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ABSTRACT
We propose a functional form for the initial mass function (IMF), the L3 IMF, which is
a natural heavy-tailed approximation to the log-normal distribution. It is composed of a
low-mass power law and a high-mass power law which are smoothly joined together. Three
parameters are needed to achieve this. The standard IMFs of Kroupa (2001, 2002) and Chabrier
(2003a) (single stars or systems) are essentially indistinguishable from this form. Compared to
other three-parameter functions of the IMF, the L3 IMF has the advantage that the cumulative
distribution function and many other characteristic quantities have a closed form, the mass
generating function, for example, can be written down explicitly.

Key words: methods: data analysis – methods: statistical – stars: luminosity function, mass
function.

1 IN T RO D U C T I O N

The initial mass function (IMF) of stars, the spectrum of stellar
masses at their birth, is of fundamental importance in many fields
of Astronomy. Since the seminal work of Salpeter (1955), who
investigated the power-law part of the massive stars, a huge ob-
servational and theoretical effort has been made to constrain this
distribution. Towards the lesser masses the IMF deviates from a
power law and follows more a log-normal shape (Miller & Scalo
1979). At present, the whole shape of the IMF is usually described
by power-law segments (Kroupa 2001, 2002) or by a log-normal
segment plus a power-law segment (Chabrier 2003a,b, 2005). The
aim of this paper is to provide an alternative, practical functional
form for the IMF together with all its characteristic quantities (see
Table 1 for the formulae and Figs 3 and 6).1 More observational and
theoretical aspects of the IMF can be found in recent reviews (e.g.
Scalo 1986; Chabrier 2003a; Zinnecker & Yorke 2007; Elmegreen
2009; Bastian, Covey & Meyer 2010; Kroupa et al. 2011).

The IMF is usually believed to be a smooth function over the
whole mass range, from brown dwarfs to O stars. However, Thies
& Kroupa (2007) and Thies & Kroupa (2008) argued that a sudden
change in binarity properties around the hydrogen burning limit
introduces a discontinuity in the single-star IMF as well. This dis-
continuity in the single-star IMF can still lead to a system IMF
without discontinuities over the whole mass range (Thies & Kroupa
2007; Kroupa et al. 2011). In view of the simplicity aspect of our
proposed IMF form we neglect any discontinuity.

The proposed functional form, the L3 IMF, fulfils several demands
on the form of the IMF: it describes the whole (system) mass range
with a single function. This has been achieved by several other

� E-mail: thomas.maschberger@obs.ujf-grenoble.fr
1 R code for the functions given in this paper is available as online material.

functional forms as well (Larson 1998; Paresce & de Marchi 2000;
Chabrier 2001; Parravano, McKee & Hollenbach 2011; Cartwright
& Whitworth 2012). However, compared to these forms, the L3

IMF has the advantage that its cumulative distribution function is
invertible, so that sampling from the L3 IMF is very easy. No special
functions (e.g. the error function) are involved to normalize the L3

IMF as a probability. Beyond that the analytical form allows also for
simple, closed forms of characteristic quantities, such as the peak
or the ‘breaks’, the masses from which on the power laws reign.
Furthermore, with three parameters, two controlling the power-law
behaviour at low and high masses and one location parameter, the
number of parameters is as small as possible.

The motivation for the L3 IMF is of purely pragmatic nature, it
is a functional form that describes the data in a very practical way.
It would be pleasing if the L3 IMF could be more ‘theoretically’
motivated. One could try to find a connection to some generalized
log-logistic growth processes, in analogy to logistic growth, as the
L3 is related to the log-logistic distribution. However, it remains
questionable whether such a (non-stochastic) growth theory would
be capturing the star formation process in its entirety (cf. the discus-
sion about logistic growth in Feller 1968, p. 52). Where would be
the place of, for example, feedback or stellar dynamics in shaping
the IMF if growth alone gives all parameters of the IMF? Thus, it
seems futile to follow such thoughts and we do not attempt to find
any reasons for our proposed functional form, other than its utmost
simplicity and practicality.

The organization of this paper is the following. After some gen-
eral definitions we discuss in Section 2 established functional forms
and required parameters of the IMF. The L3 and B4 IMFs are moti-
vated and defined in Section 3 as heavy-tailed approximations and
extensions to the log-normal distribution. This is followed by a de-
tailed description of the L3 IMF and its characteristic quantities in
Section 4, the B4 IMF is discussed in Appendix A. Section 5 gives
the ‘canonical’ parameters for the L3 IMF, matching it to the Kroupa
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Table 1. Collection of formulae for the L3 form of the IMF. The values given for the parameters and characteristic quantities are to match the ‘canonical’
single-star IMF (Kroupa 2001, 2002; Chabrier 2003a), values in parentheses for the ‘canonical’ system (binary star) IMF (Chabrier 2003a). B(t; p, q) is the
incomplete beta function. For the limits, we adopt the fiducial values ml = 0.01 M� and mu = 150 M�, which are only needed for the normalization.

