to communicate (through the
propagation of fast magnetosonic waves) with the outer parts of
the flow on the dynamical (radial expansion) time-scale. A similar
argument implies that, in order for the collimation induced by the
paraboloidal shape of the outer wall to have an effect on the shape
of the inner field lines, there again must exists causal connectivity
across the jet. A related discussion of this issue can be found in
Zakamska, Begelman & Blandford (2008).9

8 The change of this quantity is smooth and happens as the function �(Z)
changes from a power law to a constant. Equation (52), written as x =
C−1/2Zα/2[�(Z)]−1, gives � tan θv = �dx/dZ = C−1/2 (α/2 −dln �/dln Z)
Zα/2−1. In the cases with α = 2, 1 < a < 2 the slope d ln �/d ln Z changes
from 1 − 1/a during the main part of the acceleration phase (see equa-
tion 41) to zero after it ends. As a result, � tan θv changes from 1/

√
a − 1

to a/
√

a − 1.
9 Note that the simpler flow structure assumed in that paper excludes the
possibility of magnetic acceleration. In particular, the assumption of zero
azimuthal speed implies that the current I is a constant of motion (see equa-
tion 15), which in turn means that μm remains constant (see equation 20).

One can check whether the condition of causal connectivity is
satisfied by comparing the field line opening angle θ v (defined in
Section 5.2) with the half-angle of the Mach cone of fast waves, θm.
The latter can be found from the relation

sin θm = �fcf
�vp

, (59)

where cf and �f are the fast speed and the corresponding Lorentz
factor, respectively. Since �fcf = Bco/

√
4πρ, where Bco is the

magnetic field as measured in the fluid frame, and vp ≈ c, we have

sin θm ≈
(

B2
co

4πρc2

)1/2 1

�
= σ 1/2

�
. (60)

In the magnetically dominated regime σ ≈ μ/�. For highly super-
magnetosonic flows θm � 1. Thus, we may write

θm ≈
√

μ/�3 . (61)

In the hydrodynamic limit the fast magnetsonic speed reduces to
the sound speed and �f , cf in equation (59) should be replaced by
�s, cs. For the ultrarelativistic equation of state and � 
 1 this
gives θm � 1/�, the value used for causality analysis in Zakamska
et al. (2008). However, in the magnetic case θm can be much higher
because the magnetosonic speed can be much closer to the speed of
light.

In the conical case we have � ≈ R/rlc, and

θv/θm ≈ (θ/
√

μ)(R/rlc)
3/2 (62)

grows rapidly to a value > 1 (where it is a good approximation to
replace θ v by θ ). The left-hand panel of Fig. 22 shows that only the
inner part of the jet has θ v/θm < 1 and is thus in causal contact.
Collimation (and therefore efficient acceleration) is possible only
in this inner region. In contrast, the outer parts of the conical jet
lack causal connectivity with the axial region and the flow there is
essentially ballistic.

In the paraboloidal case with b < 2 [for which θ v ≈ 1/� and
� ≈ (R/rlc)(b−1)/b]

θv/θm ≈ (�/μ)1/2 ≈ (1/μ1/2)(R/rlc)
(b−1)/(2b) , (63)

so this ratio grows much slower compared to the conical case.
Moreover, the loss of causal contact formally occurs when � � μ,
i.e. at the end of the acceleration phase. This is confirmed by our
simulations. As one can see in the middle and right-hand panels
of Fig. 22, during the power-law acceleration phase θ v/θm grows
slowly but remains less than 1 almost everywhere in our numerical
models. It subsequently decreases again when the growth rate of �

goes down.
In contrast, in the paraboloidal case with b > 2 (for which θ v ≈

r/bz and � ≈ r/rlc),

θv/θm ≈ (1/bμ1/2Cb/4)(r/rlc)
(5/2)−b

= (1/bμ1/2C5/8)(R/rlc)
(5/2b)−1

(64)

(see Section 5.3.3), and this ratio actually decreases with distance
for b > 5/2! One can also argue quite generally that, even if �

were to increase all the way up to μ, the value of the above ratio
in that region, which can be estimated to be ∼1/bμb−2Cb/4, would
likely remain <1 (since b > 2, μ > 1 and C is of the order of
1; see equation 53). Thus, the necessary (but not sufficient) con-
dition for acceleration is satisfied in this case. This suggests that
the acceleration efficiency may be comparable to the 1 ≤ b < 2
cases.

The behaviour of an unconfined wind is similar to that of an
outflow in a conical funnel, which is not surprising given the fact
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Figure 22. The ratio of flow half-angle, θv, to the Mach angle, θm, across the jet for models A (left-hand panel), B3 (middle panel) and F (right-hand panel).
For model A the depicted cross-sections are at R = 10 (solid line), R = 102 (dashed line), R = 103 (dash–dotted line), R = 104 (dotted line) and R = 105

(dash–triple dotted line). For model B3 the depicted cross-sections are at η = 5 × 102 (thin solid line), η = 5 × 103 (dashed line), η = 5 × 104 (dash–dotted
line), η = 5 × 105 (dotted line), η = 5 × 106 (dash–triple dotted line) and η = 5 × 107 (thick solid line). For model F the depicted cross-sections are at η =
1.5 × 103 (thin solid line), η = 5 × 103 (dashed line), η = 1.5 × 104 (dash–dotted line) and η = 1.5 × 105 (dotted line). The curves in the right-hand panel
dive to zero when the flow becomes submagnetosonic.

that the former is a limiting case of the latter. As seen in Fig. 14, the
acceleration in model AW is �50 per cent efficient only along field
lines that are close to the rotation axis ( ≤ 0.1 max), similarly to
the situation in model A.

5.5 Hot flows

When w/ρ c2 is significantly larger than 1 at the inlet there is an
additional reservoir of energy for the flow acceleration – the thermal
energy of particles. As the flow expands the enthalpy per unit rest
mass w/ρ = c2 + [s/(s − 1)] (p/ρ) (equation 11) decreases until it
reaches its minimum value (= c2), and beyond that point the flow
can be regarded as cold. In the pure hydrodynamic case the thermal
energy is directly transferred to the bulk kinetic energy of the fluid.
In the magnetic case there is an additional possibility – the thermal
energy can be transferred also to the Poynting flux. Indeed, since
μc2 = (w/ρ) � + μmc2, it is possible to have both � and μmc2

increasing when w/ρ decreases, and this in fact is what we observe
in model B2H (Fig. 13).

We have already noted in Section 5.1 that in Poynting flux-
dominated flows μm is proportional to the bunching function S
(see equation 28). In agreement with this result, the left-hand panel
of Fig. 23 shows that in model B2H S exhibits the same evolution
as μm (which is shown in the middle panel of Fig. 13).

In the super-Alfvénic regime the trans-field force balance for hot
flows is described by equation (32) even for hot outflows provided
that p remains �B2

co/8π.10 Therefore we still have R ∼ �2r and
hence � ∝ rb−1 along magnetic field lines of paraboloidal jets with
exponents in the range 1 < b ≤ 2. Combining the mass conservation
relation (13) and equation (29) we obtain

�ρ = kS
cπr2

∝ r−2 ,

10 This is equivalent to the condition μh/μm � 1. In contrast, the case
μh/μm 
 1, which is not considered in this paper, corresponds to the case
in which the thermal pressure is much larger than the comoving magnetic
pressure. Indeed, using equations (13), (14) and (18)–(20), we find the exact
result μh/μm = (4π�2w)/[(Bφ̂)2 − BpB

φ̂vφ̂/vp]. With vφ̂ � r�, B2
co ≈

(Bφ̂)2/�2 and w 
 ρ c2 (so from equation 11w ≈ [s/(s − 1)] p), we find
μh/μm = [4πs/(s − 1) ] (p/B2

co), which for s = 4/3 becomes twice the
plasma beta in the comoving frame.

where we took account of the fact thatS is a weak function of r. This
enables us to write the variation of the thermodynamic parameters
as

ρ ∝ r−b−1, p ∝ r−s(b+1) .

