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ABSTRACT
We present optimal quadratic estimators for the Fourier analysis of cosmological surveys that
detect several different types of tracers of large-scale structure. Our estimators can be used to
simultaneously fit the matter power spectrum and the biases of the tracers – as well as redshift-
space distortions (RSDs), non-Gaussianities (NGs), or any other effects that are manifested
through differences between the clusterings of distinct species of tracers. Our estimators
reduce to the one by Feldman, Kaiser & Peacock (FKP) in the case of a survey consisting of
a single species of tracer. We show that the multitracer estimators are unbiased, and that their
covariance is given by the inverse of the multitracer Fisher matrix. When the biases, RSDs and
NGs are fixed to their fiducial values, and one is only interested in measuring the underlying
power spectrum, our estimators are projected into the estimator found by Percival, Verde &
Peacock. We have tested our estimators on simple (lognormal) simulated galaxy maps, and
we show that it performs as expected, being either equivalent or superior to the FKP method
in all cases we analysed. Finally, we have shown how to extend the multitracer technique to
include the one-halo term of the power spectrum.
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1 IN T RO D U C T I O N

Astrophysical surveys have come to occupy a central role in cosmol-
ogy (York et al. 2000; Cole et al. 2005; Abbott et al. 2005; Scoville
et al. 2007; Adelman-McCarthy et al. 2008; PAN-STARRS; Tony
et al. 2012; Dawson et al. 2012; Blake et al. 2011). Percent-level
accuracies can now be reached on distance measurements at high
redshifts, both across and along the line of sight (Anderson et al.
2012, 2014). This means more and better constraints on the accel-
eration of the expansion rate of the Universe, on modified gravity
(Linder 2005), on non-Gaussian initial conditions (Verde et al. 2000;
Bartolo et al. 2004), and about the role of massive neutrinos, among
other applications.

The ground-breaking achievements of the Sloan Digital Sky Sur-
vey (York et al. 2000) are being surpassed by other surveys with
higher completeness, wider wavelength coverage, and a larger range
of redshifts (Schlegel et al. 2009; Ellis et al. 2012; Abell et al. 2009).
Some surveys will specialize in mapping very large volumes to an
extremely high completeness, by employing imaging with narrow-
band filters (Benı́tez et al. 2009, 2014), or by resorting to low-
resolution integral-field spectroscopy (Hill et al. 2008). In addition
to galaxies, quasars can also serve both as sources of background
light to investigate the intervening matter through the Ly α forest
(Slosar et al. 2013), or directly as tracers of the large-scale structure
(Croom et al. 2005; da Ângela et al. 2005; Yahata et al. 2005; Shen
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et al. 2007; Ross et al. 2009; Sawangwit et al. 2012; Abramo et al.
2012; Leistedt et al. 2013; Leistedt & Peiris 2014). Another way
in which the 3D matter distribution can be mapped is through the
21 cm hyperfine transition of neutral H, and new radiotelescopes
dedicated to measuring that line are being deployed or are in the
planning stages (Bandura et al. 2014; Battye et al. 2013).

This intense activity points to an exciting future, where vast
volumes of the Universe will be increasingly mapped in a variety of
ways, and with different types of tracers of the large-scale structure.

However, these maps are not independent, since the different
species of galaxies tracer the same distribution of dark matter in
slightly different ways (Guzzo et al. 1997). This points to a key
obstacle on the way to explore the full power of these overlapping
surveys: cosmic variance – a particular case of sample variance,
where the sample is the set of modes of the density perturbations
which were realized in some region of the Universe from a (nearly)
Gaussian random process.

Despite this fundamental limitation, it was pointed out by Seljak
(2009) and McDonald & Seljak (2009) that the bounds imposed by
cosmic variance do not apply for many key physical quantities of
interest. In particular, by comparing the clustering of tracers with
different biases one can measure some parameters to an accuracy
which is basically unconstrained by cosmic variance. This applies
not only to bias itself, but to the matter growth rate of the redshift-
space distortions (RSDs), to the non-Gaussianity (NG) parameters
fNL and gNL, as well as any parameters that affect the relative clus-
terings of different tracers. The consequences of this extraordinary
windfall were explored in many papers – see, e.g. Slosar (2009),
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Gil-Marı́n et al. (2010), Cai & Bernstein (2011a), Cai & Bernstein
(2011b), Hamaus, Seljak & Desjacques (2011), Smith, Desjacques
& Marian (2011), Hamaus, Seljak & Desjacques (2012), Abramo
& Leonard (2013), Blake et al. (2013), Bull et al. (2015) and
Ferramacho et al. (2014). It is important to stress that this addi-
tional information comes from measuring the two-point functions
of the different tracers, as opposed to enhancing the signal to noise
by employing different statistics such as mass weighting (Seljak,
Hamaus & Desjacques 2009; Cai, Bernstein & Sheth 2011; Smith
& Marian 2014).

In Abramo & Leonard (2013), we showed that the enhanced con-
straints of multitracer cosmological surveys are a straightforward
consequence of the multitracer Fisher information matrix (Abramo
2012). In the presence of N different types of tracers, each one with
a different bias, there is a simple choice of variables which diago-
nalizes the multitracer Fisher matrix: in addition to the underlying
power spectrum (which is subject to the cosmic variance bounds),
there are N − 1 variables which correspond to the relative clustering
strengths between the tracers. These relative clustering strengths are
not affected by cosmic variance, and their measurements can be ar-
bitrarily accurate, even if the survey has a finite volume. In the case
of a single tracer, the multitracer Fisher matrix reduces to the usual
case treated in the seminal paper by Feldman, Kaiser & Peacock
(1994, henceforth FKP).

In this paper, we use the multitracer Fisher matrix to derive opti-
mal estimators for the redshift-space power spectra of an arbitrary
number of different types of tracers of large-scale structure (see
Section 3). These tracers may overlap in some regions but not oth-
ers, or not at all. The tracers can be galaxies of different types,
quasars, Ly α absorption systems, etc. One may also choose to
trade individual objects by haloes of different masses – in which
case the bias of the tracers become the halo bias (Seljak et al.
2009; Hamaus et al. 2010; Cai et al. 2011; Smith & Marian 2014,
2015).

Our formulas can be used in any of those situations, in real or in
redshift space, including effects such as scale-dependent bias. An
important cross-check is that a particular combination (or projec-
tion) of our estimators leads back to the estimator of Percival, Verde
& Peacock (2004, henceforth PVP), – namely, the PVP estimator
follows from ours if the biases of the tracers, as well as the RSDs,
are fixed to their true values, and one then computes the underlying
matter power spectrum using the aggregated clustering information
from all the tracers.

We have also incorporated the contribution of the one-halo term
to the covariance of the galaxy counts (see Section 6) into the mul-
titracer Fisher matrix. In principle, the full covariance can be com-
puted using the Halo Model (Cooray & Sheth 2002), together with
appropriate halo occupation distributions (HODs) for the tracers.
Recently, Smith & Marian (2015) presented an optimal estimator
for the power spectrum including all Halo Model corrections to
the spectrum, bispectrum and trispectrum. However, the Smith &
Marian (2015) estimator generalizes the estimator of Percival et al.
(2004), while we have obtained estimators not only for the matter
power spectrum, but also for the biases, RSDs, NGs, etc. Hence,
we are only able to include the simplest correction to galaxy clus-
tering from the Halo Model (the one-halo term), but our framework
allows the simultaneous estimation of bias, RSDs and the power
spectrum, while Smith & Marian (2015), include all the corrections
that can be computed on the basis of the Halo Model, but their
estimator applies only to the power spectrum, and assumes prior
knowledge of the bias of all the species, as well as of the shape of the
RSDs.