(1) Auxilliary function: G(m) =
(

1 +
(

m

μ

)1−α
)1−β

Quantity Formula Definition
Functional form

(2) Cumulative distribution function (CDF) PL3(m) = G(m) − G(ml)

G(mu) − G(ml)
P (ml) = 0 and P(mu) = 1

(3) Probability density function (pdf) pL3(m) = A

(
m

μ

)−α
(

1 +
(

m

μ

)1−α
)−β

p(m) = d

dm
P (m)

A = (1 − α)(1 − β)

μ

1

G(mu) − G(ml)

(4) Quantile function m(u) = μ

⎛⎜⎜⎝
⎡⎣u

(
G(mu) − G(ml)

)
+ G(ml)

⎤⎦
1

1−β

− 1

⎞⎟⎟⎠
1

1−α

m(u) = P −1(u), u ∈ [0, 1]

Parameters
High-mass exponent α = 2.3 (2.3) α �= 1 (typically α > 0)
Low-mass exponent β = 1.4 (2.0) β �= 1 (typically β > 0)
Scale parameter μ = 0.2 (0.2) M� μ > 0
Lower mass limit ml = 0.01 M� ml > 0
Upper mass limit mu = 150 M� mu > 0
Shape characterizing quantities
Effective high-mass exponent α = 2.3 (2.3) lim

m→∞ p(m) ∝ m−α

(5) Effective low-mass exponent γ = α + β(1 − α) = 0.48 ( − 0.3) lim
m→0

p(m) ∝ m−γ

(6) Lower power-law mass limit mγ = μe
2

1−α = 0.043 (0.043) M� p(m ∈ [ml . . . mγ ]) ≈ m−γ

(7) Upper power-law mass limit mα = μe
2

α−1 = 0.93 (0.93) M� p(m ∈ [mα . . . mu]) ≈ m−α

(8) Exponent [N.B. S(∞) = α ( = 2.3)] S(m) = α + β(1 − α)

(
1 +

(
m

μ

)1−α
)−1 (

m

μ

)1−α

S(m) = − d log p(m)

d log m

Scale characterizing quantities

Mean mass (expectation value) E(m) (= m) = expressed by Beta function, see equation (25) = 0.36 (0.62) M� E(m) =
∫ mu

ml

mp(m)dm

(9) Median mass m̃ = μ

⎛⎜⎜⎝
⎡⎣ 1

2

(
G(mu) − G(ml)

)
+ G(ml)

⎤⎦
1

1−β

− 1

⎞⎟⎟⎠
1

1−α

= 0.10 (0.21) M� P (m̃) = 1

2

(10) Mode (most probable mass) m̂ =
⎧⎨⎩ μ

(
β(α−1)

α
− 1

) 1
(α−1)

γ < 0

ml γ > 0
= 0.01 (0.04) M� m̂ = arg max

m
p(m)

(11) ‘Peak’ (maximum in log–log) mP = μ (β − 1)
1

α−1 = 0.10 (0.20) M�
d log (mp(m))

d log m
= 0

(2001, 2002) and Chabrier (2003a,b) IMFs. Section 6 contains the
conclusions of this article.

2 PRO P E RTI E S O F TH E I M F

2.1 Definitions

We normalize the IMF as a probability density function (pdf), the
IMF tells us about the relative frequencies of stars of various masses
in linear mass space. This allows us to use common statistical tech-
niques, e.g. to estimate the parameters. For functions normalized
as pdf we use the symbol p(m), for their integrals, the cumulative
distribution function, the symbol P(m). The cumulative distribu-
tion function is related to the observed number frequency, N(m), by
P (m) = 1

ntot
N (m), where ntot is the total number of observed stars.

The standard normalization condition for a probability is

1 =
∫ mu

ml

p(m)dm, (1)

where ml and mu are the lower and upper mass limit, respectively.
Historically there exist two alternative descriptions of the IMF, in

linear or in logarithmic space, the small-α and the big-� notation.
The use of the IMF as probability of m leads naturally to the linear
(small-α) description, the IMF is fulfils

p(m) = dP (m)

dm

[
= 1

ntot

dN (m)

dm

]
. (2)

A power-law IMF has then the exponent −α, p(m) ∝ m−α . In the
logarithmic description, the IMF is normalized as probability of
log m, not m,

plog(log m) = dPlog(log m)

d log m

[
= 1

ntot

dNlog(log m)

d log m

]
. (3)

plog(log m) is connected to the linear pdf via

p(m) = dPlog(log m)

d log m

d log m

dm
= 1

m
plog(m). (4)
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Thus, a power-law pdf in m, p(m) ∝ m−α , transforms into plog(m) ∝
m−(α−1) or plog(m) ∝ m−� , where � = α − 1.

