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ABSTRACT
Whenever observations are compared to theories, an estimate of the uncertainties associated
with the observations is vital if the comparison is to be meaningful. However, many or even
most determinations of temperatures, densities and abundances in photoionized nebulae do
not quote the associated uncertainty. Those that do typically propagate the uncertainties using
analytical techniques which rely on assumptions that generally do not hold.

Motivated by this issue, we have developed Nebular Empirical Analysis Tool (NEAT), a new
code for calculating chemical abundances in photoionized nebulae. The code carries out a
standard analysis of lists of emission lines using long-established techniques to estimate the
amount of interstellar extinction, calculate representative temperatures and densities, compute
ionic abundances from both collisionally excited lines and recombination lines, and finally to
estimate total elemental abundances using an ionization correction scheme. NEATuses a Monte
Carlo technique to robustly propagate uncertainties from line flux measurements through to
the derived abundances.

We show that, for typical observational data, this approach is superior to analytic estimates
of uncertainties. NEAT also accounts for the effect of upward biasing on measurements of
lines with low signal-to-noise ratio, allowing us to accurately quantify the effect of this
bias on abundance determinations. We find not only that the effect can result in significant
overestimates of heavy element abundances derived from weak lines, but also that taking it into
account reduces the uncertainty of these abundance determinations. Finally, we investigate the
effect of possible uncertainties in R, the ratio of selective-to-total extinction, on abundance
determinations. We find that the uncertainty due to this parameter is negligible compared to
the statistical uncertainties due to typical line flux measurement uncertainties.

Key words: atomic processes – methods: statistical – ISM: abundances.

1 IN T RO D U C T I O N

Abundance determinations from photoionized nebulae play crucial
roles in a variety of astrophysical contexts. The abundance of neb-
ulae around evolved stars, e.g. planetary nebulae or Wolf–Rayet
(WR) ejecta nebulae, provide constraints on theories of stellar nu-
cleosynthesis and evolution (e.g. Maeder 1992; Karakas et al. 2009;
Magrini, Stanghellini & Goncalves 2011; Stock, Barlow & Wes-
son 2011). Such abundances are invaluable as constraints on stellar
yields; the inputs of galactic chemical evolution models. Mean-
while, Galactic and extragalactic H II regions provide insights into
the current composition of the interstellar medium (ISM) and there-
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fore are vital constraints for the output of galactic chemical evolu-
tion models (e.g. Pagel 1997; Matteucci 2003).

Studies of photoionized nebulae have a very long history, stretch-
ing back to the dawn of astrophysics (e.g. Huggins & Miller 1864),
but some major questions remain unanswered. One example is the
sometimes sizeable discrepancy between abundances derived from
collisionally excited lines (CELs) and those derived from recom-
bination lines (RLs; Wesson, Liu & Barlow 2005; Liu et al. 2006;
Garcı́a-Rojas & Esteban 2007; Tsamis et al. 2008).

To meaningfully assess whether results determined observation-
ally are consistent or discrepant with model predictions, the uncer-
tainties on both the observations and the model must be estimated.
In neither case is such an estimate straightforward. The uncertainty
on the observations is a combination of statistical uncertainties,
relating ultimately to measurement uncertainties, and systematic
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uncertainties, which may arise from many sources including the in-
strumentation used to obtain the line flux measurements, the chosen
parametrization of the interstellar reddening law and the method-
ological choices made in the analysis. Sources of systematic uncer-
tainty may be unknown and even unquantifiable. Finally, the uncer-
tainty attributed to models is perhaps the most difficult to quantify,
being related ultimately to the confidence the modeller has that
the model encapsulates the underlying physics without excessive
simplification or unwarranted assumptions.

We concern ourselves in this paper with an improved under-
standing of statistical uncertainties and their effect on empirically
determined nebular abundances. We present a new code for cal-
culating chemical abundances in photoionized nebulae, which can
also robustly estimate statistical uncertainties using a Monte Carlo
approach. This method is inherently superior to analytic methods
of uncertainty propagation, which rely on assumptions which are
almost always violated by the measurement uncertainties inherent
to actual astronomical observations.

We use our code to reanalyse several published line lists for which
uncertainties are available, and we show first that analytic methods
do not give a good representation of the true uncertainties on de-
rived quantities. Generally, uncertainties on derived abundances are
better characterized by log-normal distributions than by normal dis-
tributions. In some cases, bimodal probability distributions emerge.

Secondly, as the Monte Carlo approach can trivially handle any
quantifiable distribution of line flux uncertainties, we have designed
the code to account for the well-known upward bias in measure-
ments of weak lines, and associated log-normal distribution of
measurement uncertainties (Rola & Pelat 1994). The bias is well
known but its actual effect on abundance determinations has not
previously been rigorously quantified. We show, as expected, that
abundances determined from weak lines are systematically over-
estimated. Moreover, we show that in addition to removing this
bias, accounting for the effect leads to a significant reduction in the
uncertainty of abundance determinations from weak lines.

Finally, we investigate the effect of an assumed statistical uncer-
tainty in R, the ratio of selective-to-total extinction. We show that
the extra uncertainty introduced into abundance determinations by
taking this parameter to be 3.1 ± 0.15 instead of a fixed value of
3.1 is negligible compared to the uncertainties arising from line flux
measurements, even when the extinction is quite large and the line
fluxes are well measured.