The Fisher matrix and the covariance of the counts of the tracers
are the basic objects used to construct our estimators – in fact, the
optimal estimators are a type of Wiener filtering, in the sense that we
are basically weighting the data by the inverse of their covariance.
We employ results and notation introduced in Abramo (2012) and
Abramo & Leonard (2013), and the construction of the estimators
follows the steps outlined in Tegmark (1997), Tegmark et al. (1998),
Hamilton (2005a) and Hamilton (2005b).

The estimators were tested using simple mock galaxy catalogues
based on lognormal maps (see Section 5). We find that the empir-
ical covariance of the power spectra is well approximated by the
theoretical covariance (the inverse of the multitracer Fisher matrix),
confirming the optimality of the estimator.

The main formulas of this paper are derived in Section 3, and a
practical algorithm for the Fourier analysis of multitracer surveys
is summarized in Section 5.2.

This paper is organized as follows: in Section 2 we review the
Fisher information matrix for single-tracer and multitracer cosmo-
logical surveys. In Section 3, we construct the optimal quadratic
estimators on the basis of the covariance matrix for the data. In
Section 4, we discuss the relationships between the multitracer es-
timators and other methods, such as FKP and PVP, as well as the
main features of the multitracer technique. In Section 5, we test
the estimators in simple simulated maps, showing that the empiri-
cal covariance matches closely the theoretical covariance – which
establishes that the multitracer estimators are unbiased and op-
timal. In Section 6, we show how to include the one-halo term
in the estimators of the multitracer power spectra. We also show
there how to construct estimators for the one-halo term, and how
to generalize the procedure to estimate simultaneously the two-
halo and the one-halo term of the power spectrum. We conclude in
Section 7.

2 T H E I N F O R M AT I O N IN G A L A X Y S U RV E Y S

The matter power spectrum is defined through the expectation value
〈〈δm(k, z)δ∗

m(k′, z)〉〉 = (2π)3Pm(k, z)δD(k − k′), where δm(k) is
the matter density contrast, and δD is the Dirac delta function.
However, galaxy surveys actually measure counts of tracers of
the large-scale structure (galaxies and other extragalactic objects)
in redshift space. It is from those observable that we can then
measure derived quantities such as the baryon acoustic oscilla-
tions (Eisenstein, Hu & Tegmark 1999; Blake & Glazebrook 2003;
Seo & Eisenstein 2003), or the pattern of redshift-space distortions
(Kaiser 1987).

For a tracer of type α (greek indices refer to different types of
galaxies, or tracers), with counts per unit volume nα(x), the density
contrast is δα(x) = nα(x)/n̄α(x) − 1. The mean number densities
n̄α should reflect the spatial modulations of the observed numbers of
galaxies which are due to the instrument, the strategy and schedule
of observations, as well as any other factors unrelated to the redshift-
space cosmological fluctuations.

If we assume that bias is linear and deterministic, then in the
distant-observer approximation the redshift-space fluctuations in
the counts of the α-type galaxies are related to the underlying mass
fluctuations by the relation δα(k, z) � [bα + f μ2

k]δm(k, z). Here bα

is the bias of the tracer species α, f(z) is the matter growth rate, and
μk = k̂ · r̂ is the cosine of the angle between the Fourier mode and
the line of sight.

The index α (we employ greek letters to denote different tracer
species) can be any kind of discriminant of the types of tracers of
large-scale structure: it may stand for luminosity, morphological
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type, star formation rate, equivalent width of some emission line,
or a combination of those. One may also regard the dark matter
haloes themselves as the tracers, in which case α would stand for
the halo mass (or some proxy for it, such as richness), and the bias
bα becomes halo bias.

There are some complicating factors in this description. First,
structure formation should introduce a scale dependence for the
bias, as well as some degree of stochasticity (Benson et al. 2000;
Dekel & Lahav 1999; Berlind & Weinberg 2002; Smith, Scocci-
marro & Sheth 2009). Secondly, the initial conditions may con-
tain non-Gaussian features, which would manifest themselves as
an additional scale-dependent bias (Bartolo et al. 2004; Sefusatti &
Komatsu 2007; Dalal et al. 2008). Thirdly, the velocity dispersion
from random motions inside haloes will smear the galaxy density
contrast, affecting the shape of RSDs. In fact, the RSD parame-
ters and angular dependence can inherit scale-dependent non-linear
corrections (Raccanelli et al. 2012)

Hence, in practice it is more useful to regard ‘bias’ as a more
general function of redshift, scale, and angle with the line of sight
that should be determined by observations, and define the clustering
of a species α as

Pα ≡ B2
α Pm, (1)

where Bα = bα + f μ2
k + �bNG is an effective bias. This effective

bias includes the tracer bias, RSDs, NGs, as well as any mecha-
nism that distorts the power spectrum of the tracers relative to the
spectrum of the underlying matter distribution.

In principle, everything depends on x and k, but one can re-
gard x (i.e. the radial position) as standing in for redshift, so we
could also write Bα = Bα(z, k, μk), and Pm = Pm(z, k). Since the
matter power spectrum, bias, RSDs, as well as NGs and other cor-
rections, are just subproducts of clustering measurements for all the
available tracers in a given survey, the problem we must address is
how one can optimally estimate the power spectra of the tracers,
Pα(x, k).

Our approach also means that, as a first approximation, cross-
correlations are expressed as Pαβ = BαBβPm. This is always
valid on large (k � 1 h Mpc−1) scales, where the contribution of
the two-halo term dominates, but on small scales the one-halo
term can invalidate that assumption. That case is considered in
Section 6.

2.1 Optimal estimators and the Fisher matrix

The Fisher information matrix can be constructed from the data
covariance after a series of simple steps – for a review in the spe-
cific context of cosmological surveys, see, e.g. Tegmark, Taylor &
Heavens (1997), Tegmark (1997) and Tegmark et al. (1998).

Consider some data dx (where for the moment we can consider x
to be a discrete index) with vanishing expectation values, 〈〈dx〉〉 = 0,
and covariance Cov(dx, dx′ ) = 〈〈dxdx′ 〉〉. From this data covariance
we would like to estimate a set of parameters θ i given, some initial
(fiducial) guess for the parameters θ̄ i .

If we have a model for the data covariance in terms of the pa-
rameters, Cov(dx, dx′ ) → Cxx′ (θ i), then we can compute the Fisher
information matrix for this model. Assuming that the likelihood is
approximately described by a multivariate Gaussian, and that the
maximum of the likelihood lies near the fiducial values of the pa-
rameters, the Fisher information matrix is given by the expectation

value:

Fij ≡ F [θ i, θj ] = −
〈〈

∂2 logL
∂θ i∂θj

〉〉

� 1

2

∑
xyx′y′

C−1
xy

∂Cyy′

∂θ i
C−1

y′x′
∂Cx′x

∂θj
,

= 1

2
Tr

[
C−1 ∂C

∂θ i
C−1 ∂C

∂θj

]
. (2)

Now suppose that estimators θ̂ i can be constructed, such that their
covariance is given by Cov(θ̂ i , θ̂ j ) = F−1

ij . These estimators must
then be optimal, in the sense that they saturate the Cramér-Rao
bound: Cov(θ̂ i , θ̂ j ) ≥ F−1

ij .
There are in fact such estimators, which can be constructed after

a few simple steps, and which employ the same basic objects that
appear in the Fisher matrix. The first step is to create the quadratic
form:

q̂ i ≡
∑
xx′

dx Ei
xx′ dx′ − �qi, (3)

where the weighting matrix is

Ei
xx′ = 1

2

∑
yy′

C−1
xy

∂Cyy′

∂θ i
C−1

y′x′ , (4)

and �qi subtracts the bias of the estimator.
Gaussianity of the data (a key underlying assumption) implies that

the four-point function 〈〈dxdydx′dy′ 〉〉 → CxyCx′y′ + Cxx′Cyy′ +
Cxy′Cx′y , and from it follows, after some algebra, that the covariance
of the quadratic form above is Cov(q̂ i , q̂j ) = Fij .