In the limit w 
 ρc2 equation (11) gives w ∝ p ∝ r−s(b+1), and
therefore μh = (w/ρc2)� scales as

μh ∝ rδ, δ = b(2 − s) − s . (65)

For model B2H with b ≈ 3/2 and s = 4/3 this yields μh ∝ r−1/3.
Hence μh is expected to decrease and μm = μ − μh to increase
along the field lines, in agreement with what is observed in the
simulation. This behaviour is not expected in the b = 1 and b > 2
cases where � ∝ r. In these cases we find ρ ∝ r−3, w ∝ p ∝ r−3s ,
and therefore μh = (w/ρ c2) � ∝ r4−3s remains constant for s =
4/3. Thus, during the thermal acceleration phase the thermal energy
is converted into kinetic energy just as in the pure hydrodynamic
case. The magnetic field only guides the flow in this case, and its
energy-to-mass flux ratio remains constant.

A decrease of μh along the field lines was previously found in
the self-similar solutions of Vlahakis & Königl (2003b), but only
in cases where the flow is super-Alfvénic from the start (see also
Vlahakis et al. 2003). In their trans-Alfvénic, hot-flow solutions
(Vlahakis & Königl 2003a), μm remains constant throughout the
thermal acceleration phase. This can be understood from the fact
that the latter solutions correspond to b ≈ 2 and therefore to δ ≈ 0 in
equation (65), resulting in constant μh and μm in the thermal accel-
eration region.11 In contrast, the super-Alfvénic solutions presented
in Vlahakis & Königl (2003b) correspond to b ≈ 3/2 and hence to
δ ≈ −1/3 (the same values as in our models B and D), which is why
they exhibit the same behaviour in the thermal acceleration zone as
our simulated flows.

11 As was shown analytically in the magnetodynamic self-similar solutions
of Narayan, McKinney & Farmer (2007), the field line shape is z ∝ r2/(2−F ),
where F is a constant parameter entering the self-similarity expression of
the magnetic flux function,  = rFF (r/z). The MHD self-similar solu-
tions follow the same scaling in their force-free regime. The trans-Alfvénic
solutions presented in Vlahakis & Königl (2003a) are characterized by F ≈
1, which implies b ≈ 2. Note in this connection that the F = 1 magnetody-
namic solution is exactly the paraboloidal force-free solution presented by
Blandford (1976).
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Magnetic acceleration of jets 1203

Figure 23. Effects of thermal acceleration. Left-hand panel: the bunching function S along the magnetic field line with  = 0.5max. Right-hand panel: rvφ̂

along the magnetic field line with  = 0.5max. Solid lines: model B2; dashed lines: model B2H.

The increase of the Poynting-to-mass flux ratio μm in the ther-
mal acceleration regime leads to a rather unusual behaviour of the
azimuthal velocity. The right-hand panel of Fig. 23 shows the varia-
tion of rvφ̂ along the same magnetic surface in models B2 and B2H.
For the cold jet it always grows with cylindrical radius and hence
with the distance from the jet origin. This reflects the fact that the
plasma is being spun up by the rotating magnetic field: in this case
|Bp/B

φ̂ | 
 |vp/v
φ̂ | in equation (14) and vφ̂ ≈ r� ∝ r .

However, in the hot jet rvφ̂ (and therefore also vφ̂) initially de-
creases with increasing r and even attains negative values, indicating
counter rotation of the plasma. Eventually the cold-jet behaviour is
restored, with the switch taking place at the turning point of μm.
The decrease in rvφ̂ when μm increases along a field line follows
from the following relation:

r�vφ̂

c2
= 1 − 1 − l�/μc2

1 − μm/μ
, (66)

obtained by combining equations (15) and (16).12 Physically, the
increase in μm implies that the magnetic contribution to the total
angular momentum per unit rest mass goes up (see equations 20 and
15), which, by the conservation of l along a field line (and taking
account of energy conservation) implies that the specific material
angular momentum rvφ̂ must decline.

The efficiency of the acceleration in model B2H is higher than in
the cold models, as can be seen in Fig. 13. This is connected to the
behaviour of the function S. The increase of S during the thermal
acceleration phase results in a higher Sf , the value of the function S
at the fast magnetosonic surface. In addition, the asymptotic value
S∞ is smaller than in cold models (see Fig. 23). Both effects result
in a higher value of �∞/μ (see equation 31).

5.6 Comparison with semi-analytic solutions

As discussed in Section 1, it is possible to find exact solutions of
the relativistic MHD equations by assuming radial self-similarity
(Li et al. 1992; Contopoulos 1994; Vlahakis & Königl 2003a,b,

12 The inequality l�/μc2 < 1 always holds in trans-Alfvénic flows, since
(l�/μc2)1/2 equals the value of r/rlc at the Alfvén surface (e.g. Vlahakis
& Königl 2003a), and the Alfvén surface is located closer to the source
than the light cylinder (with the two surfaces almost coinciding for highly
magnetized flows).

2004). Due to the mathematical complexity of the equations, these
are the only possible exact semi-analytic solutions describing cold
or polytropic flows (Vlahakis & Königl 2003a). Similarly to their
non-relativistic counterparts (the Blandford–Payne-type models),
they successfully capture the physics of magnetically driven jets and
yield the general characteristics of the flow acceleration and colli-
mation.13 In particular, the results of Vlahakis & Königl (2003a,b)
for ultrarelativistic GRB jets follow the general scaling relation-
ships derived here. In fact, the scaling � ∝ rb−1, corresponding to
a streamline shape z ∝ rb [for 1 < b ≤ 2; the regime (iii) of equa-
tion 37], was first presented in Vlahakis & Königl (2003b). Note in
this connection that both the � � r/rlc (equation 38) and the � � z/r
(equation 41) scalings exhibited by our solutions could be captured
through the basic radial self-similarity ansatz � = �(θ ) because
both r/rlc and z/rlc are functions of the polar angle θ in the self-
similar solutions. In the z ∝ r2 trans-Alfvénic solutions of Vlahakis
& Königl (2003a) the Lorentz factor in both the linear acceleration
phase � ∝ r and the power-law acceleration regime � ∝ z/r would
obey the same scaling. Thus, the � − r relation cannot be used to
discriminate between these two regimes in this case. However, the
quantities B2 − E2 and B2

p are comparable (see fig. 3 in Vlahakis &
Königl 2003a), which means that the solutions in fact correspond
to the linear acceleration phase (for which Bco ≈ Bp). On the other
hand, the solutions presented in Vlahakis & Königl (2003b), which
are super-Alfvénic from the start, clearly correspond to the power-
law phase since the Lorentz factor is not increasing linearly with
distance (see fig. 1 in that paper). The poloidal magnetic field is
negligible in these solutions: B2 − E2 ≈ (Bφ̂)2 − E2 
 B2

p . Self-
collimation also acts in a similar way in the numerical and semi-
analytic solutions, with the inner field lines at any given height z
being better aligned with the rotation axis than the poloidal field
at larger values of r. Correspondingly, the semi-analytic solutions
exhibit as high an acceleration efficiency (� 50 per cent) as the sim-
ulated b ≤ 2 solutions, and, not surprisingly, have a similar value
for the asymptotic shape function (S∞ ∼ 1/2; Vlahakis 2004b).