The words ‘uncertainty’ and ‘error’ are often used synonymously.
In this paper we maintain a distinction in meaning between the
terms: ‘uncertainty’ refers to the limiting accuracy of the knowledge
of a quantity, while ‘error’ refers to an actual mistake.

2 STATISTICAL UNCERTAINTIES

Uncertainties in observed quantities can be propagated into the
uncertainty on derived parameters in a number of different ways, the
two most common of which are the traditional analytical technique
based on systems of partial derivatives and simplifying assumptions
that allow one to apply Taylor expansions, and the ‘Monte Carlo’
method which is a brute-force iterative method that exploits the
wealth of computational power now readily available by building
on knowledge of the uncertainty in the original observations.

The analytical approach is as follows: if one has measured a
quantity x with some uncertainty σx, and wishes to calculate the
uncertainty in a quantity F given that F = f (x), then the uncertainty

on F can be computed via the relation

σF

σx
� ∂f

∂x
. (1)

However, in general one may not be able to compute this partial
differential exactly, and in these cases, provided that

∂f

∂x
|x=x1 � f (x1), (2)

it is possible to use a first-order Taylor expansion to approximate
this derivative. If one had a third value, H = h(f , g) where f and g are
both functions of other variables and are statistically independent
of one another, it would be necessary to find the total derivative dH

such that

dh2 =
(

∂h
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)2

df 2 +
(

∂h
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)2

dg2 (3)

and it thus follows that

σ 2
H =

(
∂h
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σf

)2

+
(

∂h

∂g
σg

)2

. (4)

This expression can be generalized to any number of variables,
and gives rise to the usual quadrature formulae for many simple
functions of x. We highlight three key aspects of this approach.

(i) Given that the number of formulae through which the original
line flux data must be put before an abundance can be determined,
and the wide variety of functions applied, the equations necessary to
propagate uncertainties in this way can become extremely complex.

(ii) The approach implicitly assumes that all the input and output
uncertainties at each step are normally distributed.

(iii) The Taylor expansion requires that the uncertainties be small
relative to the quantities.

The first point is a matter of convenience but nonetheless one
which discourages many authors from even attempting to propagate
uncertainties all the way into the final quantities. The second and
third points are clearly violated in many or most real astrophysical
observations, by virtue of which the uncertainties estimated using
analytical techniques are liable not to reflect the true uncertainties.

As an example of the cumbersome nature of the analytic ap-
proach, we consider the estimation of the uncertainty on c(Hβ). As
described in Section 3.2, our code calculates c(Hβ) from the flux-
weighted average of values derived from Hα, Hγ and Hδ. Using
the analytic approach described above, one finds the uncertainty on
the unweighted c(Hβ) as follows. First,

c(Hβ) = I (Hα)c(Hβ)α + I (Hγ )c(Hβ)γ + I (Hδ)c(Hβ)δ
I (Hα) + I (Hγ ) + I (Hδ)

, (5)

where

c(Hβ)α =
log

(
I (Hα)
I0(Hα)

)
f (Hα)

, (6)

and similarly for c(Hβ)γ and c(Hβ)δ . The analytically estimated
uncertainty on c(Hβ) derived using this method is

�c(Hβ)

c(Hβ
=

⎛
⎝ (�c(Hβ)α)2 + (�c(Hβ)γ )2 + (�c(Hβ)δ)2

(c(Hβ)α + c(Hβ)γ + c(Hβ)δ)2

+ (�I (Hα)2 + �I (Hγ )2 + �I (Hδ))2

(I (Hα) + I (Hγ ) + I (Hδ))2

⎞
⎠

0.5

, (7)
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where

�c(Hβ)α = c(Hβ)α ×
⎛
⎝ (

�I (Hα)

I (Hα)

)2

(8)

+
⎛
⎝ 0.434 ×

(
� I (Hα)

I0(Hα)

)
I (Hα)
I0(Hα)

⎞
⎠

2 ⎞
⎠

0.5

, (9)

and similarly for �c(Hβ)γ and �c(Hβ)δ . The mere derivation of
such a formula is tiresome and complicated, and it would be ex-
ceedingly easy for errors to be introduced. Even this is somewhat
simplified: this equation assumes zero uncertainty in the values of
f (Hα, γ , δ) and I0(Hα, γ, δ). The uncertainty estimated for c(Hβ)
then has to be propagated into the complex functions of line ratios
which are used to give temperatures and densities, and then into the
calculations of ionic abundances.

The Monte Carlo method, on the other hand, avoids all of the
pitfalls of the analytical method. It exploits the fact that if an ob-
servation of a quantity is drawn from a distribution X, with mean x
and variance σ x, and if one knows (or can make sensible assump-
tions about) the shape of this distribution, then a random number
generator can be used to repeatedly draw values from X, creating a
random sample from it. Using the above example of F = f (x), if one
wanted to examine the uncertainty in F, the operation f (x) could be
performed upon every value in the aforementioned sample to pro-
duce a sample of the distribution from which F is drawn, which can
then be parametrized to estimate the type, mean and standard devi-
ation of this distribution. This process can be repeated ad infinitum
for any number or combination of functions of F, x, or any other
variable derived in the same way to propagate the uncertainties on
the quantities, irrespective of the size of the uncertainties and any
statistical interdependence of the variables. This approach thus has
the following advantages over the analytical approach.