The final step is to define the optimal quadratic estimators in
such a way that their covariance is the inverse of the Fisher matrix.
Clearly, then, the estimators:

θ̂ i =
∑

j

F−1
ij q̂j , (5)

satisfy that condition. Finally, with the definition:

�qi ≡
∑
xx′

Ei
xx′Cx′x −

∑
j

Fij θj

= 1

2

∑
xy

C−1
xy

∂Cyx

∂θ i
−
∑

j

Fij θj , (6)

we obtain estimators which are also unbiased. This means that if the
estimators are evaluated assuming fiducial values for the parameters
θ i → θ̄ i which are not far from the true values, and as long as the
data covariance is correctly modelled by the theoretical covariance,
then the expectation values of the estimators converge to the fiducial
values in the sense that 〈〈 (θ̂ i − θ̄ i)2 〉〉 → 0.

2.2 Single-species Fisher matrix

The most basic sources of uncertainty in galaxy surveys are cosmic
variance and shot noise. In cosmological surveys which target a
single species of tracer, the optimal estimator for the galaxy power
spectrum was derived by FKP (Feldman et al. 1994). The corre-
sponding Fisher information matrix was derived by Tegmark (1997)
and Tegmark et al. (1998), who also showed that the FKP estimator
follows from the construction presented in the previous section.
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As will be shown in the next section, the FKP Fisher matrix for
a survey of a galaxy of type α can be written as

F [θ i, θj ] =
∫

d3x d3k

(2π)3

∂ log Pα

∂θ i
Fα

∂ log Pα

∂θj
, (7)

where the Fisher information density in phase space associated with
the tracer α is

Fα(x, k) = 1

2

( Pα

1 + Pα

)2

. (8)

In the expression above we have defined a dimensionless ‘clustering
strength’ of the tracer α, which is just the power spectrum in units
of (Poissonian) shot noise:

Pα(x, k) ≡ n̄α(x)Pα(x, k). (9)

In the limit of arbitrarily high clustering strength (1/n̄α → 0,
Pα → ∞), the Fisher information density saturates the limit
Fα → 1

2 . Hence, for a survey of a single species of tracer there
is an upper limit to the information which can be extracted from
a finite volume and from a finite range of Fourier modes. This is
nothing but a restatement of the limits imposed by cosmic variance.

At this point it is useful to recall how, in practice, one can extract
limits on the amplitude of the power spectrum out of the Fisher
matrix. In that case, the parameters of the Fisher matrix are the
values of the matter power spectrum of the tracer α at a given
bandpower (ki, μi):

θ i → P i
α ≡ 〈Pα(x, k)〉i = 1

Vi Ṽi

∫
Vi

d3x

∫
Ṽi

d3k

(2π)3
Pα(x, k), (10)

where Vi is the volume of the survey (e.g. a particular redshift
slice zi), and Ṽi = 2πk2

i �ki�μi is the volume associated with the
ith bandpower (i.e. the bin in Fourier space). Hereafter, 〈···〉i denotes
an average over the phase space bin, and 〈· · ·〉ki denotes an average
over the Fourier-space bin (the bandpower) – which should not be
confused with expectation values, expressed here as 〈〈···〉〉.

In this case we must compute the Jacobian ∂Pα(x, k)/∂P i
α in-

side equation (7). It is useful to regard such an object in terms of
functional derivatives.1 Using:

∂f (x, k)

∂f (x′, k′)
= (2π)3δD(x − x′)δD(k − k′), (11)

one can see that the inverse of the Jacobian is

∂P i
α

∂Pα(x, k)
= 1

Vi Ṽi

. (12)

But this is simply the inverse of the phase space volume vi = Vi Ṽi .
Therefore, the inverse of this Jacobian, ∂Pα(x, k)/∂P i

α , has the
effect of limiting integrations in phase space,

∫
d3x d3k/(2π)3[· · ·],

to the phase space volume of the bin i. Since this type of object
will reappear later on, we employ the notation δi

x,k to express the
restriction of a phase space integral to a certain volume Vi, and
we use the same notation to indicate restrictions in integrals over
position space, δi

x , or Fourier space, δi
k. Hence, according to this

notation:∫
d3x d3k

(2π)3
[· · ·] × δi

x,k =
∫

vi

d3x d3k

(2π)3
[· · ·]. (13)

1 In fact, all partial derivatives used in connection with the Fisher matrix
should be replaced by functional derivatives in the continuum limit. It is only
when we use bins (in real space and/or Fourier space) that these functional
derivatives are converted to partial derivatives. Nevertheless, in order to keep
the notation as simple as possible, we employ the same notation for both.

Moreover, for non-overlapping bins i and j it follows that:∫
d3x d3k

(2π)3
[· · ·] × δi

x,k × δ
j
x,k = δij

∫
vi

d3x d3k

(2π)3
[· · ·]. (14)

With these identities in mind, it is trivial to see that when using P i
α

as parameters, equation (7) reduces to

F ij
α = F [P i

α, P
j
α ] = δij

(P i
α)2

∫
vi

d3x d3k

(2π)3
Fα. (15)

A more familiar form for this equation follows if we revert to the
definition of averages over real- and Fourier-space bins:

F ij
α = δij Ṽi

(P i
α)2

∫
Vi

d3x 〈Fα〉ki , (16)

where the average is only over the Fourier-space bin (the band-
power). Up to a factor of 2, the integral over position space in
the equation above defines the usual effective volume (Tegmark
1997; Tegmark et al. 1998). The uncertainty in the amplitude of
the power spectrum at the bin i is therefore given by the covariance
Cov[P i

α, P
j
α ] = (F ij

α )−1, which is diagonal in the Fourier modes –
see, however, Abramo (2012). The relative uncertainty in the band-
powers of the power spectrum is then given by the well-known
expression:[

σ (P i
α)

P i
α

]2

= 1

Vi Ṽi F i
. (17)

When the number density of the tracer is very high, Pα � 1 and
Fα → 1/2, and if that is the case, then the survey is dominated
by cosmic variance, σ (P i

α)/P i
α → √

2/vi . The phase space volume
vi expresses the number of modes of the bandpower that fit in the
physical volume Vi, and the factor of 2 comes from the fact that the
density contrast is real.

2.3 Multitracer Fisher matrix

Galaxy surveys can detect a wide variety of objects: galaxies
of different types, quasars, Ly α emmitters, Ly α absorbers,
etc. In the future, all these data will coalesce into multilayer
maps of the observable Universe, containing many different kinds
of objects which can be regarded as tracers of the large-scale
structure.

The multitracer Fisher information matrix describes how the
contributions of cosmic variance and shot noise affect the
signal-to-noise ratio (SNR) of the observables we are trying
to measure – namely, the clustering properties of the trac-
ers. While the nature of shot noise remains basically the same
in the presence of multiple tracers, the effect of cosmic vari-
ance, which is shared among all tracers, mixes the different
components.