We define the exponent (sometimes referred to as ‘slope’, but that
should be reserved for the logarithmic description), as a function of
mass via

S(m) = −d log p(m)

d log m
= −m

d log p(m)

dm
. (5)

A power-law IMF can then be written as

p(m) ∝ m−S(m). (6)

We follow the convention that the negative sign is not included in
the exponent. Thus, in our notation the Salpeter (1955) exponent is
positive, α = +2.35.

2.2 The standard IMFs and other functional forms

The Kroupa (2001, 2002) single-star IMF consists only of power-
law segments,

pKroupa(m) =

⎧⎪⎪⎨⎪⎪⎩
Ak0m

−0.3 0.01< m< 0.08 M�
Ak1m

−1.3 0.08< m< 0.5 M�
Ak2m

−2.3 0.5 < m< 1 M�
Ak3m

−2.3 1 < m (<150 M�)

, (7)

with k0 = 1, k1 = k0m
−0.3+1.3
1 , k2 = k1m

−1.3+2.3
2 and k3 =

k2m
−2.3+2.3
3 (= k2), where m1 = 0.08 M�, m2 = 0.5 M� and m3 =

1 M� (a practical algorithm for the calculation of the ki is given by
Pflamm-Altenburg & Kroupa 2006). A is some global normalization
constant. This form is highly adaptable, which comes at the price
of a large number of parameters. On the practical side, the Kroupa
(2001, 2002) IMF has the advantage that many derived quantities
can be calculated without involving special functions (cumulative
distribution function, quantile function, mean mass etc.), but with
several ‘if’ statements to specify the mass ranges.

Chabrier (2003a,b) combined for the single-star IMF a log-
normal distribution at the low-mass end with a high-mass power
law,

pChabrier(m) =
{
Ak1

1
m

e
− 1

2

(
log10 m−log10 0.079

0.69

)2

m < 1 M�
Ak2m

−2.3 m > 1 M�
, (8)

with k1 = 0.158 and k2 = 0.0443 and the global normalization
constant A. The log-normal and the power-law part connect up more
or less smoothly, without the ‘kinks’ of several power-law segments
(although there is still the small kink at 1 M�). Calculating the
cumulative distribution function involves the error function, but
random variates can be created without any specialized algorithms
from standard Gaussian distributed random numbers.

A piece-wise functional form of the IMF is somewhat unsatis-
fying, and several alternatives covering the whole mass range have
been proposed in the literature. There are, for example, the func-
tional forms of Larson (1998)

pLarson a(m) ∝ 1

m

(
1 + m

μ

)−(α+1)

, (9)

and

pLarson b(m) ∝ m−αe
−
(

m
μ

)−1

, (10)

form 3 of Chabrier (2001),

pChabrier 3(m) ∝ m−αe
−
(

m
μ

)−β

, (11)

or the tapered power-law form of Paresce & de Marchi (2000), De
Marchi, Paresce & Portegies Zwart (2010), Hollenbach, Parravano
& McKee (2005) and Parravano et al. (2011),

pTapereredPL(m) ∝ m−α

(
1 − e

−
(

m
μ

)−β
)

. (12)

The IMF forms of equations (9), (10), (11) and (12) are very similar
to our proposed form of the IMF, but their integrals contain the
incomplete gamma function or the hypergeometric function. A cu-
mulative distribution function without closed form is hard to invert,
so special algorithms are necessary for random variates from these
distributions.

Recently, Cartwright & Whitworth (2012) proposed a completely
different class of distribution functions for the IMF description, sta-
ble distributions. Stable distribution (e.g. the Gaussian distribution)
arises naturally in the context of stochastic processes, of which the
star formation process is one example. Related to stable distribu-
tions, and also the outcome of stochastic processes is the class of
infinitely divisible distributions, such as the log-normal distribution
(e.g. Elmegreen & Mathieu 1983; Zinnecker 1984; and, for infinite
divisibility, Thorin 1977). The choice of stable distributions is mo-
tivated by their relation to stochastic processes; however, they are
also used only as a fitting function, as the exact stochastic process
describing star formation has not yet been formalized. Also, typi-
cally they do not have a closed form for the distribution function
itself, which is an important practical aspect.