(i) It is inherently very simple.
(ii) Any distribution of uncertainties can be propagated at any

stage.
(iii) It does not require relative uncertainties to be small.

The Monte Carlo approach is thus inherently robust when applied
to real astrophysical data, in a way that the analytical approach is
not. The only limitation is then the time taken to run the calculation
enough times to sample well the statistics of the output distribu-
tions.

3 NEAT: N E BU L A R E M P I R I C A L A BU N DA N C E
TO O L

We have developed a new code, Nebular Empirical Analysis Tool
(NEAT), to quickly carry out a thorough analysis of emission-line
spectra, and to propagate statistical uncertainties using the Monte
Carlo technique described above. In this section we describe the
code and how it works.

3.1 Input

NEAT incorporates elements of several previous codes, most im-
portantly the EQUIB code, for solving the equations of statistical
equilibrium in multilevel atoms. All the source code, documen-
tation, atomic data and example line lists are freely available at
http://www.sc.eso.org/~rwesson/codes/neat/. The code is designed
to be as simple as possible from the user’s perspective, and our aim

Table 1. Atomic data used in NEAT for recombination lines.

Ion Recombination data source

C2+ Davey, Storey & Kisielius (2000)
C3+ Pequignot, Petitjean & Boisson (1991)
N2+ Escalante & Victor (1990)
N3+ Pequignot et al. (1991)
O2+ (3s–3p) Storey (1994)
O2+ (3p–3d, 3d–4f) Liu et al. (1995)
Ne2+ (3s–3p) Kisielius et al. (1998)
Ne2+ (3d–4f) Storey (unpublished)

is that the user should be able to simply pass the code a line list
and get out abundances determined by an objective methodology
in which the user does not need to make any choices. The code
has no external dependencies and should compile without problems
on any Unix-based system. We have also verified that it compiles
and runs on Windows systems, should the user be restricted to such
an OS.

3.1.1 Atomic data

Hydrogen recombination data from Storey & Hummer (1995) and
helium recombination data from Smits (1996) are used throughout.
Helium abundances are corrected for collisional effects using the
formulae provided by Kingdon & Ferland (1995).

All atomic data for heavier elements are stored externally in plain
text files, so that the user can easily change the atomic data being
used without needing to edit or recompile the code. We provide
three sets of atomic data for CELs with the code – a compilation
from a variety of sources compiled on an ad hoc basis, CHIANTI5.2
(Landi et al. 2006) and CHIANTI 6.0 (Dere et al. 2009). In all the
analyses presented in this paper, we used atomic data from CHIANTI

5.2, with the exception of data for O+ for which a documented
error exists in the CHIANTI 5.2 data (Kisielius et al. 2009), and S2+,
which we believe is affected by a similar error. For O+ we used
transition probabilities from Zeippen (1982) and collision strengths
from Pradhan (1976); for S2+ we used transition probabilities from
Mendoza & Zeippen (1982) and collision strengths from Mendoza
(1983). For RLs, we use data from the sources given in Table 1.

3.1.2 Line list format

NEAT requires as input a plain text list of rest wavelengths, line fluxes
and uncertainties. NEAT currently recognizes 738 lines, 81 of which
are CELs and 657 of which are RLs. The code assigns line IDs
based on an exact match to its reference list of rest wavelengths.
Different sources of atomic data often quote slightly different rest
wavelengths for a given line; we include with NEAT a separate code
to read in line lists and reassign rest wavelengths to the values which
NEAT recognizes. Lines that are not recognized are ignored in the
analysis.

Some cases of line blends can be accounted for; for example, the
[O II] lines at 3726 and 3729 Å may be blended in low-resolution
spectra. In this case, a rest wavelength of 3727.00 can be given,
and the code will properly treat the combined flux. Blends of RLs
cannot currently be accounted for but we plan to develop means of
doing so in future versions of NEAT.

For a very small number of RLs, close coincidences in rest wave-
lengths may lead to misidentifications. For example, three weak O II

3d–4f transitions from multiplets V63c, V78b and V63c have rest
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wavelengths of 4315.39, 4315.39 and 4315.40, respectively. These
three lines will almost certainly be detected as a blend if detected at
all. At the moment, NEAT would attribute all flux at a wavelength of
4315.39 to each of the three lines. The effect on final abundances
in this case is likely to be very small, as only very weak RLs are
affected. Again, we plan to improve the sophistication of NEAT’s
approach in future versions.

The user can select the number of iterations of the code to run.
If the number of iterations is one, the code performs a standard
empirical analysis on the line list, as described below, and does not
calculate any uncertainties. If the number of iterations is more than
one, then the code randomizes the line list before each iteration. The
standard analysis is then carried out on the randomized line list.

3.1.3 Line flux randomisation

The code randomizes the line fluxes by assuming that they come
from one of the three distributions, depending on the measured
signal-to-noise ratio (S/N). The three cases are as follows.

S/N > 6.0. The line flux is assumed to be drawn from a Gaussian
distribution. In this case, if the given line flux measurement is F
and the given measurement uncertainty is σ , then in each iteration
of the code the line flux is calculated using

Fi = F + (R × σ ), (10)

where R is a random number drawn from a Gaussian distribution
with a mean of zero and a standard deviation of unity.