The first authors to write a multitracer Fisher matrix (or, equiva-
lently, a covariance matrix for the power spectra) were White, Song
& Percival (2008), McDonald & Seljak (2009) and Hamaus et al.
(2012). In Abramo (2012), we derived the multitracer Fisher di-
rectly from the covariance of the counts of the tracers (the ‘pixel
covariance’). The basic difference between the approaches of White
et al. (2008) and McDonald & Seljak (2009) and ours is that those
authors regard the cross-power spectra as independent parameters,
while we implicitly assume that, for the purposes of estimating the
power spectra from the data, the cross-spectra are determined by
the auto-spectra – see, however, Swanson et al. (2008) and Bonoli
& Pen (2008) for situations where this may not be true. The Fisher
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matrix computed in equation (21) of Hamaus et al. (2012) also re-
duces to ours, if the cross-correlations are unaffected by shot noise –
see also Smith (2009), Smith & Marian (2014) and Smith & Marian
(2015).

We now show how to obtain the multitracer Fisher matrix from
first principles. The generalization of equation (2) in the present
context is

F ij
μν = 1

2
Tr

[
C−1 ∂C

∂P i
μ

C−1 ∂C

∂P
j
ν

]

= 1

2

∑
αβγ σ

∫
d3x d3y d3y ′ d3x ′

× C−1
αβ (x, y)

∂Cβγ ( y, y′)
∂P i

μ

C−1
γ σ ( y′, x′)

∂Cσα(x′, x)

∂P
j
ν

. (18)

There are two main differences between equations (18) and (2):
first, in equation (2) the data were assumed to be discretized, while
here this is not the case anymore – the positions x of galaxies form
a continuum, so the sums of equation (2) become the integrals of
equation (18). Second, when we have N different types of galaxies
(the tracers), there are N(N + 1)/2 correlation functions, and we
must sum over all those as well. Notice also that, in this notation,
greek indices are always related to their respective spatial positions,
to wit α → x, β → y,γ → y′ and σ → x′. Hence, when going
from equation (2) to equation (18) we replaced

∑
x → ∑

α

∫
d3x,

which is the sum over all galaxy types α, and over all possible
positions x, and the same for

∑
y →∑

β

∫
d3y, etc. This expression

reinforces a key aspect of the multitracer Fisher matrix: it couples
the covariances of all the tracers involved – which is exactly the
behaviour we aimed for.

In order to simplify the Fisher matrix of equation (18) we start
by expressing the covariance of tracer counts as

Cαβ (x, x′) = ξαβ (x, x′) + δαβ

n̄α(x)
δD(x − x′)

=
∫

d3k

(2π)3
eik·(x−x′)

×
[
Bα(x, k)Pm(x̄, k)Bβ (x′, k) + δαβ

n̄α(x)

]
, (19)

where x̄ denotes the mean position (or redshift) in which the matter
power spectrum is evaluated. A key difficulty with the covariance
of counts is that, in any realistic situation, it cannot be inverted.
However, if the effective biases and the power spectrum depend
weakly on k, then it is a fair approximation to integrate the complex
exponential in equation (19) into a Dirac delta function, and to pull
the rest of the integrand outside of the integral (Hamilton 2005a,b).
This implies taking the approximation that

Cαβ (x, x′) → δD(x − x′) ×
[

δαβ

n̄α

+ Bα PmBβ

]
. (20)

This expression can now be easily inverted, as we will show next.
The inverse of the covariance should obey the property:∑

β

∫
d3y C−1

αβ (x, y) Cβγ ( y, x′) =

∑
β

∫
d3y Cαβ (x, y) C−1

βγ ( y, x′) = δαγ δD(x − x′). (21)

Since
∫

d3y δD(x − y)δD( y − x′) = δD(x − x′), all we have to do
is to invert the matrix inside the square brackets in equation (20).

But matrices of the type Mαβ = δαβ + vαvβ can be easily inverted,
in fact M−1

αβ = δαβ − vαvβ/(1 + v2), where v2 = ∑
γ v2

γ . A simple
generalization of this simple case leads immediately to

C−1
αβ (x, x′) → δD(x − x′) ×

[
δαβ n̄α − n̄α

Bα PmBβ

1 + P n̄β

]
, (22)

where we define the total clustering strength, P , as the sum of the
clustering strengths of the individual tracers, Pμ = n̄μ B2

μ Pm:

P(x, k) =
∑

μ

n̄μ (x) B2
μ(x, k) Pm(x, k) =

∑
μ

Pμ(x, k). (23)

The clustering strength of a tracer is simply the power spectrum of
that tracer, expressed in units of the (Poissonian) shot noise of that
same tracer.

The problem with equations (20) and (22) is that they refer to
a scale k which does not exist in the original expression, equation
(19). In fact, equations (20)–(22) treat the positions of the two-point
function, x and x′ as one and the same, due to the Dirac delta-
function. Hence, one should think of the Fourier mode k which is
implicit in equations (20)–(22), as the reciprocal of some typical
physical distance between x and x′, and in that sense, its role is
to limit the scope of that distance in expressions involving these
approximations. Notice that this issue appears already in the FKP
and PVP methods.

Coming back to equation (18), we see that the last step be-
fore constructing the Fisher matrix is the computation of the
term ∂Cαβ (x, x′)/∂P i

μ. Once again, it is useful to employ the
notion of functional derivatives and the results of the previous
section. Using the second line of equation (19) and the fact that
∂Pα(x, k)/∂P i

μ = δi
x,k, we find, after some rearrangement, that:

∂Cαβ (x, x′)
∂P i

μ

=
∫

d3k

(2π)3
eik·(x−x′) (δαμδi

x,k + δβμδi
x′,k

)

× Bα(x, k)Bβ (x′, k)

2 (Bi
μ)2

, (24)

where Bi
μ is the effective bias of the species μ at the bin i. Equation

(24) should be regarded as an operator: when it acts on functions
of k, it integrates the Fourier modes inside the volume of the bin
i. Apart from a volume factor Ṽi this integration is just an average
over the bin ki .

We can now obtain the Fisher matrix by substituting equations
(22) and (24) into equation (18). The result, after a bit of algebra,
is that:

F ij
μν = δij

P i
μP i

ν

∫
vi

d3x d3k

(2π)3
Fμν, (25)

where

Fμν(x, k) = 1

4

δμνPμP(1 + P) + PμPν(1 − P)

(1 + P)2
. (26)

Equation (26) is in fact the Fisher information density per unit of
phase space volume for logPμ (Abramo 2012):

F [logPμ(x, k), logPν(x′, k′)]

= (2π)3δD(x − x′)δD(k − k′)Fμν(x, k), (27)

or, equivalently, in bins of finite volume:

F [logP i
μ, logPj

ν ] = δij F i
μν . (28)

One can easily check that the multitracer Fisher matrix of equation
(25) reduces to the FKP Fisher matrix, equation (16), when there is
only one type of tracer.
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3 TH E O P T I M A L MU LT I T R AC E R QUA D R AT I C
ESTIMATO RS

Starting from the Fisher matrix of equation (25), and with the help
of equations (22) and (24), we are in a position to implement
the construction of the estimators which was presented in Sec-
tion 2.1. For now we will not discuss the role of random maps,
which help to subtract spurious fluctuations that could be gen-
erated by modulations on the mean number of tracers, n̄μ. The
calculations below are exactly the same with or without the ran-
dom maps, so we come back to this issue at the end of this
section, after we have shown how to construct the multitracer
estimators.