2.3 How many parameters for the IMF

The IMF seems to have a log-normal body with a power-law tail
on both the high-mass and the low-mass side. In order to describe
this behaviour, four parameters appear to be required: a location
parameter (which is not necessarily the ‘peak’ or the mean), a scale
or width parameter (which is not necessarily the variance), the low-
mass and high-mass power-law exponents. There are no stars of
zero or infinite mass, so that additionally an upper and a lower
mass limit has to be introduced, so the total number of parameters
is 4+2. This is two parameters less than in the schematic IMF
of Bastian et al. (2010), where additionally two ‘mass breaks’ are
introduced, i.e. 6+2 parameters. However, if one requires that the
log-normal part merges smoothly into the power-law tails, then the
scale parameter sets the width of the IMF and consequently the mass
breaks. The mass ‘breaks’ are then not parameters any more, but
derived quantities. 4+2 seem therefore to be the necessary number
of parameters to describe the IMF. The B4 IMF discussed later
is a smooth function over all masses and has the mentioned 4+2
parameters.

The number of parameters of the IMF can be reduced by one,
because it is not necessary to explicitly include a scale parameter
to fit the ‘canonical’ IMF. Only a location parameter and the two
exponents suffice to achieve this. Several 3+2 IMFs have been
suggested in the literature (equation 11, IMF 3 of Chabrier 2001;
equation 12, Paresce & de Marchi 2000; Hollenbach et al. 2005; De
Marchi et al. 2010; Parravano et al. 2011). Our proposed L3 IMF
also has only 3+2 parameters.

2+2 parameter functional forms (equation 9 and 10) have been
given by Larson (1998), with a location parameter and only a high-
mass exponent. With only 2+2 parameters it is difficult to fit the
low-mass end of the IMF.

For comparison, the Kroupa (2001, 2002) has 5+2 parame-
ters (three exponents, two thresholds, two limits) and the Chabrier
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(2003a,b) IMF has 4+2 parameters (mean, variance, one exponent,
one threshold, two limits).

3 H EAVY-TAILED APPROX IMATIONS TO THE
L O G - N O R M A L D I S T R I BU T I O N

Starting point for the search of a functional form for the IMF is the
relation between the normal distribution and the logistic distribution
(see e.g. Johnson, Kotz & Balakrishnan 1994, 1995). The normal
distribution,

pN (x) = 1√
2πσ

e− 1
2

(x−μ)2

σ2 , (13)

can be approximated in the central region for σ = 1 by the logistic
distribution,

pL(x) = 1

σ ′
e− x−μ

σ ′(
1 + e− x−μ

σ ′
)2 , (14)

where σ ′ = e− 1
2 . The ratio of the two probability densities is close

to unity between −2σ and +2σ , but drops off strongly outside. This
behaviour is evident in a logarithmic plot of both densities (Fig. 1),
the tails of the logistic distribution are much heavier than the normal
distribution, with fixed exponents.

In order to translate the relation of normal and logistic distribution
to the log-normal distribution,

plogN (x) ∝ 1

x
e
− 1

2

(
ln x−ln μ

σ

)2

, (15)

we rewrite the log-normal density function as

plogN (x) ∝ 1

x
e
− 1

2

(
ln

[(
x
μ

) 1
σ

])2

. (16)

Inserting ln

[(
x
μ

) 1
σ ′
]

for x−μ
σ ′ into the logistic cumulative distribu-

tion function,

Plog L(x) = 1

1 + e− x−μ

σ ′
, (17)

and taking the derivative gives the log-logistic density,

plog L(x) ∝
(

x
μ

)− 1
σ ′ −1

(
1 +

(
x
μ

)− 1
σ ′
)2 . (18)

Figure 1. Comparison of the normal (dashed line) and logistic (solid line)
probability density, with a logarithmic y-axis. The logistic distribution has
heavier tails.

Figure 2. Comparison of the log-normal (dashed line) and log-logistic
(solid line) distribution, scaled to 1 at x = 1. The dotted lines are at e−2,
e−1, e1 and e2. The tails of the log-logistic distribution are asymmetric.

Fig. 2 shows plogN and plog L, again with σ = 1 and σ ′ = e− 1
2 . The

log-logistic distribution follows the log-normal distribution over
about two orders of magnitude and deviates with asymmetric tails.

The log-logistic distribution of Fig. 2 already looks very much
like the IMF. Only the high-mass and low-mass exponents are still
fixed. In fact, this is not quite correct, because the meaning of σ ′

has been changed from the width of the distribution (i.e. a scale
parameter) to determining the low-mass exponent (i.e. a shape pa-
rameter). Arbitrary exponents for the low-mass and the high-mass
tail can be introduced by writing

pL3(m) ∝
(

m
μ

)−α

(
1 +

(
m
μ

)1−α
)β

. (19)

Unfortunately, β is not the exponent at low masses, which is the
price paid for equation (19) having a very simple cumulative dis-
tribution function. Probability densities similar to equation 19 (two
exponents and μ) are known under several other names, particularly
in economics. We will refer to it as generalized log-logistic distribu-
tion, or in short ‘L3 IMF’, because it has three (shape) parameters.