1.0 < S/N < 6.0. Rola & Pelat (1994, hereafter RP94) observed
that measurements of weak lines (S/N < 6) are strongly biased up-
wards, and the uncertainty on such lines cannot be well represented
by a normal distribution. We refer to this effect henceforth as the
RP effect. Taking the RP effect into account is straightforward with
a Monte Carlo approach, requiring only that a log-normal distribu-
tion with appropriate mean and standard deviation is used for weak
lines, instead of the normal distribution used for strong lines.

For lines with F/σ < 6, we randomize the line fluxes using the
following procedure: we first determine the log-normal distribution
appropriate to the measured S/N. RP94 gave parameters for the
log-normal distributions of Fobs/Ftrue, as a function of the observed
S/N, and we fitted the following equations to the parameters in their
table 6:

μ = 0.076 5957

S/N2 + 1.860 37

S/N
− 0.309 695, (11)

σ = −1.113 29

S/N3 + 1.8542

S/N2 − 0.288 222

S/N
+ 0.180 18. (12)

From the observed S/N we thus obtain the appropriate μ and σ .
Then, the line flux is found using the following equation:

Fi = F

e(R×σ+μ)
, (13)

where R is a random number from a Gaussian distribution as before.
The result of this procedure is that weaker lines are drawn from log-
normal distributions that peak below the observed value, with the
effect increasing as S/N decreases.

S/N < 1.0. If the quoted uncertainty is larger than the actual
line flux, the code assumes that the quoted flux represents a 5σ

upper limit, and thus draws the randomized line flux from a folded
Gaussian distribution, with μ = 0 and σ = 0.2 × F. The line flux
is given by

Fi = abs(R) × 0.2F . (14)

Figure 1. The behaviour of NEAT’s line flux randomization as a function
of S/N, for a fixed measured flux of 10.0. At high S/N (i.e. >6), normal
distributions apply. At lower S/N, the effect described by Rola & Pelat
(1994) results in log-normal distributions which are skewed towards lower
values than the measured intensity. If S/N ≤ 1 then the code assumes that
the quoted flux is a 5σ upper limit.

Fig. 1 shows the various possibilities that arise depending on
the measured S/N. The distributions plotted are from 106 runs of
NEAT in which seven artificial line fluxes were randomized. Each of
the lines had a measured flux of 10.0, and the quoted uncertainties
represented S/N values of 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 and 8.0. The
figures show how the normal distribution appropriate at high S/N is
replaced by a log-normal distribution increasingly skewed towards
lower values as S/N decreases.

3.1.4 Random number algorithm

This process relies on the FORTRAN RANDOM_NUMBER com-
mand, seeded using the system clock and the time of the code’s
execution, to generate pseudo-random numbers. The uniformly dis-
tributed numbers thus generated are then converted into a Gaus-
sian distribution using an algorithm based on the ratio-of-uniforms
method of Kinderman & Monahan (1977), available from netlib.org.
We tested the performance of this method by running the code
1000 000 times, and plotting the distribution of fluxes obtained for
an arbitrarily selected line. We then fitted a Gaussian function to
this distribution. We found that the recovered mean was within
0.008 per cent of the specified value, while the recovered standard
deviation was within 0.13 per cent of the specified value. Fig. 2
shows the histogram of generated values with the required Gaus-
sian distribution overplotted. We thus consider that the random
number generator in the code provides a reliably random Gaussian
distribution.

3.1.5 Sampling uncertainty

The Monte Carlo approach relies on carrying out the analysis
enough times to adequately sample the probability distributions
of the derived quantities. To determine what number of iterations
suffices for this purpose, we ran the code 1000 000 times, using
emission-line fluxes measured for IC1747 by Wesson et al. (2005).
We then considered subsets of the output from this run.

To quantify the sampling uncertainty, we fitted a Gaussian to the
observed probability distribution of the measured [O III] tempera-
tures, for each subset of iterations. We chose this quantity as its
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Figure 2. A distribution of values produced by 1000 000 runs of the random
number generator, with the target Gaussian distribution overplotted.

actual uncertainty distribution should closely approximate a Gaus-
sian. The uncertainty on the Gaussian fit is thus a measure of how
well the output distribution was sampled for a given number of
iterations. A Gaussian output makes it straightforward to quantify
the sampling uncertainty but the magnitude of this uncertainty is
a function only of the number of iterations and not of the output
distribution, and so the result applies generally.

In Fig. 3 we show how the uncertainty of the fitted μ and σ varies
with the total number of iterations. We find that the precision of
the fit improves indefinitely with increasing number of iterations
up to the limit of our investigation. In our own investigations we
carried out 10 000 iterations on each line list we investigated; Fig. 3
shows that, by this number of iterations, the sampling uncertainty
on the [O III] temperature is of the order of 1 K. We carried out our
investigations on single processors of moderately powerful desktop
and laptop machines, on which 10 000 iterations typically took
around 40–60 min. We plan to parallelize NEAT to enable larger
numbers of iterations to be carried out in a conveniently short time.