Since our data are the density contrasts of the tracers, and the
points in space form a continuum, the proper generalization of the
quadratic form in equation (3) is

Q̂i
μ = Tr

[
δ Ei

μ δ
] − �Qi

μ

=
∑
αβ

∫
d3x d3y δα(x)

[
Eαβ (x, y)

]i
μ

δβ ( y) − �Qi
μ, (29)

where �Qi
μ is the bias of the estimator. According to the appropriate

generalization of equation (4):

[
Eαβ (x, y)

]i
μ

= 1

2

∑
σγ

∫
d3x ′ d3y ′

× C−1
ασ (x, x′)

∂Cσγ (x′, y′)
∂P i

μ

C−1
γβ ( y′, y). (30)

This matrix, when used in equation (29), combines the data from
galaxies of type α at positions x with the data from galaxies of type
β at positions y, generating an estimator for the power spectrum of
galaxies of type μ at some bandpower i.

Inserting equations (22) and (24) into equation (30), and then
back on equation (29), leads to the following expression for the
quadratic form:

Q̂i
μ = 1

4 (Bi
μ)2

∑
σγ

∫
d3x d3x ′

∫
d3k

(2π)3
eik·(x−x′)

× fσ (x, k)
(
δσμδi

x,k + δγμδi
x′,k

)
fγ (x′, k) − �Qμ,i, (31)

where

fσ (x, k) =
∑

α

wσα(x, k) δα(x) (32)

are weighted density contrasts for the tracers. The weights are

wσα(x, k) =
[
δσα − Pσ (x, k)

1 + P(x, k)

]
n̄αBα(x, k). (33)

These weights are the generalization of the FKP weights (Feldman
et al. 1994) for the case of multiple tracers of large-scale structure.
As we will prove in a moment, equation (33) defines the optimal
weights for maps containing an arbitrary number of different types
of tracers. In the case of a single species of tracer, the weights
for the density contrast reduce to w = n̄B/(1 + n̄B2Pm), which
is precisely the FKP weight for the density contrast – except for
a normalization, whose origin and purpose will become clearer
soon.

Returning to equation (31), notice that the Kronecker delta func-
tions are accompanied by their respective restrictions over the phase
space volume of the bin where we are estimating the quantities of

interest (in our case, the P i
μ), hence:

Q̂i
μ = 1

4 (Bi
μ)2

∫
Ṽi

d3k

(2π)3

×
∫

Vi

d3x eik·x fμ(x)
∫

d3x ′ e−ik·x′
f (x′)

+ c. c. − �Qi
μ, (34)

where c.c. stands for complex conjugate, and

f =
∑

σ

fσ = 1

1 + P
∑

σ

n̄σ Bσ δσ . (35)

Formally, the spatial integral over fμ covers only the volume of
the redshift slice Vi, while the spatial integral over f should be
performed over the whole volume of the survey. Although this is a
subtlety which is present already in the Fourier analysis of FKP, in
practice we are always considering separately the data on different
redshift slices, and then all integrations in real space are performed
over the same volume. Nevertheless, a more rigorous treatment
comparing different redshift slices would dictate that one of the
Fourier integrations be performed over the whole available volume
of the survey, while the other integration would be carried out over
the volume of one particular redshift slice.

In what follows we will ignore this subtlety, and will consider that
both integrations over spatial volume result in the Fourier transforms
f̃μ and f̃ . We then obtain that

Q̂i
μ = 1

4 (Bi
μ)2

∫
Ṽi

d3k

(2π)3

[
f̃μ(k) f̃ ∗(k) + c. c.

] − �Qi
μ. (36)

But the integration above is, up to the volume factor, simply the
average over the Fourier bin, hence:

Q̂i
μ = Ṽi

4 (Bi
μ)2

〈
f̃μ f̃ ∗ + c. c.

〉ki − �Qi
μ. (37)

Notice that, in this expression and others like it, the factor of (Bi
μ)−2

is the fiducial value of the effective bias, whereas the weighted den-
sity contrasts fμ must be computed directly from the data. However,
since the weights of equation (33) are themselves also computed
using the fiducial values of Bμ and Pm, the weighted fields fμ are a
combination of both theory and data. The situation is not different
from the usual case of Fourier analysis of cosmological surveys em-
ploying the FKP or the PVP estimators. Evidently, these quadratic
estimators are only truly optimal if the parameters take their fiducial
values.

Starting either from equation (37), or more directly from equation
(29), a long but straightforward calculation shows that the covari-
ance of this quadratic form in fact results in Cov(Q̂i

μ, Q̂j
ν ) = F ij

μν ,
where the Fisher matrix was given in equation (25).

Finally, we can construct the optimal quadratic estimators for the
power spectra of any tracer species, by plugging the quadratic form
above into the appropriate generalization of equation (5). The Fisher
matrix that is relevant in this case was already given in equation (25).
We have, therefore, that the optimal quadratic estimators, whose
covariances are given by the inverse of the Fisher matrix, are given
by

P̂ i
μ =

∑
ν

∑
j

[
F ij

μν

]−1
Q̂j

ν

=
∑

ν

[
F ii

μν

]−1
Q̂i

ν, (38)
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where the second line follows from the fact that the Fisher matrix
is diagonal in the bins (i, j).2

Now the origin of the normalizations of the weights, which appear
both in the FKP and the PVP formulas, becomes clear: up to the
prefactor in equation (37), those normalizations correspond to the
inverse of the Fisher matrix in equation (38).

3.1 Subtracting the bias of the estimators

Although by definition Cov(P̂ i
μ, P̂ j

ν ) = [F ij
μν]−1, we still must en-

sure that the bias of estimator is properly subtracted. According to
equation (6), those biases are

�Qi
μ = 1

2

∑
αβ

∫
d3x d3x ′ ∂Cαβ (x, x′)

∂P i
μ

C−1
βα (x′, x)

−
∑

ν

∑
j

F ij
μν P j

ν . (39)

This expression can be easily worked out, and the result is

�Qi
μ = 1

2 (Bi
μ)2

∫
vi

d3x d3k

(2π)3

n̄μB2
μ

1 + P −
∑

ν

F ii
μνP

i
ν . (40)

It is also useful to compute the bias corrections for the power spec-
trum estimators, P̂ i

μ. For this calculation, we will employ the ap-
proximation that averages over the bins can be manipulated in such
a way that 〈A B〉i � 〈A〉i 〈B〉i. This amounts to assuming that the
bins are small compared with the coherence scale of the quantities
of interest – e.g. if the power spectrum is almost constant inside a
bin ki , then 〈P (k)/[1 + n̄P (k)]〉ki � P (ki)/[1 + n̄P (ki)].

In order to go from Q̂i
μ to P̂ i

μ we must first find the inverse of
the Fisher matrix which was found in equation (25). But that is
basically the inverse of the Fisher matrix for the logPμ which was
found in equation (26). This is a particular case of the same type of
matrix inversion which we used in the case of the pixel covariance,
and the result is that:

F−1
μν = PμPν F−1

μν , (41)

where

F−1
μν = 4(1 + P)

P

(
δμν

Pμ

+ P − 1

2P

)
. (42)

Using this expression, and the approximation that bin averages can
be freely rearranged, we obtain that the estimators of the power
spectra of the tracers reduce to

〈〈
P̂ i

μ

〉〉 →
〈(

1 + 1

P

)
Pμ

〉i

− �P i
μ. (43)

In fact, one can also show directly from equation (40) that the bias
of the estimator is

�P i
μ ≡

∑
ν

[F ii
μν]−1�Qi

ν →
〈

Pμ

P

〉i

, (44)

which ensures that the expectation value of the estimator converges
to the true (or, in this context, the fiducial) value, 〈〈P̂ i

μ〉〉 → P i
μ. In

the case of a single type of tracer, the bias of the estimator reduces
to the (Poissonian) shot noise, 1/n̄.