A parameter that changes the width of the IMF can be introduced
by writing

pB4(m) =
(

m
μ

)β

(
1 +

(
m
μ

) 1
σ

)σ (α+β) . (20)

σ is now the scale parameter, and α and β the exponents of the
power-law tails. The integral of equation (20) does not have a
closed form, but can be transformed into the incomplete beta func-
tion. Therefore, probability densities of the type of equation (20)
are known as (generalized) beta distributions. Because of the four
parameters we will refer to it as B4 IMF.

The following sections will show that the ‘canonical’ IMF
(Kroupa 2001, 2002; Chabrier 2003a) can be very satisfyingly de-
scribed by the L3 IMF. The introduction of σ as an additional scale
parameter seems not to be necessary. Therefore, we consider in the
following only the L3 IMF and give the corresponding equations
and parameter values for the B4 IMF in Appendix A.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/429/2/1725/1048250 by guest on 24 April 2024



On the function describing the IMF 1729

Figure 3. Probability density function for the L3 functional form of the
IMF (Table 1, equation 3) with the ‘canonical’ parameters, α = 2.3, β =
1.4, μ = 0.2 and the limits ml = 0.01 M� and mu = 150 M�. It follows
approximately m−α for m > mα( ≈ 0.9 M�) and m−γ = m−(α + β(1 − α))

for m < mγ ( ≈ 0.04 M�) with γ = 0.48. Also shown are the locations
of mean, median and mode, which are all different because of the skewed
distribution. The infamous ‘peak’ (maximum in log–log) is not the loca-
tion at which the two power laws cross over. This happens at the scale
parameter μ.

4 TH E L3 IMF

4.1 Functional form

The probability density of the L3 IMF is given in equation (19),
or, with the normalization constant, in Table 1 equation 3. Table 1
collects all formulae for the L3 IMF. Fig. 3 shows the L3 IMF with
its characteristic quantities for the ‘canonical parameters’ of the
single-star IMF. The particular advantage of the L3 IMF is that the
integral of the probability density is very simple,

∫ (
m
μ

)−α

(
1 +

(
m
μ

)1−α
)β

dm ∝
(

1 +
(

m

μ

)1−α
)1−β

=: G(m). (21)

The full cumulative distribution function, including the upper and
lower limits (ml and mu), is then

P (m) = G(m) − G(ml)

G(mu) − G(ml)
(22)

(also equation 2, Table 1). Equation (22) can be readily inverted
to give the quantile function (equation 4, Table 1). Generating a
random mass from the L3 IMF (i.e. inserting a uniform random
number u in the quantile function) can then essentially be done in a
single line of code.

The two shape parameters have different meanings for the L3

IMF. For large masses limm → ∞ p(m) ∝ m−α , i.e. α is the high-mass
exponent. In order that the L3 IMF is defined, α �= 1 is required,
typically will be α > 1. For small masses the limiting case is
limm → 0 p(m) ∝ m−γ with γ = α + β(1 − α). Therefore, the
parameter β is not the low-mass exponent. This inconvenience of
β and γ is the trade-off for the very simple cumulative distribution,
Again, in order for the L3 IMF to be defined β �= 1 is required,
typically will be β > 1. For α > 1 and β > 1, the largest value that
γ can take is +1, i.e. p(m) ∝ m−1. γ will be negative for β > α

α−1 .
A graphical representation of the relation between the exponents is
given in the ‘αβγ plot’, Fig. 4, where the value of γ for given α

and β can easily be read off.

Figure 4. αβγ plot, showing the value of the low-mass exponent (p(m) ∝
m−γ , Table 1, equation 5) as a function of α and β. The lines solid for integer
α and α + 1/2 and dashed for α + 1/4 and α + 3/4. The red dotted line is
for α = 2.35.

4.2 Breakpoints

Related to the low- and high-mass exponents is the question of the
‘breakpoints’ in the IMF. As for the L3 (and the B4) IMF there
is a smooth transition between the exponents, proper breakpoints
do not exist. Nevertheless, it is useful to know from where the L3

IMF can be approximated by a power law. Our approach to find the
breakpoints is via the exponent as a function of mass (defined in
equation (5), given for the L3 IMF in equation 8, Table 1) For the
L3 IMF the curve of the exponent versus log m is ‘S’-shaped, see
the black solid line in Fig. 5. This ‘S’ shape can be approximated
by three straight lines (red in Fig. 5), of which two are horizontal at
γ and α. The intermediate, increasing part follows

g(m) = dS(m)

d log m

∣∣∣∣
μ

log

(
m

μ

)
+ S(μ), (23)

a straight line in log m. We define now the breakpoints, mγ and mα ,
as the points where g(mγ ) = γ and g(mα) = α. Formulae are given
in Table 1, equations 6 and 7. The agreement of the L3 IMF and
the power-law segments below mγ and above mα is good, as can
be seen in Fig. 3, where the power-law segments are shown as red
lines, which are in fact barely visible.