Despite their qualitative similarity in regard to the accelera-
tion and collimation processes, the semi-analytic and numerical
solutions do of course differ in their details, reflecting the fact that

13 The self-similar solutions of Vlahakis & Königl (2003a) have a line shape
z ∝ r2 (see footnote 11) and thus most closely resemble our model C.
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in the self-similar model the angular velocity at the base necessarily
scales as 1/r and that only one current-flow regime is allowed. In
particular, the spatial distributions of the integrals of motion are not
the same in these two cases. For example, the energy integral, which
is constant in the self-similar model, is roughly proportional to the
magnetic flux function in the simulated uniform-rotation jets, and
the adiabat Q, which is given as a power of the magnetic flux func-
tion in the self-similar model, is a global constant in the simulations.
We also note that, while the far-asymptotic (beyond the acceleration
region) flow shape in the self-similar models is either cylindrical or
conical, only the innermost field lines become cylindrical in the sim-
ulated jets, whereas further out the streamlines remain paraboloidal.
However, this is evidently related to the imposed boundary shape,
and we can expect that, if the flow were followed to still larger dis-
tances, even more of the interior field lines would tend to cylinders
(see Chiueh et al. 1991) or (in the case of an initially ‘hot’ flow) to
cones.

The high acceleration efficiency inferred from the self-similar
and numerical solutions for non-radial, relativistic MHD outflows
was also deduced by Beskin & Nokhrina (2006) on the basis of a
perturbative analysis around a parabolic (z ∝ r2) flow. These authors
found that the Lorentz factor increases with distance from the origin
as � ∝ z1/2, in agreement with our general result for paraboloidal
jets of this type, � ∼ z/r.

6 A PPLICATION TO G RB JETS

The observational study of GRBs has not yet reached the stage
where the basic parameters of the flows producing prompt γ -ray
emission and afterglows have become well established. There is
no general consensus yet on the angular structure, degree of col-
limation, distance from the central source or composition of GRB
jets. These parameters may vary significantly from burst to burst.
The anisotropy of γ -ray emission due to relativistic beaming fur-
ther complicates the problem as the same burst could have a very
different appearance when observed from different viewing angles.
In this section we test our theory against the current, not yet very
stringent, observational constraints and provide a guide for future
observations.

The maximum terminal Lorentz factors in our numerical models
of parabolic jets, ∼ 100–300, are close to those inferred for long/soft
GRB jets and also high enough to ensure that we have captured the
properties of magnetic acceleration in the ultrarelativistic regime.
Although real GRB jets may be even faster (e.g. Lithwick & Sari
2001), the analytic results verified by our numerical study can be
applied to such jets with a high degree of confidence.

To make detailed comparisons between our theory and the obser-
vations we need to determine the characteristic light cylinder radius
at the source of the jets. In the case of a millisecond magnetar

rlc = cT

2π
� 5 × 106

(
T

1 ms

)
cm ,

and for a maximally rotating black hole

rlc = 4rg ≈ 6 × 105

(
M

M�

)
cm .

Thus, L = 106 cm is a suitable reference length-scale for this appli-
cation.

Given the extended nature of magnetic acceleration, the first
question that one has to address is whether the Lorentz factors
deduced from observations can be reached in our model on the
inferred scale of the γ -ray emission region. According to equa-

tions (38) and (42),

R � 1012

(
�

100

)3

cm

for paraboloidal jets with b = 3/2 and b = 3, and

R � 1010

(
�

100

)2

cm

for paraboloidal jets with b = 2. These estimates are lower than
the distance to the γ -ray production region inferred from the burst
variability in the internal-shocks model of GRBs,

Rγ ∼ �2cδt = 3 × 1013

(
�

100

)2 (
δt

0.1 s

)
cm ,

where δt is the internal variability time-scale (e.g. Piran 2005). In
fact, recent Swift observations indicate even larger distances (∼1015

− 1016 cm; e.g. Lyutikov 2006a; Kumar et al. 2007). The theory
thus appears to be consistent with the observations in this respect.

We emphasize that the above results have been derived in the
context of steady, ideal and axisymmetric MHD. The rotation pe-
riod of the central source is much shorter than the GRB variability
time-scale, making a steady state approach reasonable. A more rig-
orous argument is given in Vlahakis & Königl (2003a), where the
frozen-pulse approximation is discussed in the context of magne-
tized outflows. It is shown there that if instead of the time t we use
the variable T ≡ ct − �, where � is the arc length along a poloidal
streamline, all terms with derivatives with respect to T in the MHD
equations are negligible when the flow is highly relativistic. The
equations are then effectively time independent and the motion can
be described as a frozen-pulse whose internal profile is specified
through the variable T . This result reflects the lack of communica-
tion between different ejected ‘shells’ in the flow and arises from
the fact that both the bulk speed of the flow and the propagation
speeds of MHD waves with respect to the flow are close to the
speed of light. Successive shells moving with different Lorentz fac-
tors eventually collide: this is the basis of the internal-shocks model
of GRBs (e.g. Piran 2005). Such collisions are, however, unlikely to
occur within the acceleration zone since the difference in the initial
Lorentz factors of the shells is not expected to be large enough to
compensate for the longer acceleration time of the leading shell (see
Vlahakis & Königl 2001).

The charge number density is typically sufficiently large to screen
the electric field in the comoving frame, justifying the use of the
ideal MHD condition as a zeroth-order approximation. Furthermore,
the assumption of axisymmetry is reasonable for describing the
conditions at the source in view of the comparatively short rotation
time at the origin. However, the jet could become non-axisymmetric
along the way as a result of various instabilities. Flow instabilities –
in particular non-axisymmetric, current-driven ones occurring near
the jet axis – may also lead to magnetic reconnection and dissipation.
It is interesting to note in this connection that the dissipation of
Poynting flux would naturally generate a negative magnetic pressure
gradient (associated with the azimuthal field component) along the
flow and that this process was argued to be capable, on its own, to
accelerate the flow to a high Lorentz factor (e.g. Drenkhahn & Spruit
2002; Drenkhahn 2002). In this respect our ideal MHD simulations
may be yielding only lower limits on the terminal Lorentz factor in
the modelled jets.

A related issue is whether there is an adequate confining medium,
as required for the establishment of the ‘power-law’ acceleration
regime described by equation (42). If the confinement of a long/soft
GRB jet is provided only by the envelope of the progenitor massive
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Magnetic acceleration of jets 1205

star, as proposed by Tchekhovskoy et al. (2008), the acceleration
would need to take place on a scale smaller than the stellar radius,
∼ 1011–1012 cm. Downstream of the stellar surface the jet is ex-
pected to enter the regime of ‘free’ (ballistic) expansion, as in our
model E, which is characterized by a less efficient magnetic accel-
eration.14 But even this rather restrictive constraint on the size of the
acceleration region, and hence on �∞, is in principle consistent with
the theory. An alternative possibility is that the GRB outflow is con-
fined by a wind launched from the surface of a disc that surrounds
the central object (e.g. Levinson & Eichler 2000). This mechanism
is a prime candidate for the confinement of short/hard GRB out-
flows, which evidently do not originate inside a star. In this case the
collimation might be attained smoothly, with the disc-driven and
central object-driven components constituting parts of a coherent
outflow configuration (e.g. Tchekhovskoy et al. 2008). However,
the outflow may also involve shocks formed at the interface of these
two components (e.g. Bromberg & Levinson 2007). If the GRB jet
and disc outflow commence at the same time, the spatial extent of
the confining medium in this picture can be estimated as

Rwind ≈ 3 × 109
( vwind

0.1 c

) (
�t

1 s

)
cm ,

where vwind is the mean wind speed over this distance and �t is
the GRB duration (normalized here to a fiducial value appropriate
for a short/hard burst). This should be compared with the above
theoretical relations between R and �, which for � = 30 (a fiducial
value for the lower limit on �∞ in short/hard GRBs; e.g. Nakar
2007) yields R ≈ 3 × 1010 cm for b = 3/2 or b = 3 and R ≈ 9 ×
108 cm for b = 2. This comparison indicates that, over the time �t,
a moderately relativistic disc outflow could form a sheath around
the jet acceleration region. Given that the size of a disc that forms
during a binary (NS–NS or NS–BH) merger that gives rise to a
short/hard GRB event is not expected to exceed a few times 106 cm
(i.e. significantly less than the expected cylindrical radius of the jet
in the main acceleration region), meaningful confinement would be
attained only if the wind had sufficiently large inertia, which would
require the wind-to-jet total energy ratio to be 
 1 (cf. Levinson
& Eichler 2000). If the initial magnetizations of short/hard and
long/soft GRB outflows are comparable, this scenario provides a
plausible explanation of the finding (from the best available current
data) that short-GRB jets are on average less relativistic than their
long-duration counterparts. A concomitant prediction, which could
be tested when more afterglow data for short/hard GRBs become
available, is that short/hard GRB outflows should also be less well
collimated, on average, than long/soft ones.

