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ABSTRACT
We describe and compare several post-correlation radio frequency interference (RFI) classi-
fication methods. As data sizes of observations grow with new and improved telescopes, the
need for completely automated, robust methods for RFI mitigation is pressing. We investigated
several classification methods and find that, for the data sets we used, the most accurate among
them is the SumThreshold method. This is a new method formed from a combination of
existing techniques, including a new way of thresholding. This iterative method estimates the
astronomical signal by carrying out a surface fit in the time-frequency plane. With a theoretical
accuracy of 95 per cent recognition and an approximately 0.1 per cent false probability rate in
simple simulated cases, the method is in practice as good as the human eye in finding RFI.
In addition, it is fast, robust, does not need a data model before it can be executed and works
in almost all configurations with its default parameters. The method has been compared using
simulated data with several other mitigation techniques, including one based upon the singular
value decomposition of the time-frequency matrix, and has shown better results than the rest.

Key words: instrumentation: interferometers – methods: data analysis – techniques: interfer-
ometric – radio continuum: general.

1 IN T RO D U C T I O N

Around 1980 when the radio spectrum was becoming more and
more occupied as a result of technical advancements (Pankonin &
Price 1981), radio observers started to mitigate the radio frequency
interference (RFI) caused by electronic equipment (Thompson,
Gergely & Vanden Bout 1991). Until recently, on-line thresholding
and manual flagging of post-correlated data used to be sufficient to
suppress RFI artefacts in the data. However, as the volume of data
and the required sensitivity of observations increased significantly,
and the contamination of RFI through an increased usage of elec-
tronic equipment grew, new methods had to be developed to deal
with the situation.

RFI mitigation can be applied in two different stages: a pre- and a
post-correlation stage. The pre-correlation mitigation stage is very
powerful as the observational data is still available at its highest time
resolution. For example, there are methods that blank or subtract
short periodic radar RFI bursts on-line (Niamsuwan, Johnson &
Ellingson 2005), leaving the astronomical signal intact with only a
very slightly increased signal-to-noise ratio. Any residual RFI has
to be removed during the data reduction or imaging stage, which

�E-mail: offringa@astro.rug.nl

is often performed manually, for example, by finding appropriate
clipping levels for contaminated baselines until the reduced data
is free of artefacts. Pre-correlation methods have to handle large
amounts of data in a very short time and, because of hardware
constraints, they can often only access limited dimensions of the
data, such as the data from a single dish or station or the data from
a small time range.

Several methods from signal processing have been used to per-
form the first pre-correlation mitigation stage. Examples of these are
thresholding using χ 2 statistics (Weber et al. 1997) or a Neyman–
Pearson detector (Leshem, van der Veen & Boonstra 2000); spatial
filtering with eigenvalue decomposition of a spatial correlation ma-
trix (Leshem et al. 2000; Smolders & Hampson 2002) or by sub-
space tracking (Ellingson & Hampson 2002); the cumulative sum
(CUSUM) method (Baan, Fridman & Millenaar 2004); and adap-
tive cancellation with a reference antenna (Barnbaum & Bradley
1998). In the post-correlation phase, manual flagging is often the
only option, but the use of an independent RFI reference signal
to subtract the RFI (Briggs, Bell & Kesteven 2000), fringe fitting
(Athreya 2009) and post-correlation spatial filtering are possible.
However, none of the above are applicable or sufficient in all cases
or for all types of RFI.

In modern observatories that operate at low frequencies, such
as the Westerbork Synthesis Radio Telescope (WSRT), the Giant
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Metrewave Radio Telescope (GMRT), the Low Frequency Array
(LOFAR) and the Expanded Very Large Array (EVLA), RFI miti-
gation is an essential component in the signal processing. In the case
of LOFAR, there are high-sensitivity requirements, especially for
the Epoch of Reionization project (Jelić et al. 2008; Thomas et al.
2009), in what might be a busier RFI environment, with data sets
up to a petabyte in size. RFI mitigation before correlation remains
important (Boonstra et al. 2005), yet the amount of data will be too
large for manual post-correlation flagging, implying the need for
automated flagging strategies.

RFI comes in many forms (Lemmon 1997; Fridman & Baan
2001). The strong RFI that is problematic is often either local in
frequency, such as RFI caused by television stations, aeroplanes and
radar, or is local in time, e.g. broad-band RFI caused by phenomena
such as lightning, high-voltage power cables and electrical fences.
Sometimes, the frequency of RFI drifts with time as shown later in
Fig. 5(a). This can be caused by Doppler shifting of a satellite sig-
nal or by imperfect transmitters. A different class of RFI is caused
by weakly transmitting, but stationary and therefore systematic, de-
vices on site. This class of RFI is hard to recognize, as it might cover
all the channels in a spectral band. In fringe stopping interferome-
ters, the fringe rotation causes this type of RFI to have a sinusoidal
response in the time-frequency domain (Thompson 1982). It can
be recognized and subtracted in various ways, as e.g. described
recently by Athreya (2009).

To select an RFI mitigation strategy, several considerations
should be taken into account:

(i) The true-/false-positive ratio of the RFI classification.
(ii) The speed of the algorithm.
(iii) Detection or recovery, i.e. whether detection and flagging

of contaminated areas is sufficient. In certain situations, it might
be necessary to recover contaminated data, i.e. to subtract the RFI
from the data.

(iv) The effects of RFI mitigation on the noise. For example, a
difference in the observed noise level caused by RFI will be fatal for
the LOFAR Epoch of Reionization experiment (Jelić et al. 2008).

In this paper, we will evaluate the effectiveness of several au-
tomatic post-correlation RFI mitigation methods and their combi-
nations. The methods will be compared with each other in order
to be able to pick a general optimal post-correlation RFI strategy.
We will do this by testing the methods on both artificial data and
data from WSRT that has been observed in the frequency range of
LOFAR. Testing the methods on WSRT data will also provide an
indication of the effects of the RFI environment on future LOFAR
observations.