Figure 5. (‘Alpha plot’) Exponent of the L3 IMF (black solid curve) and
its approximation in log space (red solid lines). The points mα and mγ are
defined as the intersection of the straight line approximation of the exponent
at μ with the limiting exponents γ and α. For comparison the Kroupa (2001,
2002) IMF (blue dashed line) and the Chabrier (2003a) IMF (green dotted
line) are given as well.
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4.3 Characteristic masses

Characteristic mass scales of the L3 IMF are also shown in Fig. 3
and given in Table 1. Because the IMF is skewed, the mean, median
(equation 9, Table 1) and mode (most probable value, equation 10,
Table 1) are all different. Also, note that μ is not directly related
to any of them, it is the inflexion point of the exponent. Calculat-
ing the mean of the L3 IMF involves incomplete beta functions2

(B(x; p, q) = ∫ x

0 tp−1(1 − t)q−1dt). Using the transformation

t(m) =
(

m
μ

)1−α

1 +
(

m
μ

)1−α
(24)

the mean can be expressed as

E(m) = μ(1 − β)
B (t(mu); a, b) − B (t(ml); a, b)

G(mu) − G(ml)
, (25)

where a = 2−α
1−α

and b = β − 2−α
1−α

and G(m) is the auxiliary function
given in Table 1, equation 1.

The ‘peak’ of the IMF refers to the maximum in the logarithmic
description. The also very simple formula for mP is given in equation
11, Table 1).

5 ‘C A N O N I C A L’ PA R A M E T E R S FO R T H E L3

IMF

Observationally, the shape of the IMF is constrained mainly by the
number ratios of different mass ranges to each other, for example
the ratio of high-mass to low-mass stars. Thus, a first approach to
find the ‘canonical’ parameters for the L3 IMF could be a fit to the
cumulative distributions of the Kroupa or Chabrier IMF. This could
be done in some objective way, for example by matching histograms
of L3 to Kroupa or Chabrier. However, there are more properties that
a ‘canonically’ parametrized IMF should fulfil: not only the number
ratios, but also the mass ratios, the shape and the exponent should
agree with each other. We could not find an ‘objective’ procedure
that would fit these constraints such that for all of them the fit is
good, the high-mass power-law tail leads to problems. Therefore,
we choose the parameters ‘by hand’ for an optimal agreement of
the L3 with Kroupa and Chabrier in all the criteria.

For observational data objective fits are, of course, possible, for
example with the maximum likelihood method. There not only the
upper mass exponent and the lower mass exponent, but also the scale
parameter μ can be estimated. This is an advantage compared to the
piece-wise-defined IMFs, where typically the ‘breakpoints’ are not
estimated. It is also possible to estimate the limits, in particular mu,
which can also vary between star-forming regions (cf. e.g. Weidner
& Kroupa 2006, Maschberger & Clarke 2008, or Weidner, Kroupa
& Bonnell 2010 for an observational perspective and Maschberger
et al. 2010 for a varying mu in simulations).

In order to normalize the IMFs to be able to find the ‘canonical’
we choose ml = 0.01 M�, near the deuterium burning limit. We set
mu = 150 M�, as this is commonly assumed (cf. Weidner & Kroupa
2004; Figer 2005; Oey & Clarke 2005), but are aware that in some
star-forming regions mu can be at much higher masses (Crowther

2 The incomplete beta function is available in many scripting languages for
data processing [R (open source), IDL etc.] or via Numerical Recipes (Press
et al. 2007). Sometimes what is called ‘incomplete beta function’ is actually
the regularized incomplete beta function, Ix(p, q) = B(x; p, q)/B(p, q). This
is the case for the functions PBETA in R and IBETA in IDL.

Figure 6. Probability density function for the L3 IMF, like Fig. 3 but using
the logarithmic description, shown together with the Kroupa (2001, 2002)
IMF (dashed blue line) and the Chabrier (2003a) IMF (green dotted line).

et al. 2010). As mu lies well in the power-law tail, the exact value
of it does not affect the parameter determination. α, β and μ are
mainly constrained by the behaviour of the IMF below mα .