As noted above, the internal-shocks model envisions the prompt
GRB emission to be powered by the collision of successively ejected
relativistic shells. This scenario requires the jet to be kinetic energy-
dominated on the scale of the emission region; otherwise, the flow

14 It has been suggested that matter-dominated GRB jets could remain con-
fined by the expanding cocoon of relativistically hot shocked jet material
after they break out through the stellar surface (e.g. Ramirez-Ruiz, Celotti
& Rees 2002) and could continue to accelerate during that phase (e.g.
Lazzati & Begelman 2005). In contrast, Poynting-dominated jets do not in-
flate large cocoons but instead create the so-called ‘nose cones’ (e.g. Komis-
sarov 1999b). In fact, given the low compression ratio of a fast shock in a
magnetically dominated plasma, a jet termination shock is unlikely to form
before the jet emerges from the star – instead, the jet would have the form
of a super-Alfvénic but subfast magnetosonic outflow, as has been observed
in recent computer simulations (e.g. Komissarov & Barkov 2007; Barkov &
Komissarov 2008).

deceleration and dissipation at fast shocks is too weak (or else, if
the flow is inhomogeneous, the energy requirements are strongly
increased). The numerical solutions presented in this paper have
demonstrated the possibility of efficient conversion of Poynting
flux into bulk kinetic energy, with �50 per cent efficiency attained
by the end of the power-law-like acceleration regime. However, the
distance Rγ of the prompt emission region from the central source
imposes a constraint on the initial magnetization of GRB jets in this
model. Using equation (49), we obtain

μ ≈ 2�∞ <

{
2(rγ /rlc)b−1 if b ≤ 2

2(rγ /rlc) if b ≥ 2.

For paraboloidal jets with b = 3/2 or 3 this gives (setting Rlc ≈ rlc)

μ < 430
(

Rγ

1013cm

)1/3
,

whereas for b = 2 we obtain

μ < 6 × 103
(

Rγ

1013cm

)1/2
.

By approximating �∞Ṁj c
2 ≈ E/�t , where E the outflow kinetic

energy as inferred from afterglow observations and �t is the burst
duration, we estimate the mass outflow rate in the jet to be

Ṁj ≈ 5.6 × 10−8
(

E
1051 erg

) (
�t

10 s

)−1 (
�

103

)−1
M� s−1 ,

where we normalized by values appropriate to long/soft bursts.
This is very much lower than the expected mass accretion rate on
to the central black hole in the collapsar model (∼0.05–1 M� s−1;
e.g. Popham, Woosley & Fryer 1999) and constitutes the so-called
‘baryon loading problem’ in GRB source models. Such a compara-
tively low mass outflow rate might be produced if the GRB-emitting
outflow originates on magnetic field lines that thread the horizon of a
spinning black hole and tap its rotational energy via the Blandford–
Znajek mechanism (e.g. Levinson & Eichler 1993); in this case the
flow would initially be baryon-free and would require a baryon-
injection mechanism as it propagates outward. Alternatively, jets
launched from an accretion disc may experience such a low mass
loading if they are initially thermally driven along magnetic field
lines inclined at a small (�15◦) angle to the rotation axis (Barzilay
& Levinson 2008).15

The internal-shocks model of GRBs has been questioned on ac-
count of the relatively high emission efficiency that it requires, and
these challenges have become significantly stronger following ob-
servations made by Swift (e.g. Granot, Königl & Piran 2006; Kumar
et al. 2007). Various suggestions have been made (and continue to
be made) in the literature for reconciling this scenario with the ob-
servations (e.g. Kobayashi & Zhang 2007) or else for modifying or
replacing it. Perhaps the main alternative picture proposed to date
is based on the assumption that the prompt high-energy emission is
produced directly from the dissipation of magnetic energy without
requiring it to be converted into kinetic energy first (e.g. Kumar
et al. 2007), which circumvents the efficiency problem that has

15 It was also proposed that the problem could be alleviated in a magnetically
driven disc outflow that is initially neutron rich and hot if the neutrons
decouple from the protons well before the latter attain their terminal Lorentz
factor (see Vlahakis et al. 2003; Fuller, Pruet & Abazajian 2000). There
are indications from studies of discs around non-rotating black holes that
this might not work in practice because outflows may be required to be
comparatively massive to remain neutron rich (e.g. Levinson 2006; Barzilay
& Levinson 2008), but this conclusion still needs to be verified in the case
of discs around rapidly rotating black holes.
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1206 S. S. Komissarov et al.

troubled the internal-shocks model. Although magnetic dissipation
could in principle occur also in the context of the MHD model (e.g.
Thompson 1994; Drenkhahn & Spruit 2002; Giannios & Spruit
2006), perhaps the most extreme realization of this idea oc-
curs within the framework of the magnetodynamics scenario, in
which GRB outflows are regarded as remaining Poynting flux-
dominated (and subfast magnetosonic) in the γ -ray emission region
(e.g. Blandford 2002; Lyutikov 2006b). In this scenario, neither the
internal nor the reverse shocks of the standard model would develop,
which could be the basis for an observational test.16

As we discussed in Section 5.2, a key prediction of the mag-
netic acceleration model is the approximate inverse proportionality
between the Lorentz factor along a poloidal magnetic surface and
tan θv for that surface for paraboloidal jets with 1 < b ≤ 2 (see
equation 43). For a small opening angle and b not very close to 1,
this result can be approximated by � θ v ≈ 1. This implies that GRB
outflows with b ≤ 2 that attain � ∼ 100, the approximate inferred
lower limit for long/soft GRBs, must have θv ∼ 0.◦6, essentially
independent of the details of the acceleration process. When b >

2, �θ v ≈ b−1 (R/rlc)−(1−2/b) decreases with R in the magnetic ac-
celeration region, implying an even smaller value of θ v at the end
of this zone. The relation �θ v ∼ 1 may be useful for differentiat-
ing between magnetic and fireball models of GRB flows. Indeed,
this property is generic to the magnetic acceleration mechanism,
whereas for the thermal acceleration the terminal bulk Lorentz fac-
tor is essentially given by the thermal Lorentz factor at the base of
the flow and is fairly independent on the flow collimation, which
means that the product � θ v can in principle become 
1. Interest-
ingly, one of the proposals made for interpreting the apparent GRB
‘tails’ observed by Swift invokes a GRB-emitting outflow compo-
nent whose opening half-angle must be <1◦ (Panaitescu 2007).
While the currently available data are not sufficient for favouring
this interpretation over other suggested explanations of the ‘tails’, it
is noteworthy that the requirement arrived at by Panaitescu (2007)
on strictly phenomenological grounds is consistent with a distin-
guishing property of the magnetic acceleration model. It is also
noteworthy that there is already at least one source (GRB 070401)
in which such a small opening half-angle has been inferred di-
rectly from a measurement of an early break in the X-ray afterglow
light curve (Kamble et al. 2008). Such small asymptotic opening
angles and even �θ v � 1 could in principle be attained also in
purely hydrodynamical jet models, although this would require a
very high efficiency of collimation and acceleration within the stel-
lar interior. Specifically, the jets would need to emerge from the
star with θ v < 1◦ and � � 1/θ v � 60, which, in view of recent
analytic and numerical studies (e.g. Lazzati & Begelman 2005;
Morsony, Lazzati & Begelman 2007), is unlikely to be achieved in
practice.