In the next section, we describe a new method of flagging RFI.
We present our results, including the comparative study, in Section 3
and discuss the results in Section 4. In Section 5, we discuss some
future directions for further work in this area.

2 ME T H O D S

Radio astronomers have developed their own ways of dealing with
RFI during data reduction using numerous astronomical software
packages. In many cases, this implies flagging by hand – a tedious
and time consuming job. Many toolkits, such as AIPS,1 AIPS++,2

1 Astronomical Image Processing System (AIPS), http://aips.nrao.edu.
2 AIPS++, sequal of AIPS, http://aips2.nrao.edu/.

MIRIAD3 and NEWSTAR,4 provide specific features to perform flagging,
such as the FLAGR task in AIPS++. Astronomers have automated the
process further by designing scripts in which common signal pro-
cessing techniques such as thresholding, smoothing, line detection
and curve fitting are combined (Bhat et al. 2005; Winkel, Kerp &
Stanko 2006). Another common signal processing technique known
as singular value decomposition has recently been used for the auto-
matic removal of broad-band RFI in GMRT observations (Pen et al.
2009). We will describe some of the techniques available that relate
to a new method of interference mitigation that we will introduce,
and finally we will explain the new method itself.

2.1 Post-correlation thresholding

Since RFI increases the measured absolute amplitude of a signal,
thresholding is an effective method that is often used to remove
strong RFI. The threshold level is often globally determined, or
sometimes set relative to the variance or mode distribution parame-
ters per baseline. These can be stably estimated using, for example,
the Winsorized variance or mode (Fridman 2008). All values that
are outside a certain range around the mean or median are flagged
as bad data and not used in subsequent data reduction. Sometimes
a number of samples around a bad data sample are flagged as well.
Most astronomical reduction toolkits provide options to threshold
part of a data cube, allowing different thresholds at the cost of an
increased effort for the astronomer. An important consequence of
thresholding is that good data are selected with a bias. When many
non-contaminated samples are above the threshold, they will be
flagged and not used in subsequent data reduction. As a result, arte-
facts such as incorrect flux densities might be caused in the image
plane. It is therefore important to have a low false-probability rate
of RFI detection.

2.2 Surface fitting and smoothing

A surface fit to the correlated visibilities V (ν, t) as a function of
frequency ν and time t can produce a surface V̂ (ν, t) that repre-
sents the astronomical information in the signal. Requiring V̂ (ν, t)
to be a smooth surface is a good assumption for most astronomical
continuum sources, as their observed amplitudes tend not to change
rapidly with time and frequency, whereas specific types of RFI can
create sharp edges in the time-frequency domain. Because of the
smoothing in both time and frequency direction, this method is not
directly usable when observing strong line sources or strong pul-
sars. The residuals between the fit and the data contain the system
noise N noise(ν, t) and the RFI, NRFI(ν, t), which can then be thresh-
olded without the chance of flagging astronomical sources that have
visibilities with high amplitude.

Several suitable surface fitting methods exist. As an example,
in Winkel et al. (2006), a pipeline is described in which a two-
dimensional, low-order, dimension-independent polynomial is iter-
atively fitted to time-frequency tiles in the data using a least-squares
fit:

V̂k(ν, t) =
Nν∑
i=1

ak,iν
i +

Nt∑
i=1

bk,i t
i + ck, (1)

3 MIRIAD, a data reduction package tailored for the Australia Telescope Com-
pact Array (ATCA), http://www.atnf.csiro.au/computing/software/miriad/.
4 NEWSTAR, a data reduction package tailored for the Westerbork Synthesis
Radio Telescope (Noordam 1994).
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Figure 1. Tile-based polynomial fitting applied to the raw visibilities from
an observation of 3C 196 at 140 MHz using a 144 m WSRT baseline (see
Section 3.3). Panel (a) shows the tiled fit of the astronomical signal. Panel
(b) shows the difference between the fitted astronomical signal and the
observed signal used for thresholding. Panel (c) shows the flags on top of
the original signal. The flags established by single pixel thresholding cover
the RFI when verified by eye, although many false-positives can be seen
which are caused by (‘normal’) noise. The tile size used for this image is 30
frequency channels with 10 kHz width ×50 time scans with 10 s integration
time.

where V̂k is the fitted surface that represents the astronomical in-
formation in the kth tile, Nν , Nt are the polynomial order for the
frequency and the time, respectively, and ak,i, bk,i, ck are the coeffi-
cients of the fit for tile k.

The fit is performed iteratively, and values which have been
flagged in previous iterations are excluded from the fit. This can
be done by introducing a weight function WF(ν, t), where WF(ν,
t) = 0 indicates that the value is flagged or outside the boundaries
of the measured time or frequency range, and WF(ν, t) = 1 means
the value is accepted. The fit is performed by minimizing an error
function Ek for each tile:

Ek =
∑

ν

∑
t

WF (ν, t)f
[
V̂k(ν, t), V (ν, t)

]
, (2)

where f (a, b) = a2 − b2 for a least-squares fit or f (a, b) = |a −
b| for a fit with a minimal absolute error.

An example of this approach after a few iterations can be seen
in Fig. 1. In simple cases, the surfaces that are created with this
approach represent the astronomical information reasonably well,
and the method is also quite fast. However, as polynomial fits tend
to show deviations near boundaries, the method is inaccurate near
the boundaries of each tile.