5.1 L3 single star IMF

In Fig. 6, we show in the logarithmic description the L3 IMF with
parameters chosen such that it fits the ‘canonical’ single-star IMF
(α = 2.3, β = 1.4 and μ = 0.2 M�). For comparison, we also show
the Kroupa (2001, 2002) IMF and the Chabrier (2003a) IMF, both
also normalized as probabilities. The difference between L3 and
Chabrier (2003a) is marginal, between L3 and Kroupa (2001, 2002)
equal to the difference between Kroupa (2001, 2002) and Chabrier
(2003a). The effective low-mass exponent is γ = 0.48 for m <

mγ = 0.042 M�. The high-mass break occurs at mα = 0.93 M�,
comparable to the start of the high-mass power law of Chabrier
(2003a) at 1 M�. In the Kroupa (2001, 2002) IMF, the high-mass
power law continues to 0.5 M�.

A comparison of the number fraction of stars in several mass
bins is shown in the top panel of Fig. 7. The agreement between L3

and Chabrier (2003a) is again very good. The fraction of stars in
the mass range 0.6–2 M� is slightly smaller for L3, because of the
smooth transition to the high-mass power law. There are differences
between L3 and the Kroupa (2001, 2002) IMF at 0.3–1 and at
0.01 – 0.3 M�, caused by the segments in the Kroupa form. The
lower panel of Fig. 7 shows the fraction of total mass in the mass
bins,

per cent m = 100

∫ mb

ma
mp(m)dm∫ mu

ml
mp(m)dm

(26)

(ma and mb being the bin limits). L3 again agrees very well with
Chabrier (2003a) and well with Kroupa (2001, 2002).

As a last point, we compare the exponent of the L3 IMF with
Kroupa (2001, 2002) and Chabrier (2003a), see Fig. 5. Interestingly,
although the pdf, the cumulative distribution function (fraction of
stars, top panel of Fig. 7) and the mass distribution function (fraction
of mass, bottom panel of Fig. 7) of the L3 IMF agree more with a
Chabrier (2003a), the exponent of the L3 IMF follows more closely
the Kroupa (2001, 2002) IMF.
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Figure 7. Comparison of the fractions of number (upper panel) and frac-
tions of mass (lower panel) for the L3 IMF (solid), Kroupa (2001, 2002)
IMF (blue dashed) and Chabrier (2003a) IMF (green dotted). The L3 IMF
agrees better with the Chabrier (2003a) IMF, except for the mass range
around 1 M�, where the power law is mounted on to the log-normal in the
Chabrier (2003a) IMF.

5.2 L3 system IMF

The system IMF for m < 1 M� has been given by Chabrier
(2003a),

pChabrier 2003, System(m) = A0.086
1

m
e
− 1

2

(
log10 m−log10 0.22

0.57

)2

, (27)

and, with slightly modified parameters by Chabrier (2005),

pChabrier 2005, System(m) = A0.076
1

m
e
− 1

2

(
log10 m−log10 0.25

0.55

)2

, (28)

where A is a normalization constant. Above 1 M� the system IMF
follows a power law with exponent 2.35 both in Chabrier (2003a)
and Chabrier (2005). We adopt the Chabrier (2003a) form for m <

1 M� and a power law with exponent 2.3
The best parameters for L3 to fit the Chabrier (2003a) system IMF

are α = 2.3, β = 2 and μ = 0.2 M�, taking ml = 0.01 M� and
mu = 150 M�. A graph of both IMFs in the logarithmic description
is given in Fig. 8, where very good agreement is achieved.

Figure 8. Comparison of the L3 system mass function (solid) and the
Chabrier (2003a) system mass function (green dotted) in the logarithmic
description.

Figure 9. Comparison of the fractions of number (upper panel) and frac-
tions of mass (lower panel) for the L3 system IMF (solid) and Chabrier
(2003a) system IMF (green dotted). As for the single-star IMF (Fig. 7) the
log-normal-power law transition of the Chabrier (2003a) IMF around 1 M�
cannot be fitted exactly.

The effective low-mass exponent is then γ = −0.3 with break-
point mγ = 0.043 M� and high-mass breakpoint at mα = 0.93 M�.
The mean mass is 0.62 M� which compares well with the 0.64 M�
for the Chabrier (2003a) system IMF. The mass for the median
(0.21 M�), the ‘peak’ (0.20 M�) and the mass scale parameter
(μ = 0.20 M�), by chance, coincide. Another coincidence is the
near-equality of mγ and the mode (m̂ = 0.042 M�).

As for the single-star IMF, the fraction of stars and the fractions
of mass over the range of mass bins is very comparable for the L3

system IMF and the Chabrier (2003a) system IMF (Fig. 9).