The original fireball model for GRB jets envisions a uniform
conical outflow that becomes accelerated to Lorentz factors � 

1/θv and predicts that during the afterglow phase the Lorentz factor
of the forward shock driven by the jet into the ambient medium
will decrease to values <1/θ v. The observational consequence of

16 For example, the expected weakness or absence of reverse shocks in
GRB ejecta characterized by σ � 1 leads to a predicted paucity of reverse-
shock emission signatures – such as optical flashes – in the early after-
glow (e.g. Mimica, Giannios & Aloy 2008). In contrast, in some of the
proposed interpretations of the Swift data the entire afterglow emission is at-
tributed to a reverse shock (e.g. Genet, Daigne & Mochkovitch 2007; Uhm &
Beloborodov 2007).

this transition is a panchromatic break in the afterglow light curve
(referred to as the ‘jet break’) occurring when �θ v becomes ∼1
(e.g. Rhoads 1999; Sari et al. 1999). In view of the results presented
in this paper, the predictions of the MHD model for GRB outflows
that are efficiently accelerated – and therefore necessarily confined
(by either thermal, magnetic or ram pressure) during the acceleration
phase – are radically different. Specifically, the MHD model predicts
that the afterglow light curve would exhibit either a very early jet
break (in cases where �θ v ≈ 1 at the end of the acceleration phase,
as expected in jets with b ≤ 2) or no jet break at all (if �θ v < 1 at
the end of the magnetic acceleration region, as expected in jets with
b > 2).17 This prediction is seemingly at odds with the inference
from a number of pre-Swift GRB sources of breaks of this type
occurring on a time-scale of days (see e.g. Liang & Zhang 2005
for a compilation). The paucity of ‘textbook’ jet breaks in Swift
GRB sources (e.g. Liang et al. 2008), which has even cast doubts
on the interpretation of the alleged pre-Swift jet breaks, points to
one way out of this dilemma: it may be that indeed there are no bona
fide jet breaks at later times. We recall, however, that the jet-break
interpretation lies at the basis of the identification of GRB outflows
as collimated jets, which has significantly reduced the otherwise
prohibitive energy requirements in some sources. Alternatively, it
could be that the difficulties in finding late-time jet breaks in Swift
sources are to a large extent observational (e.g. Zhang 2007), in
which case other explanations for late-break candidates must be
sought.

One natural possibility is that the outflow possesses more than
one kinematic component. In its simplest incarnation, this is the
‘two-component’ model, which envisions the prompt emission to
originate in an ultrarelativistic, highly collimated jet and the after-
glow emission to be dominated by a less relativistic, wider outflow
component. The suggestion in Panaitescu (2007) and in Kamble
et al. (2008) that the γ -ray emitting jet is very narrow was made
in the context of this model, and a similar picture was used by
Granot et al. (2006) to explain other aspects of the early GRB X-ray
emission measured by Swift (see also Zhang 2007). In fact, a two-
component outflow configuration had already been proposed in the
pre-Swift era to account for certain observations (e.g. Berger et al.
2003b) and as a means of alleviating the efficiency requirements
on the internal-shocks model (Peng, Königl & Granot 2005). The
separation into two components could arise either from an interac-
tion of the outflow with the envelope of a massive progenitor star or
represent an intrinsic property of the central engine (see Peng et al.
2005 for a summary of some specific proposals). In the context of
the magnetically driven outflow model, there are at least two possi-
bilities for an intrinsic origin. First, neutron-rich, hot outflow may
split into two components when the neutrons and protons decou-
ple before the protons have attained their terminal Lorentz factor
(Vlahakis et al. 2003). Secondly, a baryon-poor ultrarelativistic out-
flow launched from the black hole can be surrounded by a magnet-
ically driven, relativistic outflow from the accretion disc itself (see
Granot et al. 2006).18 We stress that, in reality, the outflow may
be more complex than in the schematic ‘two-component’ picture

17 If the low current detection rate of jet breaks in the early afterglow light
curves of GRB sources would prove to be more than just the result of
observational difficulties, this could be an indication, when interpreted in the
context of the magnetic acceleration model, that these jets are characterized
by effective shape-function exponents b > 2.
18 In the latter scenario, the disc wind could provide a ready source for
seeding the central funnel with baryons (e.g. Levinson & Eichler 2003) and
could also help collimate the interior outflow (Levinson & Eichler 2000).
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sketched above. For example, inhomogeneities in the accretion flow
may result in several distinct outflow components emerging from
the disc, associated, perhaps, with isolated magnetic flux tubes that
thread the disc at different locations. Phenomenologically, this sit-
uation might resemble the ‘patchy shell’ scenario considered by
Kumar & Piran (2000).

The distribution of the terminal Lorentz factor and of the kinetic
power across the jet directly affects the evolution of the light curve
of the GRB afterglow (e.g. Granot 2005) as well as the statistical
properties of a GRB sample (e.g. Nakar, Granot & Guetta 2004)
and the detectability of ‘orphan’ afterglows (afterglows detected
without an associated GRB; e.g. Nakar & Piran 2003). One could
in turn attempt to use such observations to probe the jet structure
and to test the underlying acceleration and collimation models.
With this in mind, we present in Fig. 24 illustrative asymptotic
distributions of the Lorentz factor and of the kinetic power from our
simulations.

We consider first the �∞ distribution. The top left-hand panel of
Fig. 24 shows that in all of the cases the Lorentz factor decreases
towards the axis – this is a generic feature of the axisymmetric, ideal
MHD acceleration mechanism as the azimuthal magnetic field (and
hence the Poynting flux) vanishes along the symmetry axis. This fea-
ture may not, however, be as pronounced when non-axisymmetric
instabilities and resistive dissipation of magnetic energy (which are
not incorporated into our study) are taken into account. In fact, we
find that even in our solutions � �= 1 at θ = 0 because of numerical
dissipation. In the case of an initially hot outflow �(θ = 0) > 1
is due to the thermal acceleration. In initially cold outflows that
have uniform rotation and mass density distribution at the base �

peaks at the jet boundary. It is seen, however, that if the flow is
initially hot the anisotropy of the Lorentz factor distribution within
the jet is reduced. Uniform rotation is a robust prediction of models
with a magnetar or a magnetized black hole as a central rotator.
The assumption a uniform mass-flux distribution at the jet base is
more of an approximation: for example, when the central source is
a black hole the degree of baryon loading is likely to be higher near
the jet boundary due to various boundary interactions with the jet
surroundings (e.g. Levinson & Eichler 2003). Such a mass distribu-
tion would lead to lower terminal Lorentz factors near the boundary
compared to that found in our simulations. If the inner regions of
an accretion disc contribute to the magnetic driving of the GRB-
emitting outflow component then a model with differential rotation,
with � decreasing away from the centre, is more suitable. As seen
from the figure, in this case the terminal Lorentz factor peaks at
intermediate angles. In practice it may, however, be difficult to dis-
tinguish this case from that of uniform rotation with non-uniform
mass loading.