3.2 Interstellar extinction

The first step of any abundance analysis is a correction for interstel-
lar extinction. The amount of extinction is determined by NEAT from

the ratios of hydrogen Balmer lines in an iterative procedure: the
extinction is first calculated assuming intrinsic Hα, Hβ and Hγ line
ratios for a temperature of 10 000 K and a density of 1000 cm−3.
c(Hβ) is calculated from the flux-weighted average values derived
from ratios of the three lines to their intrinsic values, and the line
list is dereddened using this value of c(Hβ). Temperatures and den-
sities calculated as described below. Then, the intrinsic Balmer line
ratios are recalculated at the appropriate temperature and density,
and c(Hβ) is recalculated.

The user can select the particular extinction law to be used.
Five extinction laws are currently available: the Galactic extinc-
tion curves of Howarth (1983), Fitzpatrick & Massa (1990) and
Cardelli, Clayton & Mathis (1989); the Large Magellanic Cloud law
of Howarth (1983); and the Small Magellanic Cloud law of Prevot
et al. (1984). Adding further extinction laws would be straightfor-
ward, should the user wish to do so.

In Section 6 we investigate the effect on derived quantities of the
likely uncertainty in R, the ratio of selective-to-total extinction.

3.3 Temperatures and densities

Temperatures and densities are calculated using traditional CEL di-
agnostics. For the purposes of subsequent abundance calculations,
the nebula is divided into three ‘zones’ of low, medium and high
excitation. In each zone, temperatures and densities are calculated
iteratively and weighted according to the reliability of each diag-
nostic. Table 2 shows the diagnostics used and the weighting given
in each zone.

The scheme to calculate the densities is iterative, and proceeds
as follows.

(i) A temperature of 10 000 K is initially assumed, and the density
is then calculated from the line ratios relevant to the zone.

(ii) The temperature is then calculated from the temperature di-
agnostic line ratios, using the derived density.

(iii) The density is recalculated using the appropriately weighted
average of the temperature diagnostics.

(iv) The temperature is recalculated using this density.

This iterative procedure is carried out successively for low-,
medium- and high-ionization zones, and in each case if no diag-
nostics are available, the temperature and/or density will be taken
to be that derived for the previous zone.

Figure 3. The uncertainty on the parameters of Gaussian fits to a NEAT uncertainty distribution for T([O III], as a function of the number of iterations. The
figures show the uncertainty on the fitted values of μ (l) and σ (r). We use these as a proxy for the Monte Carlo sampling uncertainty.
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Table 2. Diagnostics used in the calculation of physi-
cal conditions.

Diagnostic Lines Weight

Low-ionization zone

[O II] density λ3727/λ3729 1
[S II] density λ6717/λ6731 1

[N II] temperature λ6548+λ6584
λ5754 5

[S II] temperature λ6717+λ6731
λ4068+λ4076 1

[O II] temperature λ7319,20+λ7330,31
λ3726+λ3729 1

[O I] temperature λ6363+λ6300
λ5577 1

[C I] temperature λ9850+λ9824
λ8727 1

Medium-ionization zone

[Cl III] density λ5517/λ5537 1
[Ar IV] density λ4711/λ4740 1
[C III] density λ1907/λ1909 1
[O III] density λ52 µm/λ88 µm 0
[Ar III] density λ9 µm/λ21.8 µm 0
[S III] density λ18.7 µm/λ33.8 µm 0

[Ne III] density λ15.5 µm/λ36.0 µm 0

[O III] temperature λ4959+λ5007
λ4363 4

[Ar III] temperature λ7135+7751
5192 2

[Ne III] temperature λ3868+3967
3342 2

[S III] temperature λ9069+9531
6312 1

[Ne III] temperature λ3868+3967
15.5 µm 0

[O III] temperature λ4959+5007
52 µm 0

High-ionization zone

[Ne IV] density λ2423
λ2425 1

[Ar V] temperature λ6435+λ7005
λ4625 1

[Ne V] temperature λ3426+λ3345
λ2975 1

3.4 Ionic abundances

Ionic abundances are calculated from CELs using the temperature
and density appropriate to their ionization potential. Where several
lines from a given ion are present, the ionic abundance adopted
is found by averaging the abundances from each ion, weighting
according to the observed intensity of the line.

RLs are also used to derive ionic abundances for helium and
heavier elements. In deep spectra, many more RLs may be available
than CELs. The code calculates the ionic abundance from each
individual RL intensity using the atomic data listed in Table 1.
Then, to determine the ionic abundance to adopt, it first derives an
ionic abundance for each individual multiplet from the multiplet’s
co-added intensity, and then averages the abundances derived for
each multiplet to obtain the ionic abundance used in subsequent
calculations.

3.5 Total elemental abundances

Generally, not all ionization stages of an ion, which are actually
present in a nebula, will be detected, due to limited wavelength
coverage and sensitivity. Total elemental abundances must be esti-
mated using ionization correction schemes, which are derived from
photoionization models, similarities in ionization potentials, or a
combination of the two.

The code currently includes the ionisation correction factor (ICF)
scheme of Kingsburgh & Barlow (1994). We plan to incorporate
further ICFs, and in a forthcoming paper we will compare the mag-
nitude of the systematic uncertainties arising from the choice of ICF
with the statistical uncertainties.