6 SU M M A RY

The L3 IMF, a functional form of the IMF generalizing the log-
logistic distribution, describes the whole stellar mass range with
a minimum number of parameters (three shape, two limits, see
Table 1 that collects all formulae). It consists of a low-mass and a
high-mass power law that are joined smoothly together. Due to its
analytical simplicity many characteristic quantities (e.g. peak and
mass breaks) can be given explicitly. The cumulative distribution
function is analytically invertible, so that drawing random masses
from the L3 IMF is also very simple and does not involve a large
programming effort.

We have determined the parameters that fit the L3 IMF to the
widely used single-star IMFs of Kroupa (2001, 2002) and Chabrier
(2003a) and the system IMF of Chabrier (2003a). The L3 IMF
follows these IMFs very well, obtaining the same number and mass
fractions of various mass ranges, so that it is a viable alternative
functional form.
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A P P E N D I X A : T H E B4 I MF

In some cases it might be necessary to include explicitly the width of
the IMF in its functional form. For this an additional parameter has
to be introduced, so that the total number of parameters is 4+2, two
exponents, one location and one scale parameter, plus the obligatory
upper and lower mass limit. The L3 IMF can be extended to include
this additional parameter, the cumulative distribution function then
contains then beta functions, thus the name B4 IMF. We give the
formulae for the B4 IMF in Table A1. The ‘canonical’ parameters
were determined ‘manually’, as for the L3 IMF, and the agreement
with the IMFs for single stars (Kroupa 2001, 2002; Chabrier 2003a)
and the IMF for systems (Chabrier 2003a) is comparably good.
Figs A1 and A2 show this in the logarithmic description.

Table A1. Collection of formulae for the B4 form of the IMF. The values given for the parameter are to match
the ‘canonical’ single-star IMF (Kroupa 2001, 2002; Chabrier 2003a), values in parentheses for the ‘canonical’
system (binary star) IMF (Chabrier 2003a). B(t; p, q) is the incomplete beta function.

(1) Auxilliary function: B̃i (m) = B (t(m); σ (β + i), σ (α − i)) t(m) =
(

m
μ

) 1
σ

1+
(

m
μ

) 1
σ

Quantity Formula Definition
Functional form

(2) Cumulative distribution function (CDF) PB4(m) = B̃1(m) − B̃1(ml)

B̃1(mu) − B̃1(ml)

(3) Probability density function (pdf) pB4(m) = A

(
x
μ

)β

(
1 +

(
x
μ

) 1
σ

)σ (α+β)

A = 1

σμ

1

B̃1(mu) − B̃1(ml)
Parameters
High-mass exponent α = 2.3 (2.3) α > 1
Low-mass exponent β = −0.15 (0.4) β > −1
Location Parameter μ = 0.15 (0.20) M� μ > 0
Scale parameter σ = 0.85 (0.80) σ > 0
Lower mass limit ml = 0.01 M� ml > 0
Upper mass limit mu = 150 M� mu > 0
Shape characterizing quantities

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/429/2/1725/1048250 by guest on 24 April 2024

http://ssc.spitzer.caltech.edu/mtgs/ismevol


On the function describing the IMF 1733

Table A1 – continued

(4) Lower power-law mass limit mβ = μe−2σ p(m ∈ [ml . . . mβ ]) ≈ mβ

(5) Upper power-law mass limit mα = μe2σ p(m ∈ [mα . . . mu]) ≈ m−α

(6) Slope (NB: S(∞) = +α ( = 2.35)) S(m) = −β + (α + β)

(
x
μ

) 1
σ

1 +
(

x
μ

) 1
σ

S(m) = − d log p(m)

d log m

Scale characterizing quantities

(7) Mean mass (expectation value) E(m) (= m) = μ
B̃2(mu) − B̃2(ml)

B̃1(mu) − B̃1(ml)
E(m) =

∫ mu

ml

mp(m)dm

(8) Median mass m̃ = P −1
( 1

2

)
(no closed form) P (m̃) = 1

2
(9) Mode (most probable mass) m̂ = μ

(
β
α

)σ
(β > 0) or m̂ = ml (β < 0) m̂ = arg max

m
p(m)

(10) ‘Peak’ (maximum in log–log) mP = μ

(
β + 1

α − 1

)σ d log (mp(m))

d log m
= 0

Figure A1. Logarithmic description of the B4 form of the IMF, like Fig. 6
for L3. The blue dashed curve is the Kroupa (2001, 2002) IMF and the green
dotted curve is the Chabrier (2003a) IMF for comparison.

Figure A2. Comparison of the B4 system mass function (solid) and the
Chabrier (2003a) system mass function (green dashed) in the logarithmic
description, like Fig. 8.
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