Compared with tile-based approaches, sliding window methods
tend to be more accurate. A simple example of a sliding window
approach is to calculate the average of a window of size N × M

around each data value:

V̂ (ν, t) = 1

count

1
2 N∑

i=− 1
2 N

1
2 M∑

j=− 1
2 M

WF �V (ν + i�ν, t + j�t), (3)

with

count =
1
2 N∑

i=− 1
2 N

1
2 M∑

j=− 1
2 M

WF(ν + i�ν, t + j�t). (4)

This method is still fast and creates a surface without tile edges.
However, the sliding window average represents the astronomical
signal less well. For example, peaks in the original function cause

square-shaped edges in the fit, which in the end cause classification
inaccuracies.

One way to overcome this problem is to calculate the local median
instead of the local average. Values that have been flagged in a
previous iteration should be ignored by the median calculation. The
median is insensitive to peaks and the surface created by the local
median remains smooth when the window is slid over the data.
The median, however, is not always a good estimate of the sliding
window centre sample specifically, as all samples have equal weight.

Another way to overcome the problem is to calculate a weighted
average. Consider a weight function Wd(i, j ) that depends on the
two components i, j that represent the distances from the centre of
the window in time and frequency, respectively. Then

V̂ (ν, t) =
∑ 1

2 N

i=− 1
2 N

∑ 1
2 M

j=− 1
2 M

Wd (i, j )(WF �V )(νi, tj )

weight
, (5)

where

weight =
1
2 N∑

i=− 1
2 N

1
2 M∑

j=− 1
2 M

Wd (i, j )WF (ν + i�ν, t + j�t). (6)

This can be calculated very fast, since (5) is the convolution op-
eration Wd ∗ (WF �V ) and (6) is another convolution Wd ∗ WF ,
giving

V̂ = [(WF �V ) ∗ Wd ] � (WF ∗ Wd ) , (7)

where � and � are the elementwise multiplication and division op-
erators. A good choice for Wd is the two-dimensional (dimensional
independent) Gaussian function:

Wd (i, j ) = exp

(
− i2

2σ 2
ν

− j 2

2σ 2
t

)
. (8)

Together, equations (7) and (8) essentially describe a weighted
Gaussian smoothing operation, or more specifically, a Gaussian
smoothing operation with missing data. The parameters σ ν and σ t

can be used to specify the level of smoothing in frequency and time,
respectively. Since the weight function is dimensionally separable,
the convolutions can be dimensionally separated:

V̂ = (WF �V ) ∗ Uν ∗ Ut

WF ∗ Uν ∗ Ut

, (9)

with Uν(i) = Wd(i, 0) and Ut(j ) = Wd(0, j ). Each of the convolu-
tions in (9) is a one-dimensional convolution, and this is therefore
a fast operation.

2.3 The cumulative sum method

The CUSUM method is a well-known analysis method used to de-
tect changes in distribution parameters (Page 1954; Basseville &
Nikiforov 1993), such as in quality control in production environ-
ments. If the cumulative sum of sequential samples exceeds an adap-
tive threshold, the system enters an alarmed state and changes can
be made to correct the quality. In its common form, the likelihood
for two distribution parameters is used to compute the threshold.

To turn this method into an RFI mitigation strategy, the total
observed power or power received at a certain frequency by a sin-
gle dish can be used as the sequential input values to the CUSUM
method. The likelihoods of either variance or mean of RFI can be es-
timated using the variance of the signal (Friedman 1996; Baan et al.
2004). Observing can be stopped as soon as RFI is detected, and can
continue when reception has returned to normal. This method can
be easily implemented for on-line RFI detection, as it is simple and
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fast. However, the CUSUM method does not estimate the start time
of the change, it only detects the change quickly, which nevertheless
may cost time and thus some bad data may leak through before the
method detects faint RFI. Hence, the method is more applicable to
a first check on the data than to actually perform flagging. The sub-
sequent sections will describe a method that combines the detection
strength of the CUSUM method with the possibility of performing
flagging off-line.

2.4 Combinatorial thresholding

RFI bursts often affect multiple samples which are connected either
in frequency or time. We will now introduce a new threshold mech-
anism that makes use of this knowledge: we will flag a combination
of samples when a property of this combination exceeds some limit.
Assume that A and B are neighbouring samples. In normal thresh-
olding, we will look at each of the samples A and B individually and
flag one of them if it exceeds some ‘single sample’ threshold χ 1.
For combinatorial thresholding, a new flagging criterion is added: if
A and B do not exceed the single sample threshold χ 1 individually,
they can still be flagged when A and B both exceed a somewhat
lower threshold χ 2. If not, they can be combined with a third neigh-
bour, C, and thresholded at χ 3, etc. The more connected samples
are combined, the lower the sample threshold.

Given a set of strictly decreasing thresholds, {χ i}N
i=1, a value

will be classified as RFI if it belongs to a combination of i values in
either the time or frequency direction in which all absolute values are
above the threshold χ i. To determine whether a single sample R(ν, t)
should be flagged because of an RFI sequence in the frequency
direction, the following rule is applied:

flagνM(ν, t) = ∃i ∈ {0 . . . M − 1} : ∀j ∈ {0 . . . M − 1} :

|R (ν + (i − j ) �ν, t)| > χM, (10)

where M is the number of samples in a combination. The flagging
rules for the time direction are correspondingly determined. Finally,
a sample is flagged if any of the two rules is satisfied. We will call
this method the VarThreshold method.

We will show a simple example to demonstrate the method. Con-
sider the following values:

R =

⎛
⎜⎝

1 2 1 4

4 1 1 4

2 2 1 4

⎞
⎟⎠ . (11)

Each row represents a frequency channel and each column repre-
sents a time scan. Assume the high values in the fourth column
were caused by broad-band RFI. When using a normal threshold
χ = 3, all samples with value 4 would be thresholded, including
one false-positive. However, if we used combinatorial threshold-
ing, with χ 1 = 5 and χ 2 = 3, we would threshold only the three
broad-band RFI samples.