Turning now to the distribution of energy flux across the jets in the
asymptotic regime, we recall that the observational consequences
of this energy are strongly influenced by relativistic beaming –
whenever a fraction of this energy is dissipated and converted to
radiation, this radiation will be beamed in the direction of motion
of the corresponding fluid element, given by θ v. Most phenomeno-
logical models of GRBs have assumed that the jet is conical and has
radial streamlines. Thus, the streamline angle, θ v, is equal to θ , the
polar angle of the fluid element. In our model the streamlines are
curved and asymptotically their shape is close to that of the bound-
ary (with the exception of the cylindrical core). Hence we have
θ v � θ/a. Consider a surface element normal to the η coordinate
lines (streamlines) d�η = √

gφφgξξ dφdξ , where gφφ and gξξ are
components of the metric tensor. Since in the asymptotic regime θ ,
θ v � 1, we can write dξ = az1−1/a dθv, gφφ = r2 and gξξ = z2/a (see

appendix A of Paper I), and hence

d�η = a2z2dω,

where d ω = θ v d θv d φ is the solid angle defined by the tangents
to the streamlines passing through the surface element. The power
per unit solid angle is then given by

dL/dω ≡ ε = Sηa2R2,

where Sη is the component of the energy flux density in the η

direction.
The top right-hand panel of Fig. 24 shows the distribution of

kinetic power per unit solid angle, ε (the total power has a very
similar distribution). One can see that in all models it peaks at, or
very close to, θ = 0. The reason for this behaviour, which seemingly
conflicts with the Lorentz factor distribution shown in the left-hand
panel of the figure, is that the density distribution across the jet is
highly non-uniform, with the mass density strongly peaking near
the symmetry axis on account of the enhanced collimation of the
flow in that region (see Figs 2–5). The bottom left-hand panel of
Fig. 24 shows the distribution of εθ : this quantity tells us how the jet
power is distributed between annuli of equal size in θ . One can see
that in model D (differential rotation) more power comes from the
intermediate annuli, in model B (uniform rotation at the base) from
the outer annuli, and that a significant core component emerges in
model B2H (initially hot jet). Note, however, that the distributions
of the Lorentz factor and the power depend on the choices of the
density, magnetic flux and angular velocity distributions at the inlet
boundary, so different profiles may be possible.

The derived distributions of �(θ ) and ε(θ ) are markedly differ-
ent from those commonly adopted in phenomenological GRB jet
models, which either take them to be uniform within the jet opening
half-angle θj or else assume that the flow has a universal struc-
ture, with ε being a Gaussian or a power law in θ (in particular,
ε ∝ θ−2; Rossi, Lazzati & Rees 2002 – compare with the bottom
right-hand panel of Fig. 24) outside a uniform-core region.19 The
structure exhibited by our model jets is also different from that of
a ‘hollow cone’, where the flow occupies the region θ ∈ [θj −
�θ , θj ] (e.g. Eichler & Levinson 2004; Lazzati & Begelman 2005).
Although the distribution of Lorentz factors is reminiscent of such
a cone, the distribution of kinetic power actually peaks near the
symmetry axis. Moreover, in contrast with the phenomenological
hollow-cone models considered in the literature, in which �θ �
θj , our solutions yield configurations with �θ ∼ θj . The detailed
observational implications of these structures remain to be explored.

The preceding discussion of the Lorentz factor and energy-flux
distributions is based on our axisymmetric, single-component jet
model. However, as was already noted above, in reality there could
be different outflow components that are launched independently
from the surface of the disc. These components could end up propa-
gating in different directions, especially if the disc is warped and if it
precesses. The outflow might thus consist of multiple ultrarelativis-
tic components that individually subtend very small solid angles but
collectively cover an area of the sky similar to that of the afterglow-
emitting component (which in principle could simply comprise the

19 In the force-free electromagnetic model for GRBs it is envisioned that the
current flows along the axis of rotation and returns through the equatorial
plane; this yields an energy distribution ∝ θ−2 in the associated electromag-
netic shell (e.g. Blandford 2002; Lyutikov 2006b). A universal structured
outflow with ε ∝ θ−2 could potentially also be produced when a relativis-
tic GRB jet with possibly a different initial energy distribution breaks out
through the surface of a massive progenitor star (Lazzati & Begelman 2005).
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1208 S. S. Komissarov et al.

Figure 24. Angular distributions of the Lorentz factor (top left-hand panel), the kinetic power per unit solid angle in the local direction of the flow (ε, top
right-hand panel), the kinetic power per annulus of unit angular size (εθ , bottom left-hand panel) and εθ2 (bottom right-hand panel) in the asymptotic regime,
plotted as functions of polar angle. The variable ε is given in units of cB2

0L2/4π, and when it is multiplied by θ or θ2 the polar angle is measured in radians. Note,
however, that the polar angle along the horizontal axis is given in degrees. The solid lines show model B2, the dashed lines model B2H, and the dash–dotted
lines model D.

sum of the decelerated ultrarelativistic components). Such a real-
ization of the ‘patchy shell’ concept could strongly reduce (or even
eliminate) the occurrence of orphan afterglows.

The presence of multiple ultrarelativistic components could in
principle also reconcile an apparent discrepancy between the con-
straint �θ v ∼ 1 on efficiently accelerated, magnetically driven out-
flows and current inferences about the frequency of GRBs. The
apparent inconsistency arises from the fact that the observed rate
of long/soft GRBs is estimated to be a fraction ∼10−5 of that of
core-collapse supernovae (e.g. Woosley & Bloom 2006), whereas
the actual GRB rate is inferred to be �10−2 of the supernova rate
(Gal-Yam et al. 2006). This implies that the ratio of the actual-
to-observed GRB rates must be �103. Attributing this ratio to the
beaming of GRB jets – and therefore equating it to 2/θ 2

v – yields
θ v � 3 × 10−2. On the other hand, the �θ v relation implies an open-
ing half-angle �10−2 for � � 102 (the approximate lower bound on
� in the γ -ray emission region). These two estimates can be made
compatible if a typical GRB jet contains � 10 distinct ultrarela-
tivistic components (a number that would increase if the observed
GRB rate were revised upward). Alternatively, the actual value of
θ v could be higher than the upper limit derived above due to non-
axisymmetric instabilities or magnetic energy dissipation in the jet,
in which case even the single-component model could potentially
be consistent with the GRB rate estimates. Of course, the apparent
inconsistency could be avoided altogether if the conditions under
which the � θ v constraint was derived did not apply (e.g. if the flow

remained Poynting-dominated in the prompt emission region or if
it were in fact accelerated purely hydrodynamically).

7 C O N C L U S I O N

In this paper we extend our previous numerical study of magneti-
cally accelerated relativistic jets (Paper I) from the case of terminal
Lorentz factors �∞ ∼ 10, appropriate to AGN jets, to �∞ � 102, ap-
propriate to GRB jets. The larger values of �∞ reached in this paper
enable us to compare results of our simulations, carried out using
the equations of special relativistic ideal MHD, with the asymptotic
analytic formulae that we obtain from the constituent equations
in the limit � 
 1. Our analysis of the results also benefits from
a comparison with semi-analytic solutions that were derived un-
der the assumption of radial self-similarity. We can summarize our
conclusions regarding the magnetic acceleration of ultrarelativistic
outflows as follows.

(i) Our simulations verify that the MHD acceleration mechanism
remains robust even when the terminal Lorentz factors reach the ul-
trarelativistic regime (�∞ � 102). The simulated flows rapidly settle
into quasi-steady and seemingly stable configurations. A complete
model would need to incorporate non-axisymmetric effects, which
we have not considered.