2 This is only true if the Fourier-space bins are sufficiently large, �ki �
π/V 1/3 – see, e.g. Abramo (2012).

3.2 The window functions

The expectation values of the power spectra obtained through the
multitracer quadratic estimators are convolutions of the true power
spectra with some window functions. These window functions can
be obtained directly from the expectation value of the expression in
equation (31), by taking δα → Bα δm and neglecting the biases of
the estimators:

〈〈Q̂i
μ〉〉 = 1

4 (Bi
μ)2

∑
σαβ

∫
vi

d3x d3k

(2π)3

∫
d3x ′eik·(x−x′)

× wμα(x, k)Bα(x, k) wσβ (x′, k)Bβ (x′, k)

× 〈〈
δm(x)δm(x′)

〉〉 + c.c. (45)

From the definition of the weight functions, equation (33), it is easy
to derive that

∑
σ wσαBα = n̄αB2

α/(1 + P) = Pα/Pm(1 + P), and
expressing the matter two-point correlation function in terms of the
matter power spectrum, we obtain:3

〈〈Q̂i
μ〉〉 = 1

4 (Bi
μ)2

∫
vi

d3x d3k

(2π)3

∫
d3x ′ d3k′

(2π)3
Pm(k′)

× ei(k−k′)·xGμ(x, k) e−i(k−k′)·x′
G(x′, k) + c.c., (46)

where

Gμ(x, k) = 1

Pm

Pμ

1 + P , (47)

and G = ∑
μ Gμ = P/Pm(1 + P). Notice that the integration over

k′ in equation (46) is not limited to the volume of the bandpower
i – see also equation (54).

Hence, we define the window function:

Wi(Q)
μ (k′) = 1

4(Bi
μ)2

∫
Ṽi

d3k

(2π)3
G̃μ(k, k′) G̃∗(k, k′) + c.c., (48)

where the Fourier transform of the kernels of equation (47) are

G̃μ(k, k′) =
∫

d3x ei(k−k′)·x Gμ(x, k), (49)

G̃(k, k′) =
∑

μ

G̃μ(k, k′). (50)

Because the integral over d3k is performed only over the Fourier
bin Ṽi , it is often an accurate approximation to take k → ki in the
argument of the kernels of equations (49) and (50), and replace:

G̃μ(k, k′) → G̃i
μ(k − k′)

=
∫

d3x ei(k−k′)·xGμ(x, ki), (51)

G̃(k, k′) → G̃i(k − k′) =
∑

μ

G̃i
μ(k − k′). (52)

3 In fact, a careful analysis shows that only one of the real-space integrals in
equation (46) ought to be carried out only over the volume of the particular
redshift slice under study, Vi, while the other should be in principle carried
out over the whole volume of the survey (e.g. all redshift slices). In practice,
it may be more conservative to treat each bin in position space as an entirely
independent survey, and in that case the two integrals would be carried out
over the volume of the redshift slice. In fact, it is only in this limit that the
Fisher matrix of equation (25), or that of equation (28), are truly diagonal
in the bins i and j (Abramo 2012), and therefore it is only in this sense that
the optimal estimators satisfy the constraint that Cov(P̂ i

μ, P̂
j
ν ) → [F ij

μν ]−1.
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Notice that the Fourier transform of the kernels with respect to their
spatial dependence still remains, since we do not replace k by ki in
the exponentials.

With these definitions, we can write the effective window function
of the quadratic form as

Wi(Q)
μ = 1

4 (Bi
μ)2

∫
Ṽi

d3k

(2π)3

[
G̃μG̃∗ + c.c.

]

� Ṽi

4 (Bi
μ)2

〈
G̃i

μG̃i∗〉i + c.c. (53)

Hence, in terms of the window function we have

〈〈Q̂i
μ〉〉 �

∫
d3k′

(2π)3
Pm(k′) Wi(Q)

μ (ki , k′). (54)

An interesting limiting case happens when we take all quantities
to be constant inside the spatial bin, Pμ(x, k) → Pμ(k), and then
take the continuum limit. In that case the kernels in Fourier space
become Dirac-delta functions, G̃μ → Gi

μ (2π)3δD(k − k′), and the
window function becomes:

Wi(Q)
μ → 1

4 (Bi
μ P i

m)2

P i
μP i

(1 + P i)2
× (2π)3δD(ki − k′). (55)

The most relevant window functions are, of course, not Wi(Q)
μ , but

those which apply for the estimators of the power spectra. Since
〈〈P̂ i

μ〉〉 = ∑
ν[F ii

μν]−1〈〈Q̂i
ν〉〉, we obtain that:

〈〈P̂ i
μ〉〉 =

∫
d3k′

(2π)3
Pm(k′) Wi

μ, (56)

where

Wi
μ =

∑
ν

[F ii
μν]−1 1

4 (Bi
ν)2

∫
Ṽi

d3k

(2π)3

[
G̃νG̃

∗ + c.c.
]
. (57)

Finally, in the same limit that was used to obtain equation (55), we
can apply the identity:

∑
ν

F−1
μν × 1

B2
μ

1

Pm

Pν

1 + P = 2B2
μ Pm

1 + P
P , (58)

to show that Wi
μ → (Bi

μ)2 × (2π)3δD(ki − k′), as in fact it ought
to be. This completes the demonstration that the estimators derived
in this section satisfy all the desired criteria for optimal, unbiased
estimators, with the correct continuum limits.

3.3 Random maps and the integral constraints

Up to now we have introduced the optimal multitracer quadratic
estimators without mentioning the role of the random (‘synthetic’)
maps. They help subtract the fluctuations that arise purely as a result
of modulations in the mean number density of the tracers, n̄μ(x),
and are caused by, e.g. angular- or redshift-dependent variations in
the selection function of a survey (Feldman et al. 1994).

For each tracer species with mean number density n̄μ(x) we
define a random (white noise) map with a mean number density
with the same shape as that which is presumed for the data: n̄r

μ(x) =
n̄μ(x)/αμ, where αμ are (small) constants. The random data sets
have no structure, in the sense that their pixel covariances are just
given by the shot noises of each sample:

〈〈δr
μ(x)δr

ν(x′)〉〉 = δμν

n̄r
μ

δD(x − x′) = αμ

δμν

n̄μ

δD(x − x′).

With the data and random sets we construct weighted density
contrasts in a way similar to the definition of equation (32):

fμ(x, k) =
∑

ν

wμν(x, k)
nν(x) − Aν nr

ν(x)

n̄ν

,

=
∑

ν

wμν(x, k)

[
δν(x) − Aν

αν

δr
ν(x) + 1 − Aν

αν

]
, (59)

where the weights were given in equation (33). The values of Aν

should be calibrated in such a way that the weighted fields fμ have
zero mean over the volume of the sample, thus ensuring the so-
called integral constraints, 〈P̂μ(k = 0)〉 → 0 (Fisher et al. 1993).
It is easy to check that the condition

∫
d3x fμ = 0 is satisfied by

setting:

Aμ =
∑

ν

R−1
μν Dν, (60)

where

Dν =
∫

d3x
∑

σ

wνσ (x, k) [1 + δσ (x)] , (61)

Rμν = 1

αν

∫
d3x wμν(x, k)

[
1 + δr

ν(x)
]
. (62)

Since Dν and Rμν are functions of k, in principle the constants
Aμ also depend on the wavenumber. In practice, we employ only
a couple of putative values for Pm in all the weights, hence we
compute Aμ only for those values.