3.6 Output

By randomizing and analysing the line list many times, it is pos-
sible to build up an accurate picture of the true distribution of
statistical uncertainties associated with the chemical abundances
and empirical diagnostics resulting from the line flux uncertainties.
NEAT collates all of the results from each iteration, and calculates
uncertainties as follows: first of all for each output parameter it
extracts the values containing 34.1 per cent of all results above and
below the median. The data are then binned using a bin size of 0.05
times the difference between these two values. From the binned
data, the mode of the probability distribution is obtained, and the
code reports the final quantity and its uncertainties as this mode,
and the values such that 68.2 per cent of all results lie within the
quoted uncertainties.

This approach does not assume any particular distribution of
probabilities, but if the distribution is normal, log-normal or
exponential-normal, then the uncertainties thus returned correspond
to one standard deviation as normally defined. We find that uncer-
tainty distributions are not always characterized and may be bimodal
or multimodal (see Section 4), and we therefore recommend that
users directly inspect the probability distributions. We provide with
NEAT a small shell script that produces plots for easy inspection.

4 TH E NAT U R E O F AC T UA L U N C E RTA I N T I E S

In this section we discuss the nature of the uncertainties revealed by
the Monte Carlo technique. We find that three distinct behaviours
emerge for the uncertainties on abundances, depending on the over-
all depth of the line list being analysed. In some cases, where all
lines being analysed are well detected, the final uncertainties are
close to symmetric and can be well approximated by Gaussian dis-
tributions. However, in the nebulae that we have analysed, the final
distributions are better described by log-normal distributions than
by Gaussian.

In a minority of cases, very unusual uncertainty distributions
emerge which cannot be sensibly fitted by analytic functions.
The origin of such distributions arises in some cases from the
methodology adopted. For example, if temperature diagnostic lines
are weakly detected, then in some fraction of NEAT iterations the
temperature may be undefined, and thus taken as the default of
10 000 K. In other iterations it may have a determined value dif-
ferent from 10 000 K. The temperature distribution then becomes
double peaked, and this propagates into CEL abundances, although
it has little effect on RL abundances. In situations like these, one
can say that the true uncertainty distribution is broader even than
NEAT suggests, and must realistically encompass both values of the
double-peaked distribution.

At intermediate stages, different behaviours may be observed.
In particular, we find that for temperatures derived from CELs,
the uncertainty distribution is sometimes well characterized by an
exponential-normal distribution; that is, the probability of eT is
normally distributed. In every case that we examined, though, the
convolution of this distribution with the processes involved in cal-
culating abundances resulted in a final abundance uncertainty dis-
tribution that was either normal or log-normal.
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3522 R. Wesson, D. J. Stock and P. Scicluna

Figure 4. Some representative examples of probability distributions emerging from this analysis. These results are from analyses of the Orion nebula (top-
left panel), WR nebula BAT99-11 (top-right panel), Cn 3-1 (middle-left panel), NGC 6803 (middle-right panel), Sp 4-1 (bottom-left panel) and DdDm 1
(bottom-right panel).

We show a selection of illustrative examples in Fig. 4, and we
plot Gaussian, log-normal and exponential-normal fits to the distri-
butions shown where possible. In Table 3 we give the parameters of
the fits to the plotted distributions. The rms of the residuals is given
as a quantitative measure of which distribution is a better fit to the
data.

The finding that the majority of uncertainty distributions are best
described by log-normal distributions demonstrates that analytic
uncertainty propagation generally does not accurately quantify the
true uncertainties arising from real measurements of the spectra

of astronomical objects. It also implies that temperatures, densities
and abundances are generally more likely to be underestimated
than overestimated, although this effect will generally be small.
The emergence of unquantifiable distributions shows that analytic
techniques can break down very severely; most significantly there
is on the face of it no obvious difference between the line lists that
give generally log-normal final uncertainties and those that give
unquantifiable distributions. Thus, it appears that there is no a priori
way of telling whether the uncertainties are going to be well behaved
or erratic.
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Reducing uncertainties in nebular abundances 3523

Table 3. Analytic fits to the uncertainty distributions shown in Fig. 4. Log-normal distributions emerge much more frequently than
Gaussian or unquantifiable distributions. The line lists analysed are from (1) Esteban et al. (2004), (2) Stock, Barlow & Wesson
(2011) and (3) Wesson, Liu & Barlow (2005). The exponential-normal parameters for NGC 6803 are those resulting from fitting the
uncertainty distribution with a function in which exp(Te/1000) was normally distributed.

Nebula Quantity Gaussian Log-normal Reference
μ σ rms of residuals μ σ rms of residuals

Orion He/H 0.096 0.004 14.0 −1.019 0.041 13.5 (1)
BAT99-11 He/H 0.086 0.014 23.8 −1.073 0.159 14.7 (2)
Cn 3-1 Ar/H 2.91 × 10−6 1.20 × 10−6 41.1 −12.87 0.410 11.1 (3)

Gaussian Exponential-normal
μ σ rms of residuals μ σ rms of residuals

NGC 6803 T([O III]) 9410 65 18.4 12 231.8 795.0 15.5 (3)

5 TH E R P E F F E C T

As discussed earlier, NEAT accounts for the RP effect, in which fluxes
measured from lines with S/N < 6 are generally overestimated, with
the magnitude of the effect increasing as S/N →1. In this section
we show the importance of this effect and demonstrate that flawed
results will inevitably occur if the effect is ignored.