The above text suggests an implementation of this method by
a procedure which iterates over all samples and, for each sample,
checks if it and its M ∈ M neighbours form an RFI sequence
in one of the directions. Alternatively, an implementation can start
by marking all samples above a certain χM as candidates. Subse-
quently, only the marked candidates that form a connected segment
with more than M connected samples in an orthogonal line in one
of the directions are flagged. This procedure is repeated for all
M ∈ M. From this perspective, it is easy to add other morpho-
logical constraints. Instead of looking for straight lines in the time
and frequency direction, an enhanced version might flag connected

shapes covering a specific area, or shapes that form a line or curve
in the plane, possibly not connected, that is likely to be caused by
RFI.

2.4.1 VarThreshold parameters

The following list of parameters need to be optimized to make
efficient use of this approach:

(i) The false-positive rate on uncontaminated samples. The lower
the value, the more RFI remains. The higher the value, the more
uncontaminated samples will be flagged. We will discuss this in
Section 2.4.2.

(ii) A set that defines which samples are combined. For this
we define M, a set containing the number of samples that will be
combined in each of the four directions. Ideally, each sample will be
combined with all samples of either the same frequency or the same
time, i.e. M = {i ∈ Z : 1 ≤ i ≤ max(Nν, Nt )}, with Z the set of
integers. Empirically, a small subset M = {1, 2, 4, 8, 16, 32, 64}
works almost as well and saves summing and comparing many
samples.

(iii) The set of thresholds {χM : M ∈ M} for the different num-
ber of combinations M. The total set of thresholds is expressed by
two parameters, χ 1 (the threshold on a single sample) and ρ, using
the following formula:

χi = χ1

ρ log2 i
. (12)

A value of ρ = 1.5 empirically seems to work well for the
VarThreshold and the below defined SumThreshold5 method. To
find χ 1 for a desired false probability rate, ρ is kept constant and
the χ 1 value is binary searched by performing mitigation on data
selected from the distribution of the noise, with the values {χi}i∈M
computed as in (12), until the false probability rate is close to the
desired rate.

Since the method is combined with a surface fitting strategy, the
following parameters are added:

(i) The number of iterations to be performed. The resulting ac-
curacies are good with about five iterations.

(ii) The iteration sensitivity as a function of the iteration number,
η(i). In each iteration, the threshold sensitivity is increased (more
samples are flagged). To accomplish this, all the thresholds {χi}i∈M
are decreased by dividing them by a factor of η(i). Only during the
last iteration will a sensitivity of 100 per cent be used. By slowly
increasing the sensitivity a first bad fit to the background would not
have much effect, since only the very strongly RFI contaminated
samples are removed. Using an exponential function for η(i) was
found to work well.

2.4.2 The VarThreshold false-positive ratio

Assume that R ∼ D(σNs
), where R is the residual of the complex

correlated visibilities V and the surface fit V̂ , and D is a distribution
with parameter σ . The probability that a non-RFI contaminated
sample from the residual is larger than χ can be determined with

∀ν∀t : P (|R(ν, t)| ≥ χ ) =
∫ −χ

−∞
ϕσ (x)dx +

∫ ∞

χ

ϕσ (x) dx, (13)

5 Software to flag measurement sets with the SumThreshold method and
other discussed methods has been made publicly available and can be down-
loaded from the following location: http://www.astro.rug.nl/rfi-software/.
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where ϕ(x) is the probability density function of the distribution
D(σN∫ ). Note that the term

∫ −χ

−∞ ϕσ (x)dx is only relevant when
the distribution contains negative values – unlike the Rayleigh
distribution – and the values are thresholded above χ as well as
below −χ .

The combined threshold false-positive rates can best be calcu-
lated numerically, since an analytical calculation is rather complex,
even for M with a single combined threshold χM . This analytical
calculation will be demonstrated for M = 2. First, it is assumed that
any two samples, R(ν1, t1) and R(ν2, t2), are independent when
they are not RFI contaminated. This is the case if the fit repre-
sents the astronomical data and system noise is uncorrelated. With
this assumption, the probability Pfalse for a single non-contaminated
sample R1 with M = 2 to be flagged in one of the four combinations
with its neighbours R2...5 can be calculated with

Pfalse(ν, t) = P (flagνM=2(ν, t) ∨ flagtM=2(ν, t)),

= P (|R1| > χ ∧ ∃i ∈ [2 . . . 5] : |Ri | > χ ),

= P (|R| > χ ) − P (|R| > χ ) (1 − P (|R| > χ ))4 .

(14)

The corresponding formulae for larger M are more complex. When
M contains more than one element, the false-positive ratios for the
elements Mi cannot be simply added to obtain the combined false-
positive ratio, as P (flagνMi (ν, t)) and P (flagνMj (ν, t)) are not statis-
tically independent: both will at least make use of sample R(ν, t).
Given this, the analytical expression becomes rather complex and
the probability is evaluated numerically.

Fig. 2 shows the result of calculating the total false-positive ratio
numerically, for several values of M.

2.5 The SumThreshold method

Now we will present a variation on the VarThreshold method that
improves the classification performance. This method, named the
SumThreshold method, is a flagging method that combines samples
as in the VarThreshold method. In this alternative case, the sum of a
combination of one or more other samples is used as a threshold cri-
terion. As in the VarThreshold method, the threshold χM is variable
and depends on M, the number of samples that are summed.

Figure 2. The false-positives of the VarThreshold method when flagging
with a single combination M = {M} without surface fitting. Samples
were selected from a Rayleigh distribution, which is the distribution of the
visibility amplitudes. χ is relative to the mode of the distribution.