Usually the mean density contrasts of the random catalogues are
very close to zero, which means that Aμ → αμ to a very good
approximation. Indeed, taking δr

ν → 0 in equation (62) it follows
that equation (60) can be recast as

Aμ

αμ

≈ 1 +
∑
νσ

[∫
d3x wμν(x)

]−1 ∫
d3x ′ wνσ (x ′)δσ (x ′). (63)

The fractional difference between Aμ and αμ is of the order of
the average of the density contrast over the whole volume of the
catalogue. This correction is negligible unless the galaxy catalogues
are extremely sparse, hence it is often safe to take Aμ → αμ. One
can also improve this approximation by taking smaller values of
αμ, which makes equation (63) more accurate. However, if there
are reasons (e.g. computational) to limit the size of the synthetic
catalogues, such that αμ cannot be too small, then Aμ may deviate
from αμ.

Using equation (59) instead of equation (32) in the estimators do
not make much difference in our calculations, except for the biases
of the estimators, which inherit the factors of Aμ and αμ. Starting
from equation (40) we obtain:

�Qi
μ = 1

2 (Bi
μ)2

∫
vi

d3x d3k

(2π)3

n̄μB2
μ

(1 + P)2

×
{

1 +
∑

ν

A2
ν

αν

[
δμν(1 + P) − Pν

]} + δQi
μ, (64)

where the extra term, δQi
μ, arises when Aμ �= αμ, leading to the

additional correction:

δQi
μ = 1

2 (Bi
μ)2

∫
d3x

∑
ν

(
Aν

αν

− 1

)
wμν

×
∑
γ σ

(
Aσ

ασ

− 1

)
wγσ . (65)
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This expression can be simplified with the help of the definitions
�μ = (Aμ/αμ − 1)n̄μBμ, and � = ∑

μ�μ, leading to

δQi
μ = 1

2 (Bi
μ)2

∫
d3x

[
�μ − �Pμ

1 + P

]
�

1 + P . (66)

As we discussed above, in most cases the tracers are sufficiently
abundant to make Aμ � αμ, so �μ → 0, and the extra term of
equation (66) can be neglected. The biases of the estimators are then
given only by the first term of equation (64) – with the simplification
that A2

μ/αμ → αμ. If, in addition, we assume that the random maps
are constructed such that the αμ are all identical, αμ → α, then the
biases of the estimators become simply:

�Qi
μ = 1 + α

2 (Bi
μ)2

∫
vi

d3x d3k

(2π)3

n̄μB2
μ

(1 + P)2
. (67)

4 PRO P E RTI E S A N D R E L AT I O N S O F TH E
M U LTI T R AC E R ES T I M ATO R

The results of the previous section are closely related to other meth-
ods for the Fourier analysis of cosmological surveys, but they also
extend their scope considerably.

The simplest limit is when we take all tracers to be a single
species. In that case our formulas reduce to the ones by FKP. The
weights of equation (33) reduce to w = n̄B/(1 + P), which are
the FKP weights after we make the identification P = ∑

μ Pμ =
n̄B2Pm, where n̄ = ∑

μ n̄μ and B2 = n̄−1
∑

μ n̄μB2
μ. Furthermore,

the multitracer Fisher matrix of equation (26) also reduces to the
FKP Fisher matrix once we sum over all the clustering strengths –
i.e. when we combine all tracers into a single type. Changing vari-
ables in the Fisher matrix Fμν = F [logPμ, logPν], from logPμ to
logP , introduces a constant Jacobian, Jμ = 1μ. This can be seen
by considering the inverse Jacobian, J−1

μ = ∂ logP/∂ logPμ =
Pμ/P , which satisfies

∑
μ J−1

μ Jμ = ∑
μ J−1

μ = ∑
μ Pμ/P = 1.

Hence the multitracer Fisher matrix projected into the Fisher matrix
for the total clustering strength becomes:

F [logP] =
∑
μν

Jμ Fμν Jν =
∑
μν

Fμν

= 1

2

( P
1 + P

)2

, (68)

which is the FKP Fisher information density per unit of phase space
volume.

We now discuss some of the main features of the multitracer
technique, as well as its relations to other methods in the literature.

4.1 The PVP estimator

Suppose we fix all parameters Bi
μ, and try to estimate the matter

power spectrum Pm(k) using data from all tracers. The optimal,
unbiased estimator in that case was derived by Percival et al. (2004,
PVP) – see also Smith & Marian (2015). The method used by PVP
to construct their estimator was the same as that used by FKP –
i.e. the weights which minimize the covariance Cov(P i

m, P j
m) were

obtained through a variational approach.
Here, instead, we built the optimal estimators directly on the

basis of the pixel covariance, assuming Gaussianity of the data. We
already showed that our estimators reduce to that of FKP in the case
of a single species of tracer. Now we show that the PVP estimator is
just one of many possible projections of the multitracer estimators.

If we fix the effective biases Bμ to their fiducial values (i.e. if the
bias of each type of galaxy and the shape of the RSDs are set to
their true values), then the remaining unknown is the matter power
spectrum at the position- and Fourier-space bins, Pm, i. We may now
ask what is the Fisher matrix for the matter power spectrum. This is
easily derived from equation (25) through the change of variable:

F (P i
m, P j

m) =
∑
μν

∑
kl

∂P k
μ

∂P i
m

Fkl
μν

∂P l
μ

∂P
j
m

= δij

∑
μν

(Bi
μ Bj

ν )2 F ij
μν

= δij

(P i
m)2

∑
μν

F ii
μν

= δij

(P i
m)2

∫
vi

d3x d3k

(2π)3

1

2

( P
1 + P

)2

, (69)

where we used that ∂P k
μ/∂P i

m = (Bi
μ)2δki . Hence, the Fisher matrix

for the matter power spectrum is simply a projection of the multi-
tracer Fisher matrix, where we sum the Fisher information over all
the tracers. Naturally, this result is also identical to what was found
in equation (16) in the case of a single tracer – i.e. in that case the
PVP estimator reduces to the FKP estimator.

Now, if one fixes the effective biases and wishes to estimate
the matter power spectrum alone, then the generalization of equa-
tions (29) and (30) follow simply by replacing the functional
derivative ∂ /∂P i

μ → ∂ /∂P i
m, which is also equivalent to taking

∂ /∂P i
μ → ∑

μ(Bi
μ)2 ∂ /∂P i

μ. The resulting quadratic form is basi-
cally a projection of equation (37):

Q̂i(PVP)
m = Ṽi

2

〈|f̃ |2〉ki
, (70)

where the weighted field f was defined in equation (35). Therefore,
in the PVP estimator the density contrasts of all tracers are combined
into a single weighted density contrast, at each point in space. The
cross-correlations are all averaged out, in such a way that only the
signal to noise of the matter power spectrum is optimized.

The optimal estimator for the matter power spectrum is then
simply obtained by multiplying the quadratic form by the inverse
of the Fisher matrix, i.e.:

P̂ i(PVP)
m = 1

Ni

〈|f̃ |2〉ki
, (71)

where the normalization is basically given by equation (69):

Ni = 1

Ṽi(P i
m)2

∫
vi

d3x d3k

(2π)3

( P
1 + P

)2

. (72)

Noting that P/Pm = ∑
μ n̄μB2

μ, we see that this estimator is pre-
cisely that of PVP.