To investigate the magnitude of this effect, we reanalysed two
line lists – spectra of NGC 6543, the Cat’s Eye Nebula, presented
by Wesson & Liu (2004) and spectra of the Orion nebula presented
by Esteban et al. (2004). In both cases we ran two instances of
NEAT: one in which the RP effect was ignored, and all line flux
uncertainties quoted in the two papers were assumed to represent
Gaussian probability distributions, and the second in which the RP
effect was accounted for as described in Section 3.1.3.

One important and as yet unresolved issue in nebular abundance
studies is the so-called abundance discrepancy problem (see e.g. Liu
2006 for a review). The RP effect can cause errors in the assessment
of the magnitude of the discrepancy; RLs of heavy elements are
much weaker than the CELs of the same species, and are thus
measured with lower S/N values. In almost any real astronomical
spectra, regardless of the number of lines detected, the weakest
lines measured will be subject to the RP effect, and for deep spectra
of photoionized nebulae, the weakest lines will almost all be RLs.
Thus, RL abundance measurements may be subject to an upward
bias that CEL abundances are largely free from.

Fig. 5 shows that in these two nebulae, ignoring the RP effect
indeed has no effect on abundances of nitrogen, oxygen and neon
derived from CELs, but in all cases leads to an overestimate of the
abundances derived from the RLs of these elements. Furthermore,
it turns out that properly accounting for the non-Gaussian nature of
the uncertainties on weak lines leads to a significant reduction in the
uncertainty associated with abundances determined from them; we
fit the resulting uncertainty histograms with Gaussian functions, and
find that accounting for the RP effect reduces the relative standard
deviation on the measured abundances by 25–30 per cent. Table 4
summarizes the mean and standard deviation of the final abundance
determinations from RLs.

In other shallower spectra, it may often be the case that the auroral
lines [N II] λ5754 and [O III] λ4363 are measured with low enough
S/N that they become subject to the RP effect. In this case, the
derived temperatures would be overestimated, and CEL abundances
underestimated. To investigate this effect, we analysed the line list
of H1013, an extragalactic H II region in the spiral galaxy M101,
presented by Esteban et al. (2009). In this nebula, the [O III] line at
4363 Å is detected with an S/N of only 2.7.

Fig. 6 shows that significant systematic uncertainties are pro-
duced when the RP effect on temperature diagnostic lines is ignored.
When the effect is neglected, we determine an [O III] temperature
of 7480 ± 610 K, in very close agreement with the value of 7370 ±
630 K reported by Esteban et al. (2009). However, when we account
for the RP effect, we find a value of 6840 ± 390 K. Similarly for
abundances, considering O2 +/H+, we find that by neglecting the
RP effect we obtain a value of 7.95 ± 0.15 [on a logarithmic scale
where N(H) = 12], close to the value of 8.05 ± 0.12 obtained by
Esteban et al. (2009). Accounting for the effect yields a value of
8.16 ± 0.12.

The reduction in uncertainty when accounting for the RP effect
arises in two distinct ways: first, as can be seen in Fig. 6, the
probability distribution for the [O III] temperature when the RP effect
is not accounted for is neither normal nor log-normal but is instead
better described by an exponential-normal distribution. When the
input uncertainty distribution is correctly characterized as a log-
normal distribution, the convolution of this distribution with the
processes which give rise to the exponential-normal distribution
of temperature probabilities results in a final distribution which is
narrower than when the input distribution is assumed to be normal.

The second effect is that when abundances from many weak
lines are being combined to derive an abundance, accounting for
the RP effect results in a modest reduction in the scatter of the
derived abundances, and a corresponding reduction in the overall
uncertainty on the combined abundance.

We re-emphasize, therefore, that neglecting this effect results
in incorrect abundances. Accounting for it removes a source of
systematic uncertainty, and reduces the statistical uncertainty of the
abundances determined.

One can see in Fig. 5 that abundances derived from RLs have
similar or smaller uncertainty distributions than those derived from
CELs, even though the line fluxes may be several orders of magni-
tude lower. This reflects their very weak dependence on temperature
and density; the uncertainties on the adopted temperatures and den-
sities hardly propagate into RL abundances but have a significant
effect on the CEL abundances.

6 IN T E R S T E L L A R E X T I N C T I O N

NEAT allows a robust propagation of uncertainties from line flux mea-
surements into derived quantities. It is also possible to investigate
the effect of statistical uncertainties arising at different stages of the
process. In this section, we consider the effect of the uncertainty in
R, the ratio of total-to-selective extinction given by

R = A(V )

E(B − V )
. (15)
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3524 R. Wesson, D. J. Stock and P. Scicluna

Figure 5. The RP effect on abundance determinations. Dashed lines show abundances derived assuming that weak line fluxes have a Gaussian uncertainty
distribution. Solid lines show the results obtained by more realistically assuming a log-normal distribution as described in Section 5. Thin red and thick blue
lines correspond to collisionally excited line and recombination line abundances, respectively. Only the far weaker RLs are subject to the RP effect.

It is well known that R varies along different sight lines (e.g.
Valencic, Clayton & Gordon 2004; Larson & Whittet 2005), but
determining its value for particular objects is generally impractical
and instead, it is commonly assumed to equal 3.1. We investigate
the effect of an uncertainty in this value by comparing analyses in
which R is fixed to be 3.1, and in which R is drawn from a Gaussian
distribution with μ = 3.1 and σ = 0.15. For this investigation we
used the R-dependent extinction law parametrization of Cardelli
et al. (1989). We took the uncertainty as the largest value that we
found quoted in the literature for the diffuse ISM (Larson & Whittet
2005).