Unlike the VarThreshold method, this approach allows the flag-
ging of a sequence of samples when it contains samples with values
below the sequence threshold value. However, without an additional
rule, there are situations in which this method might flag too many
samples. For example, consider the sequence [0, 0, 5, 6, 0, 0] that
represents a strong RFI contamination in two samples. When the
SumThreshold method without a second rule is applied with average
threshold values χ 1 = 7, χ 2 = 5, χ 3 = 4, . . . , χ 6 = 1.8, all six values
would be thresholded, as their average exceeds 6χ 6. The following
rule is therefore added: the values are thresholded in the increasing
order χ 1, χ 2, . . . , χM . When a lower threshold has already classi-
fied samples as RFI contaminated, the samples will be left out of
the sum and replaced by the average threshold level. In the example
case, the values 5 and 6 will be classified as RFI by the second
threshold, and therefore will be replaced by χ 6 when combining all
the six samples. The average of the sequence for the sixth threshold
is therefore calculated as (0 + 0 + χ6 + χ6 + 0 + 0) /6 = 2

6 χ6. As
a consequence, only the samples with values 5 and 6 are flagged.

2.5.1 The SumThreshold false-positive ratio

We calculate the theoretical false-positive ratio for M = 2 as for
the VarThreshold method. The probability P (T χ,1,2) that the sum
of two independent random samples exceeds a certain value χ is
given by

∀ν1ν2t1t2 : P (Tχ,1,2) = P [R(ν1, t1) + R(ν2, t2) ≥ χ ] ,

= P (D(2σNs
) ≥ χ ),

=
∫ ∞

χ

ϕ2σ (x) dx. (15)

When thresholding the average of a combination of two samples,
each sample will occur four times in a hypothesis test, once with
each of its neighbours. On uncontaminated samples, the probability
of a false-positive for each of these tests is given by (15). The
probability for a false-positive with the four tests applied on each
sample becomes

P (Tχ,1×4) = P (Tχ,1,2 ∨ Tχ,1,3 ∨ Tχ,1,4 ∨ Tχ,1,5).

Because the tests {Tχ,1,i}5
i=2 are dependent on each other, it is

much easier to calculate the false-positive rates numerically. This
can be performed by applying the SumThreshold on a large amount
of data selected from the distribution D. The result of such a simu-
lation is in Fig. 3.

2.6 Singular value decomposition

Singular value decomposition (SVD) is a mathematical tool for
finding the singular values of a matrix, which can exhibit certain
properties of the matrix.

A singular value decomposition consists of finding the complex
unitary M × M and N × N dimensional matrices U and V con-
taining, respectively, a left and right singular vector in each row,
and the diagonal, M × N dimensional real matrix 
 containing the
singular values, such that

A = U
V T . (16)

RFI is mitigated from the data set by performing this decomposition
on a matrix A. Each element Aij represents the measured flux, where
i is a baseline-frequency index and j a time index. Each given matrix
A has a unique solution for the singular values 
, if the singular
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Figure 3. The probability of a false-positive when thresholding with a
single combination M = {M} using the SumThreshold method without
surface fitting. The Rayleigh distribution was used for the simulation. χ is
the average threshold relative to the distribution mode. Thus, a combination
of samples was thresholded when their sum exceeds χ × M × σ . The false
ratio for M ≥ 2 is different from the VarThreshold method (Fig. 2). Because
of this difference, the parameter ρ used to calculate the set of thresholds as in
(12) needs to be optimized for the methods individually. Although the false
ratio is not decreased when comparing this method with the VarThreshold
method, the true ratio is often increased (Fig. 8).

values are sorted, but there is no unique solution for U and V (e.g. A
remains equal when all values in U and V are negated). It is assumed
that the highest singular values represent the singular values of the
RFI data. To mitigate the RFI, the highest singular values in 
 are
set to zero and the new matrix Â is recomposed from U , 
 and V .

The number of singular values to be removed or set to zero has to
be chosen in such a way that only the RFI is removed. The singular
values that correspond to RFI are often strong outliers, whereas the
singular values of Gaussian noise form a smooth curve. The position
of the abrupt change in the curve of the singular values is used as
the number of singular values to be removed, as is shown in Fig. 4.

2.6.1 Properties

Let L = min(M , N ), then

Aij =
L∑

k=1

Uik
kkVjk. (17)

U and V are unitary, UU = I with U the Hermitian transpose, and
the rows and columns of the matrices form by definition a complex
orthonormal basis. This implies

∀i ∈ [1 . . . M] :
L∑

j=1

U 2
ij = 1. (18)

Hence, there is at least one non-zero value in each row and column
of the matrices U and V , and setting a non-zero singular value to
zero changes A. If A contains real values only, equation (18) implies
that all values in U and V are between −1 and 1, and removing a
singular value 
ii can alter each value in A by at most 
ii. In the
complex case, removing a singular value can alter the absolute value
of each value in A at most by 
ii. In general, setting 
ii to zero
subtracts a matrix �i with rank 1 from A, as (�i)jk = Uji
iiVki ,
and thus all columns are linearly dependent.

Figure 4. The distribution of the singular values of two artificial measure-
ments: one containing Gaussian noise only, the other containing Gaussian
noise polluted by broad-band RFI. In this example, the first five singular
values are affected by the broad-band RFI. In general, the number of sin-
gular values that are affected by RFI and the possibility to recognize them
varies depending on the orthogonality properties of the RFI.

The orthogonality properties imply that the order of the rows and
columns in the original matrix A do not change the singular values:
the order of the rows and columns is irrelevant for the SVD method
to detect RFI. Intuitively, the SVD method does not ‘distinguish’
between a smoothly increasing amplitude, caused by astronomical
sources, and RFI, and might fail to correctly subtract or detect RFI
because of the astronomical signal.