(ii) A key property of magnetically driven relativistic flows in
the ideal MHD regime is the spatially extended nature of their
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Magnetic acceleration of jets 1209

acceleration. This property, which was first revealed by the self-
similar solutions and subsequently confirmed in the moderately
relativistic regime by the simulations reported in Paper I, is also
a distinguishing characteristic of jets accelerated to ultrarelativis-
tic speeds. For initially Poynting flux-dominated jets whose mag-
netic flux surfaces can be approximated by paraboloids of the form
z ∝ rb (with b ≥ 1), the Lorentz factor during the main magnetic
acceleration phase increases as � � (b/

√
b − 1)z/r when 1 < b ≤

2 and as � � r/rlc when b = 1 or b > 2. (The linear dependence
on r also characterizes the initial acceleration phase for 1 < b ≤
2.) In the linear acceleration regime the comoving magnetic field is
Bco ≈ Bp, whereas in the power-law regime Bco ≈ [(Bφ̂)2 − E2]1/2.
After the (increasing) kinetic energy flux becomes comparable to
the (decreasing) Poynting flux the growth of � saturates, and there-
after it increases at a much slower rate. (We have not been able to
reach this phase in models with b > 2 due to the limitations of our
numerical method.)

(iii) The conversion efficiency �∞/μ of total injected energy
to kinetic energy at the end of the power-law acceleration phase
lies in the range 55–75 per cent for the initially cold simulated
paraboloidal flows whose effective exponents lie in the range 1 <

b ≤ 2; the efficiency is smaller the larger the initial magnetization
(or, equivalently, the higher the value of �∞). A higher efficiency
is attained in jets with b < 2 that are initially relativistically hot
than in the corresponding initially cold outflows: in this case a
measurable fraction (>50 per cent in the example that we show)
of the thermal energy flux is at first converted into Poynting flux,
thereby reducing the initial thermal acceleration of the flow and
enhancing the subsequent magnetic acceleration.

(iv) In our simulations the flow is confined by a rigid wall whose
shape is described by z ∝ ra, with a ranging from 2/3 to 3. We
have conducted a detailed analytic investigation of the relationship
between a confining pressure distribution of the form pext ∝ z−α

and the shape of the jet boundary in the asymptotic regime of
the magnetic acceleration zone. We found that there is a one-to-
one correspondence between the functional forms of the pressure
distribution and of the boundary shape. Except for one special case
(for which a remains close to 2), the jet becomes an exact paraboloid
of the form given above, with a = 4/α > 2 for α < 2 and 1 < a ≤ 2
for α = 2. When α > 2 the jet cannot maintain pressure equilibrium
with the ambient medium and asymptotes to a conical shape. This
situation is reproduced in our simulations by unconfined flows as
well as by flows with a ≤ 1. In this case the outer regions of the
jet become causally disconnected (the local opening half-angle of
the field lines becomes larger than the local half-angle of the Mach
cone of fast magnetosonic waves), and only the innermost regions
continue to collimate and accelerate.

(v) We find that for all current-carrying jets (irrespective of
whether the return current flows inside or outside the jet) the in-
nermost field lines are more strongly collimated than the exterior
ones, indicating ‘self-collimation’ by the magnetic hoop stress (see
also Paper I). This redistribution of the poloidal field lines within
the jet is directly responsible for the high acceleration efficiency of
the flow.

We have applied our results to GRB sources, taking into account
the constraints imposed by the detected prompt and afterglow emis-
sion on the properties of the ultrarelativistic jets that evidently give
rise to the GRB phenomenon. Our main conclusions are as follows.

(i) Initially Poynting flux-dominated outflows can be magneti-
cally accelerated to a Lorentz factor exceeding the minimum (� ∼
102) inferred in long/soft GRBs within a distance of ∼ 1011–1012 cm

from a rapidly rotating stellar mass black hole or a millisecond mag-
netar. Thus, most of the acceleration of long/soft GRB jets can be
achieved inside a typical progenitor star in the collapsar model,
whose envelope provides a natural confining environment for the
jets. Lack of confinement outside of the star may result in a radial
outflow characterized by loss of causal connectivity across the jet
and inefficient acceleration. An alternative confinement mechanism
that is of particular relevance to short/hard GRBs, which likely form
through a merger of compact stars rather than in the collapse of a
massive star, is a disc wind. The MHD acceleration mechanism
implies that the minimum bulk Lorentz factor inferred in short/hard
GRBs (� ∼ 30) could be attained within the distance that such a
wind covers over the burst duration if the disc outflow (which might
also be driven magnetically) has at least a moderately relativistic
speed (∼0.1–1 c).

(ii) The MHD acceleration model entails a high (�50 per cent)
asymptotic conversion efficiency of injected magnetic and thermal
energy into bulk kinetic energy for effectively confined flows. If
the initial magnetization is of the same order as that of the inferred
Lorentz factor of a GRB jet, σ 0 ∼ 102– 103, the energy conversion
can be attained on a spatial scale that is smaller than the indicated
size of the prompt emission region. The model is then compatible
with the internal-shocks scenario for GRBs. For a much higher
initial magnetization the jet remains Poynting flux-dominated on
these scales and the prompt emission has to be attributed to direct
magnetic energy dissipation, as in the magnetodynamics scenario.
A full treatment of the dynamics of such jets in the context of
MHD would require taking account of the acceleration induced by
the field-dissipation process and the use of a non-ideal, relativistic-
MHD code.

(iii) We have found that the MHD jet model places a strong
constraint on the product of the Lorentz factor and the opening
half-angle of the streamline in the asymptotic regime of the main
acceleration region: �θ v ∼ 1 along paraboloidal streamlines z ∝
rb when b ≤ 2 (but b not too close to 1), and �θ v ∝ z−(1−2/b) (and
thus attaining even smaller values at the end of the main accelera-
tion phase) when b > 2. This feature is unique to the ideal MHD
mechanism and could potentially serve to distinguish it from al-
ternative models, notably the classical fireball scenario (in which
�θ v is envisioned to be 
 1 at the end of the acceleration region).
In particular, this property implies that, if long/soft GRB jets with
� � 100 are magnetically accelerated, they must be collimated to
θv � 1◦. This result is consistent with one of the interpretations of
the prompt emission ‘tails’ discovered by Swift, although in prin-
ciple there could also be a purely hydrodynamic explanation of a
very small collimation angle. This relation also indicates that the
γ -ray emitting outflow component might exhibit a panchromatic jet
break, corresponding to �θ v ∼ 1 decreasing from a value >1 to a
value <1, soon after it enters the afterglow phase; however, if this
product is already <1 at the end of the acceleration zone, there may
not be a noticeable break. In this picture, if a later jet break is seen, it
should be attributed to a different kinematic component. The above
constraint could be mitigated by non-axisymmetric instabilities and
resistive magnetic energy dissipation within the jet, which could
cause it to widen. The product �θ v could also exceed the foregoing
prediction if the flow remained Poynting-dominated in the prompt
emission region.

(iv) The magnetic acceleration model also makes specific predic-
tions about the angular distributions of the terminal Lorentz factor
and of the kinetic and total energy per unit solid angle across the
jet, which can be probed by a variety of observations. These distri-
butions depend on the magnetization profile and the thermal energy
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content of the jet at the inlet boundary, which could in principle
be constrained by the observations. A general characteristic of this
model is that �∞(θ ) decreases with decreasing polar angle θ near
the symmetry axis. The situation in real sources could, however,
be complicated by the presence of multiple, possibly non-collinear,
ultrarelativistic outflow components instead of the single, axial com-
ponent considered in our simulations. The occurrence of multiple
outflow components of this type provides one plausible way of rec-
onciling the apparent discrepancy between the upper limit on θ v

implied by the � θ v ∼ 1 relation and the lower limit on the jet
opening angle inferred from current estimates of the frequency of
GRBs.