We analysed the emission-line measurements of NGC 7026 pre-
sented by Wesson et al. (2005), including the line flux uncertainties
which were not published in that paper. We chose this object as it
is significantly reddened [c(Hβ) = 1.0], and has many very well
detected lines in its spectrum (142 lines measured, 120 with S/N >

3 and 65 with S/N > 10). This combination should maximize the
effect of an uncertainty on R, relative to the effect of the line flux
measurement uncertainties.

We find that including the effect of an uncertainty in R has a
noticeable effect on the probability distribution of dereddened line
fluxes. However, in the conversion from line fluxes into physical
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Reducing uncertainties in nebular abundances 3525

Table 4. Results of heavy element abundance determinations from recombination lines,
using the published line lists of Wesson & Liu (2004) and Esteban et al. (2004) for the
Orion nebula.

Element 104 × X/H (RP ignored) 104 × X/H (RP included) σ/μ (RPincluded)
σ/μ (RPignored)

Orion
N 2.74 ± 0.16 2.37 ± 0.11 0.79
O 7.04 ± 0.63 6.63 ± 0.43 0.73
Ne 1.52 ± 0.26 1.20 ± 0.17 0.83

NGC 6543
N 6.93 ± 0.56 5.83 ± 0.37 0.78
O 14.94 ± 1.15 12.48 ± 0.74 0.77
Ne 4.17 ± 0.94 3.23 ± 0.56 0.77

Figure 6. The RP effect when CEL temperature diagnostic lines are measured with low S/N. The figure shows a reanalysis of data for the H II region H1013,
showing the RP effect on the derived [O III] temperature (l) and O2 +/H+ abundance (r).

Figure 7. The effect of an assumed uncertainty in R, the ratio of selective-to-total extinction, on the dereddened line flux of the [Ne III] line at 3868 Å (l) and
derived Ne2 +/H+ abundance (r).

quantities, the statistical uncertainties arising from line flux mea-
surements completely dominate, and the probability distributions
are statistically identical whether R is assumed to be fixed or
allowed to vary. This result is shown in Fig. 7, where we
plot the probability distributions for the [Ne III] 3868 Å dered-
dened line flux, and the abundance derived from it. The effect
on the derived abundance of the assumed uncertainty on R is
negligible.

7 D I SCUSSI ON

Motivated by the necessity of properly understanding sources of un-
certainties in analyses of photoionized nebulae, we have presented
a new code for calculating chemical abundances in photoionized
nebulae, which also robustly calculates the statistical uncertainties
on the abundances determined. The code is freely available and we
welcome bug reports and feature requests.
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Analytic methods of uncertainty propagation rely on assumptions
that typically do not hold for real astronomical data, and therefore
we have adopted a Monte Carlo approach. We have shown that the
analytic approach does not give a good estimate of the true statistical
uncertainties.

We have provided in the code a means for accounting for the
well-known upward bias in flux measurements of weak lines, and we
show that doing so results in reduced statistical as well as systematic
uncertainties in abundance determinations. This effect should not be
ignored in any analyses of emission-line spectra; in almost any data
set, the weakest lines will be subject to the effect, and if these lines
are used in the analysis, then incorrect results will be obtained if the
RP effect is ignored. If, as is commonly the case, RLs make up the
majority of the weak lines, then systematic misunderstandings may
arise if the effect is neglected. In the examples that we have analysed,
however, this effect is too small to account for the magnitude of
the discrepancy typically found between RL and CEL abundance
determinations.

Finally, we have shown that possible uncertainties in the value
of R have a negligibly small effect on the uncertainties on the final
quantities.

In the present analysis we have considered only statistical un-
certainties. The correct propagation of these, as we have seen, can
reduce their final magnitude. However, results obtained using NEAT

are of course subject to systematic uncertainties as well. These have
many potential origins: systematic uncertainties in atomic data and
the choice of atomic data to use for each ion; the choice of inter-
stellar extinction law; the choice of ionization correction scheme;
the methodology of calculating the temperatures and densities to
use for the abundance calculations; unjustified assumptions in the
analysis such as assumptions of constant temperatures and densi-
ties; correction for underlying stellar absorption in certain types of
nebula; and others that may yet be unknown. As Kwitter & Henry
(2011) point out, investigators starting from an identical line list
may arrive at quite different results, depending on what choices
they make regarding the sources of these systematic uncertainties.

Two questions which arise regarding these uncertainties are as
follows.

(i) Which systematic choices are the most important?
(ii) What is the statistical significance of the systematic uncer-

tainties?

Through a proper understanding of statistical uncertainties, it
may be possible to answer these questions. For example, by com-
paring the systematic uncertainty introduced by varying the choice
of reddening law with the statistical uncertainty arising from line
flux measurement, one could determine quantitatively whether or
not the choice of reddening law is crucial or relatively inconsequen-
tial. In a forthcoming paper we plan to extend this type of analysis to
quantify the effects of systematic choices in terms of statistical un-
certainties, and thus to be able to determine the relative importance
of each of the systematic choices being made.
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