If RFI is to be separated from the signal, the RFI and the signal
have to adhere to the following properties:

(i) All columns containing RFI (and consequently all rows) have
to be orthogonal to the astronomical signal. In other words, for any
column or row a in the matrix, aRFI · asignal = 0, with aRFI the RFI
component and asignal the signal component in the data.

(ii) The singular values of the RFI are substantially higher than
the singular values of the astronomical signal. This requires the RFI
to be strong.

(iii) The individual RFI columns are either fully linearly depen-
dent on or fully orthogonal to each other. If the individual RFI
components are partially dependent, the largest part of the RFI is
removed and the singular value of what is left of the RFI might not
have enough ‘gain’ to be removed or flagged.

Iteratively fitting a surface and subtracting the surface, as in
Section 2.2, might improve the compliance to the first requirement,
although it increases the execution time of the method. Another
way to improve compliance to the requirement is to remove the
astronomical signal by subtracting a good model beforehand.

It is useful to note that unitary transformations do not change the
singular values of a matrix, although they might change the singular
vectors. Since the Fourier transform is a unitary transformation
according to Parseval’s theorem, the following equation holds:

A = USV ⇔ F (A) = U ′SV ′. (19)

The consequence of this is that it does not matter whether the SVD
method is executed in the time-frequency domain, the time-lag
domain or another Fourier domain, since setting singular values to
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zero in the Fourier domain would set the singular value to zero in
the original domain.

2.7 Input data types

The combined thresholding methods described in this paper can be
applied to several types of data: autocorrelated or cross-correlated
to specific polarizations or Stokes parameters, to amplitude or to
phase, etc.

We have compared flagging on cross-correlations and autocor-
relations. The cross-correlations of each baseline can be processed
with one of the flagging methods, resulting in N (N − 1)/2 corre-
lations to be processed. Alternatively, every antenna can be indi-
vidually flagged by processing the autocorrelations, and samples in
a baseline might be flagged if either of the corresponding samples
in the individual antenna autocorrelations have been flagged. Only
N correlations need to be searched for RFI in this case. In addition
to the benefit of speed, RFI is strongest in autocorrelations and the
data contain no fringes from astronomical sources, as autocorrela-
tions do not have interference patterns, thus offering an improved
accuracy in RFI detection. On the down side, some RFI might be
present in autocorrelations that would have been mitigated by cross-
correlation, and detecting RFI in autocorrelations potentially throws
away some usable data in the cross-correlations.

In cases where the polarization of the observed electromagnetic
waves is measured, the polarization might contain valuable infor-
mation for RFI classification. For now, we have processed each
polarization individually, without exploiting relationships between
polarizations.

3 R ESULTS

3.1 Surface fitting results

In Section 2.2, we described several surface fitting methods to es-
timate the astronomical signal in the frequency-time domain. We
found that the surface fitting methods when combined with one of
the classification methods do not differ much in accuracy. A sliding
window approach was found to be more stable compared with a
tile based approach. The Gaussian weighted average, a polynomial
fit and the window median for the subtracted surface were found
to be approximately equal in their accuracies after optimizing their

parameters such as the window size, the Gaussian kernel size and
the order of the polynomial, although their parameters do influence
the accuracy.

Finding global parameters that always work well (or automatic
procedures to find the parameters) is not trivial. The algorithm can
handle data with very different characteristics: it can be applied to
XX, XY , YX or YY polarizations, auto- or cross-correlations from
either long or short baselines, for LOFAR or for WSRT data, before
or after calibration, etc. To use the same surface fitting parameters
in all these different situations, the window size, and if applicable
the Gaussian kernel size, needs to be rather small. The expected
amplitude changes of celestial signals are usually much less in
the frequency direction, and setting the window size larger in the
frequency direction improves stability. We used a typical size of
the sliding window of 40 frequency channels ×20 time scans and
Gaussian kernel parameters of σ ν = 15 and σ t = 7.5. The numbers
are based on trials using different observed and artificial data sets.
The parameters are relative to the number of channels and number
of time-steps. For WSRT data, a channel is 10 kHz wide and a time
scan is 10 s long. LOFAR will have a 1 kHz × 1 s correlation output
resolution. For best results, the length and width of the window
should be about three times the Gaussian kernel size or larger.

3.2 RFI classification results

Both the SVD and threshold methods show accurate results on
removing line RFI and broad-band RFI. The SVD method is not
suitable for removing frequency-varying RFI, as demonstrated in
Fig. 5, and thus has to be complemented with other techniques to
remove all RFI. However, the SVD method can be used to subtract
and remove the RFI from the image, leaving the astronomical signal
intact. For this to be successful, considerable assumptions about the
mathematical properties of RFI and the astronomical signal have to
be true: the time-frequency matrix with the RFI components has to
be orthogonal to the time-frequency matrix of the astronomical sig-
nal, and the different RFI components have to be either orthogonal
to each other or linearly dependent on each other. Fig. 6 shows the
SVD decomposition of test set A that consists of uncorrelated noise
and linear RFI.

As it is hard to quantitatively compare RFI mitigation methods
based on data sets of which the characteristics of the RFI cannot
be known for certain, several artificial test sets were created. These

Figure 5. The autocorrelated data in this image demonstrate the inability of the SVD method to remove sources that slowly change frequency over time
(e.g. because the source has a changing velocity in the direction of the antenna). This type of RFI seems to be relatively common in low-frequency WSRT
data. The RFI in this particular example is so strong that it can be easily removed by thresholding, but this plot is to illustrate the effects of such RFI. When
the frequency-changing signal is faint and cannot be removed by thresholding, applying SVD will, as in this example, change the astronomical information in
the data in an unpredictable way. (a) Original observation. (b) After removing the highest singular values from the image (note the different flux scale).
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Figure 6. SV decomposition of test set A (Fig. 7a): noise with broad-band RFI covering all channels homogeneously. The recomposed image from the low
singular values (top panel) looks very promising: none of the RFI is left and the noise seems to be untouched. However, a recomposition of the matrix with
only high singular values (bottom panel), i.e. the part that has been subtracted from the image, shows that the noise is affected in an unpredictable way by the
decomposition. This is the best case for the SVD method; in more realistic scenarios, the data should include a residual astronomical signal and broad-band
RFI that might not be linearly dependent.

sets are shown in Fig. 7 and contain broad-band RFI only. Since
the RFI was added artificially, the location of the RFI in the time-
frequency domain is known, and the accuracy of the methods can
be tested quantitatively. The results are drawn as receiver operating
characteristic (ROC) curves in Fig. 8. ROC curves show the true
probability rate against the false probability rate. The different ac-
curacies and characteristics of the methods can easily be compared
in ROC graphs.