Although our analytic scalings have been derived in the limit
where the jet is in the force-free regime, we emphasize that key pa-
rameters of interest for astrophysical applications – including the jet
velocity and the magnetic-to-kinetic energy conversion efficiency –
could have only been obtained within the magnetohydrodynamics
formalism that we adopted and not in the magnetodynamics (or
force-free electrodynamics) approximation adopted in other recent
semi-analytic and numerical investigations. Another point worth
emphasizing is that the acceleration mechanism investigated in this
paper is identical to that considered in Paper I. Our results are consis-
tent with the view that the main difference between ‘superluminal’
AGN jets and GRB jets is that the latter outflows have a higher
initial magnetization (and possibly also a higher initial enthalpy),
which leads to their correspondingly higher terminal Lorentz fac-
tors. If this picture is correct, one could use observations of AGN
and GRB sources to deduce complementary aspects of the same ba-
sic phenomenon. For example, one could take advantage of the fact
that the acceleration region in AGN jets is potentially resolvable by
radio interferometry to probe the details of the acceleration process;
one could then consider the implications to GRB jets, which are not
directly accessible to such observations.
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A P P E N D I X A : SO L U T I O N S O F E QUAT I O N (5 6 )

In Section 5.3 we considered the dependence of the jet boundary
shape on the external pressure distribution, and we derived a second-
order ordinary differential equation (equation 56) that expresses
this dependence in the asymptotic regime of the main magnetic
acceleration region for the case where the external pressure scales
as pext ∝ z−α . For convenience, we reproduce this equation here,
keeping the original notation:

d2x

dZ2
+ C

x

Zα
− 1

x3
= 0 , (A1)

where C is a constant of the order of 1 (equation 53). In Section 5.3
we obtained solutions for this equation after making a power-law
ansatz for x(Z) (equation 57). In this appendix we consider general
solutions of this equation without assuming from the start that they
have a power-law form.

A1 α > 2

One can identify three different regimes in this case.

A1.1 2 < α < 4

When α < 4 the ratio of the second (electromagnetic) to the third
(centrifugal) terms on the left-hand side of equation (A1) diverges
as Z → ∞, and one can therefore neglect the centrifugal term in the
asymptotic regime (as we also inferred in Section 5.3.1). Changing
variables to

y ≡
√

C

|1 − α/2|Z
1−α/2 , f (y) ≡ x

Z1/2
, (A2)

this equation can then be written as

y2 d2f

dy2
+ y

df

dy
+

[
y2 −

(
1

|2 − α|
)2

]
f = 0 , (A3)

whose solution is

f (y) = C1J1/|2−α|(y) + C2Y1/|2−α|(y) . (A4)

For α > 2 we have 1 − α/2 < 0, so the limit Z → ∞ corresponds
to y → 0, in which case Jν(y) ≈ yν and Yν(y) ≈ 1/yν . Thus the
term involving the Neumann function Yν(y) dominates, implying
an asymptotic solution f (y) ≈ C2/y1/(α−2), or, using the definition
of y (equation A2),

r ≈ C2z . (A5)

Thus, the solution is essentially paraboloidal (concave) with conical
asymptotes.

A1.2 α = 4

Changing the variable x(Z) to g(Z) ≡ x/Z, equation (A1) becomes

Z2 d2g

dZ2
+ 2Z

dg

dZ
+ Cg − 1/g3

Z2
= 0 . (A6)

This equation has an exact solution, g = const = C−1/4, representing
a flow that is conical from the start, Z = C1/4x (as we already found
in Section 5.3.1), and in which the electromagnetic and centrifugal
forces have comparable contributions.

A1.3 α > 4

When α > 4 the ratio of the third (centrifugal) to the second (elec-
tromagnetic) terms on the left-hand side of equation (A1) diverges
as Z → ∞, and one can therefore neglect the electromagnetic term
in the asymptotic regime (as we also inferred in Section 5.3.1).
Without this term, equation (A1) becomes

dx2

dZ2
= 1

x3
. (A7)

Multiplying by 2 d x/d Z, this equation can be integrated to give(
dx

dZ

)2

+ 1

x2
= 1

D
, (A8)

where D is a constant of integration. Equation (A8) can be further
integrated to yield

x2

D
− (Z − Z0)2

D2
= 1 , (A9)

where Z0 is another constant of integration. Equation (A9) explicitly
shows that the jet assumes a hyperboloidal shape in this case, with
the asymptotes again being conical.

A2 α > 2

Changing variables to f ≡ x/Z1/2 (as in equation A2) and q ≡ ln Z,
equation (A1) becomes in this case

d2f

dq2
=

(
1

4
− C

)
f + 1

f 3
. (A10)

One obvious solution is f= const, with f −1/4 = C − 1/4, or
Z = √

C − 1/4x2. This solution is real only for C > 1/4.
For df /dq �= 0, equation (A10) can be multiplied by 2 df /dq and

rewritten as

d

dq

[(
df

dq

)2

+
(

C − 1

4

)
f 2 + 1

f 2

]
= 0 , (A11)

or, with u ≡ f 2,(
du

dq

)2

= (1 − 4C)u2 + 4Eu − 4 , (A12)

where E is a constant of integration. This can be integrated to give

±2
∫

dq =
∫

du√
(1/4 − C) u2 + Eu − 1

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ln
(

E/2
1/4−C

+u+
√

u2+ Eu−1
1/4−C

)
√

1/4−C
, C < 1

4

2
√

Eu−1
E

, C = 1
4

−1√
C−1/4 arctan

E/2
C−1/4 −u√
−u2+ Eu−1

C−1/4

, C > 1
4 .

(A13)
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The quantity inside the square root in the integrand must be positive
in the asymptotic regime. This implies that u cannot tend to zero
as Z → ∞, and so it either tends to a constant or to ∞. The first
option is unacceptable as it gives q = const ⇔ Z = const. Thus, we
must have u → ∞ as Z → ∞. Since u = f 2 = x2/Z, this means
that the shape is Z ∝ xb with b < 2. The dominant term inside the
square root in the integrand when Z → ∞ is the first one, which
implies C ≤ 1/4 (and hence that the C > 1/4 solution branch of
equation A13 is not physical).

For C = 1/4, equation (A13) gives x =
Z1/2

√
1/E + E[ln (Z/Z0)]2, or, keeping only the dominant

terms, x = Z1/2 (C1 + C2 ln Z). In view of the requirement
u = x2/Z → ∞ as Z → ∞ derived above, one must keep
the logarithmic term in this solution (i.e. C2 �= 0). We also keep
the other term in this solution, which may be needed to match to
the conditions at the base of the flow (see Section 5.3.2). Note that
this solution could not be derived from the ansatz employed in
Section 5.3 since it does not have a pure power-law form.

For C < 1/4, equation (A13) gives (keeping only the
dominant terms) x = C1Z

1/2± 1
2

√
1−4C . Since, as we found

above, the exponent b in Z ∝ xb must be <2 the only
acceptable solution is x = C1Z

1/2+ 1
2

√
1−4C .

Summarizing,
for C > 1/4, Z = √

C − 1/4x2,
for C = 1/4, x = Z1/2 (C1 + C2ln Z) with C2 �= 0, and
for C < 1/4, x = C1Z

1
2 + 1

2

√
1−4C .

The first case (C > 1/4) represents a balance between the poloidal
curvature, electromagnetic and centrifugal terms in equation (A1),
whereas in the last two cases (C ≤ 1/4) only the poloidal curvature
and electromagnetic terms play a role.

A3 α > 2

As discussed in Section 5.3.3, in this case the poloidal curvature
term – the first term on the left-hand side of equation (A1) – can
be neglected. The power-law form for x(Z) given in the main text is
then an exact solution of this equation.
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