The SumThreshold method shows a considerably better accuracy
in all the test sets. Test sets A and B contain RFI that is completely
linear dependent, and the SVD method also works very well in these
sets. The SVD method could actually be used to subtract the RFI
instead of flagging and not using the data. However, to mitigate the
RFI in test set C, the methods have to deal with RFI that is neither
orthogonal nor completely dependent on each other, and thus the
accuracy of the SVD method decreases.

A normal thresholding strategy was also tested to compare the
results. When performing normal thresholding with a surface fit as
in the SumThreshold method, the accuracy for thresholding actually
decreases in the test cases without an astronomical signal (see the
curves labelled ‘Fit + simple threshold’ in Fig. 8). This is partially
because the surface fit was optimized for the SumThreshold method.
Furthermore, since the accuracy of the thresholding is not very
good, the fit is influenced by the undetected RFI, causing more
errors.

When astronomical information is added as in test set E and
a more complex background is added as in test set F, the SVD
method shows a decreased accuracy in mitigating the RFI, as can
also be seen in Fig. 9. However, in test set G, the background of
test set F is Gaussian smoothed and subtracted, as is done before
thresholding. The SVD method now shows an improved accuracy,
though still not as good as the SumThreshold method. Test set
H shows that the linear dependency of the RFI is not the only
requirement for successful mitigation with the SVD method: the
added RFI is completely linearly dependent in this test set, but the
background is still causing low accuracies in the SVD method.

It should be noted that some of these test sets are measuring the
theoretical accuracy of non-orthogonal, but not completely inde-
pendent RFI contamination. As shown in Section 2.6, this was the

hardest case for the SVD method. When in practice the RFI does
behave in an orthogonal or dependent manner, the results might be
quite different. Nevertheless, it is unlikely that all RFI contamina-
tions that are measured by different antennae at different times are
always either linearly dependent or orthogonal.

The presented test sets simulate a single baseline, whereas in
a real measurement, the SVD method will exploit the correlation
of RFI between different antennae. This will, however, also de-
crease the probability that all RFI is either orthogonal or linearly
dependent.

3.3 Automatic flagging of WSRT data

To test the various RFI flagging algorithms, we have used WSRT
data in the LFFE band from 138–157 MHz obtained in 2007 Novem-
ber and December. The observations have been described and anal-
ysed by Bernardi et al. (2009a,b) to which we refer for details
of the astrophysical motivation and calibration. For our analysis,
however, we used the raw uncalibrated visibilities. The correlator
integration time for the data was 10 s. A total of eight bands of
2.5 MHz width were available. The central frequencies of these
bands were located at 139.3, 141.5, 143.7, 145.9, 148.1, 150.3,
152.5 and 154.7 MHz. Each band was divided into 512 spectral
channels. The data were Hanning tapered, yielding an effective
spectral resolution of 9.8 kHz. Therefore, adjacent spectral chan-
nels are highly correlated. A total of 13 telescopes participated in
the observations providing a total of 78 interferometers with base-
lines from 36 to 2736 m. All four cross-correlations between the
orthogonal, linearly polarized feeds were used in the analysis.

We have tested the various methods on several data sets. The
SumThreshold method in combination with Gaussian smoothing
shows especially excellent results. Fig. 10 shows a typical time-
frequency diagram of WSRT data at ∼140 MHz and the applica-
tion of the SumThreshold method. Although the smoothed surface
is slightly affected by the RFI after five iterations, as faint arte-
facts are visible in the smoothed surface around places where RFI
used to be, the effect is so small that it does not pose a problem
for the SumThresholding method. However, it makes the calculated
false probability rate inaccurate, as the false probability calculations
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Figure 7. The artificial test sets containing broad-band RFI, used for testing and parameter optimization. In all images, time is along the horizontal and
frequency along the vertical axis. All test sets simulate a similar baseline. (a) Test set A: noise with broadband RFI contaminating all channels, ordered from
strong (left) to weak (right). (b) Test set B: broadband RFI contaminating a part of the channels. (c) Test set C: broadband RFI contaminating different channels.
(d) Test set D: a simulated observation of the crosscorrelation of three point sources being close together added to test set C. (e) Test set E: a simulated
observation of the crosscorrelation of five distant sources added to test set A. (f) Test set F: as E, but RFI as in test set C. (g) Test set G: as F, but Gaussian
smoothed before adding RFI. (h) Test set H: a high frequency background signal added to test set C.

assume independence between the residual samples. When validat-
ing the results by visual inspection, we see far less false detections
than the calculated false probability rate.

We were able to use the same parameters for any situation in the
WSRT data, and therefore were able to completely automate the
flagging process. Even at baselines and frequencies with dramatic
RFI contamination of up to 50 per cent, the SumThreshold flagging
method remained stable and accurate. Fig. 11 shows, for example,
a badly contaminated band of WSRT data that is almost perfectly
RFI flagged.

4 C ONCLUSI ON A ND DI SCUSSI ON

In this article, we have shown several approaches to deal with RFI
that is left after correlation. The results show that automated flagging
with the SumThreshold method works well for broad-band and
peak RFI. In all cases, the default parameters for the method work
well, although parameter tweaking might in some cases improve the
classification. In the artificial broad-band RFI situations, it detects
80 per cent of the artificially inserted RFI with less than 0.1 per cent
error, and often approaches a 99 per cent recognition almost without
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Figure 8. The ROC curves produced by applying various RFI detection methods to the test sets. The closer an ROC curve passes the top-left of the graph at
100 per cent true-positives with 0 per cent false-positives, the more accurate is the method.

error. The accuracy of this method is therefore as good as can be
expected from manual flagging. In the case of WSRT, the new
method does not improve the dynamic range of the data compared
with manual flagging, but the method saves a considerable amount
of work.

New telescopes such as LOFAR and the Square Kilometre Ar-
ray require robust automatic procedures, as these telescopes will
produce data sets that exceed current measurements in volume by
orders of magnitude. The ability to flag or check baselines or sub-
bands individually will be lost.
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Figure 9. The results of two mitigation methods applied to test set H. (a) SVD performed on test set H (71.0% recognized, 0.6% false). (b) SumThreshold
performed on test set H (99.4% recognized, 0% false).

Figure 10. Time (horizontal) versus frequency (vertical) plots of uncalibrated WSRT data, cross-correlations of antenna C versus D and the application of the
SumThreshold automated flagging procedure. Panel (a) shows one hour of the amplitude of a 3C 196 observation, panel (b) shows the result of the flagger,
panel (c) shows the fitted surface after five iterations and panel (d) shows the difference between panel (a) and panel (c).

The ROC analysis shows that the SumThreshold method is to
be preferred above the VarThreshold and SVD methods. The SVD
method can be used in some respects to detect RFI, but is less ac-
curate. It can either be used to detect the RFI or to correct samples.
If it is used to correct samples by filtering the RFI out, rather than
only detecting and flagging it, artefacts with unknown characteris-
tics could remain in the data. For WSRT data, these artefacts look
as bad as the broad-band RFI itself.

All methods have been tested without assuming a data model.
Subtracting the model before RFI detection might improve the

classification further. Nevertheless, the detection accuracy with and
without a model do not differ much. As such, going back and forth
between flagging data and creating a model is not necessary in most
cases.

5 FU RT H E R WO R K

RFI with a moderate strength that can be detected by eye was found
to be of no concern for automatic flagging methods in sensitive
telescopes such as WSRT. However, a different kind of RFI might
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Figure 11. Time (horizontal) versus frequency (vertical) plots of WSRT
data, cross-correlations of antenna 1 versus 2: a particular bad band at
121.3–123.7 MHz of an observation of 3C 147, showing that the method
remains robust in one of the worst cases at the WSRT. (a) Original.
(b) Automated flagging result.

still pose problems. Certain weak RFI, such as radiation that leaks
from cabins in situ, might be present in many channels for a sub-
stantial duration of the observation. This might pose problems for
observations that require long integration times to achieve their re-
quired signal-to-noise ratios, such as the LOFAR-EoR project. If
the RFI is persistent in time, systematic errors could result. There
are some interesting ways to remove these, and one of them is the
fringe-fitting RFI mitigation method described by Athreya (2009).
Although this technique works at the GMRT, preliminary tests with
the fringe-fitting RFI mitigation method on WSRT and LOFAR
data do not show a strong presence of this type of RFI, and re-
moving very weak RFI with a similar method requires more work.
Therefore, to determine whether this type of RFI is really present,
and whether it might be removable is yet to be seen.

An important next step is to consider practical issues in RFI miti-
gation techniques. For example, the effects of many RFI mitigation
methods, post- as well as pre-correlation, need to be simulated, since
we never know what the image plane ought to look like. Also, which
post- and pre-correlation methods can be combined? Under which
practical circumstances do RFI mitigation methods fail? How can
we be sure that astronomical detections are not caused by RFI, or
by the methods that try to reduce RFI? Answering these questions

Figure 12. Typical histogram of the phase in a short baseline of a WSRT
observation. The RFI was detected by using the SumThreshold method. The
plot implies that RFI-contaminated samples have a much higher probability
to have a phase deviating from zero, and the phase thus contains valuable
information for RFI detection.

is important for establishing the reliability of new RFI mitigation
methods and for their regular use by astronomers.

Although, at this point, it seems to be of little concern to improve
the SumThreshold automatic flagging method any further, it might
be interesting to improve it by combining more information for de-
tection and by using fuzzy logic to decide the sample classification.
An interesting example would be to include phase information in
the recognition, as only the amplitude information has been used so
far by the threshold methods. For example, Fig. 12 shows that the
phase contains valuable information about a sample: in uncontami-
nated samples, the phase is likely to be near zero rotation, whereas
many contaminated samples do have a phase deviating from zero.
Other distinguishing information could be contained in the polar-
ization information per sample and in the combination of different
baselines.

Based on the low-frequency observations with the WSRT, it can
be expected that the radio environment of LOFAR is sufficiently
clean for sensitive astronomical experiments. In a future paper, we
will fully analyse and describe the LOFAR environment and the
effectiveness of the RFI strategies.

Finally, we would like to emphasize that the methodology of RFI
flagging, or any kind of error detection, needs to change because
of the introduction of telescopes, such as LOFAR, that generate so
much data that it is not possible for astronomers to browse through
the data for ‘the baseline that was producing this artefact’ or ‘the
time-step that corresponds to these stripes in my image’. Therefore,
another important next step is to be able to automatically detect
errors that are caused by RFI, calibration issues, broken hardware,
faulty software or any step in the complicated pipeline of a radio
observatory.
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