One may ask also the converse question: what if we want to fix
the matter power spectrum Pm, and estimate the effective biases Bμ?
In that case, it is a simple exercise to show that this would lead right
back to the optimal multitracer estimators, with the only difference
that we would end up measuring P̂ i

μ/P i
m. However, in reality we

can only measure the overall clustering of certain tracers of large-
scale structure, which means to estimate the combined product
of the matter power spectrum and the (square of the) effective
bias. Any distinction between what belongs to the matter power
spectrum, and what belongs to the bias, RSDs, NGs, etc. can only
be made after some other type of prior knowledge is introduced –
e.g. by constraining the normalization and shape of the spectrum
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from CMB observations, by modelling the RSDs, or by introducing
priors on the bias from gravitational lensing. Evidently, it would
be an overuse of information to fix the power spectrum in order to
measure the bias, and then employ that bias in order to estimate
the power spectrum. Both are measured together in galaxy surveys,
and this fundamental degeneracy can only be broken by introducing
additional data into the problem.

4.2 The role of cross-correlations

Although our estimators only compute the power spectra of the
individual tracers, Pμ = B2

μPm, it is clear from equations (31)–(34)
that the cross-correlations of the data, 〈δαδβ〉 (with α �= β), are also
taken into account. In fact, the multitracer estimators express the
optimal way to combine both the auto- and the cross-correlations in
the computation of the physical parameters Bμ and Pm.

Depending on the total SNR, the power spectra of different tracers
can have a positive or negative covariance. Since the SNR of a tracer
is given by the amplitude of the power spectrum divided by shot
noise, Pμ = Pμ/(n̄μ)−1, the total SNR of a survey is expressed by
the sum of the SNRs, P = ∑

μ Pμ. Hence, when P � 1 the total
SNR is high, and conversely, the total SNR is low if P � 1.

When the total SNR is high, then from equations (41) and (42)
we immediately see that the covariance between the clusterings of
different types of tracers (the off-diagonal terms) is positive, in fact
Cμν = Cov(Pμ, Pν) → 2PμPν . In relative terms, the covariance in
that limit is constant for all tracers, Cμν/(PμPν) → 2. This is simply
cosmic variance.

In the converse limit, of very low total SNR, the cross-covariance
becomes negative, Cμν → −2PμPν/P2 (μ �= ν). In relative terms,
the covariance in this limit is also independent of the tracer species,
as it happens in the high-SNR limit, but now Cμν/(PμPν) →
−2/P2.

4.3 Tracers with low SNR

An obvious situation of interest arises when some tracer has low
SNR. This can happen if the tracer is sparse (n̄μ � 10−5), or has a
very small bias (bμ � 1), making its clustering strengthPμ very low
in some bin or bandpower.4 The danger would be that the inverse
of the Fisher matrix (the covariance matrix), which enters in the
multitracer estimators through equation (38), could propagate this
noise to the estimation of the spectra for the other tracers.

However, this is not the case, as can be seen from the expression
for the covariance matrix in equations (41) and (42): because the
reciprocals of the individual clustering strengths (i.e. the noises)
only appear in the diagonal terms of the covariance matrix, if one
of the tracers has a very high noise, this will only affect that same
tracer. In particular, this means that our estimators are robust even
when a galaxy survey includes tracers whose SNR are small.

This feature is very convenient if one would like to split a survey
into several subsurveys, by dividing galaxies, quasars and other ob-
jects into different categories according to type, luminosity, colour,
morphology, etc. – all of which may be indicators of the bias of
those tracers. In doing that, even though the total SNR of the survey

4 Notice that the values of the power spectra of the tracers, Pμ = B2
μPm,

should never all vanish. If they do, in some sense (e.g. on extremely large or
small scales), then P → 0, making the entire Fisher matrix vanish for that
bin – as it should indeed happen in that case.

should remain approximately constant, the SNR of each individ-
ual tracer would decrease, leading us to wonder whether this could
lead to a degradation of the information derived from that survey.
However, the fact that a tracer with low SNR only affects its own
estimator means that this strategy can be safely used even when
some tracers have very low number densities.

4.4 Shot noise and the one-halo term

A fundamental assumption in our derivations has been that the
covariance of the counts of the tracers is given by equation (19).
However, this is often a simplification.

First, the statistics of counts in cells for galaxies in a redshift
survey is only approximately Poissonian, so shot noise may be
very different from the usual 1/n̄μ. Moreover, besides the two-
halo term which usually dominates on large scales, there is an
additional contribution to the power spectrum from the one-halo
term (Cooray & Sheth 2002). In the k → 0 limit the one-halo term
is effectively an additional contribution to shot noise. In principle,
any such corrections can be fixed simply by allowing for a more
general form of shot noise for each tracer which, in the limit of
negligible one-halo term and Poisson statistics, reduces to δμν/n̄μ.

A closely related problem arises when different types of tracers
occupy the same dark matter haloes. Equation (19) states that the
covariance between counts of different types of tracers do not have
any shot noise. However, the Halo Model specifies that even for
galaxies of different types there is a non-vanishing one-halo term,
which is degenerate with shot noise in the k → 0 limit. Usually
this is a small contribution, subdominant to the shot noise of the
individual tracers, but it ultimately means that the noise cannot be
assumed to be diagonal in the tracers.

A third, and perhaps more serious problem, arises from that fact
that different tracers are often found to inhabit haloes of very similar
masses. Most galaxies (as well as quasars) are found in haloes
of masses in the range 1013h−1M� � Mh � 1015h−1M�, with
relatively small differences between the distributions of each type
of object within haloes – the so-called HODs (Martinez & Saar
2001; Cooray & Sheth 2002). In particular, this means that the
biases of those tracers are not entirely independent.

In other words, different tracers can be correlated by more
than just the underlying dark matter field. These correlations arise
through the one-halo terms of the power spectra, which contribute
to the covariances of the counts of those tracers, as well as through
additional contributions to the bispectrum and trispectrum. But the
trispectrum also defines the covariance of the power spectra through
〈〈Pμ(k)Pν(k′)〉〉 ∼ Tμμνν(k, −k, k′, −k′), which means that it is not
possible to assume that the trispectrum is given only by the con-
nected pieces of the four-point function – i.e. it is not true anymore
that 〈〈δμδνδαδβ〉〉 = CμνCαβ + CμαCνβ + CμβCαν .

It is straightforward to incorporate the one-halo term systemat-
ically into the covariance in all our calculations (see Section 6).
However, if there are significant correlations between the power
spectra arising from the one-, two- and three-halo terms of the
trispectrum, then the counts cannot be assumed to be nearly
Gaussian. In that case it would be erroneous to assume that the
tracers are truly independent, and a key assumption of our method
would be undermined. Nevertheless, Smith & Marian (2015) were
able to extend the PVP method (which does not rely on a direct
construction based on the pixel covariance, but on variational meth-
ods) to incorporate these contributions from the Halo Model in
formal expressions for the weights and for the Fisher matrix. How-
ever, recall that the PVP method, as well as its extension by Smith
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& Marian (2015), only tackle the estimation of the matter power
spectrum, after assuming that the bias, RSDs, NGs, etc. are known
and fixed.

4.5 Degenerate tracers

While tracers with different biases can possess correlations beyond
those associated with the large-scale structure of the Universe, it is
not necessarily true that two tracers that have similar biases must be
highly correlated. Two types of galaxies may have different HODs,
but their biases could coincide. In those cases, if there is a significant
contribution from the one-halo term, then it may still make sense to
treat those species separately. It is only when two tracers have the
same HOD (or, equivalently, the same bias, one-halo term, two-halo
term, three-halo term, etc.), that they should be consolidated into a
single species.

However, suppose we do not know whether or not two types of
galaxies have the same HODs. If we use the multitracer approach
and treat those two species as if they were different tracers, but
they turn out to have the same HODs, would that initial assumption
imply an overestimate of the information, or some distortion in the
estimators?

The answer is no, and this follows from a very interesting prop-
erty of the multitracer Fisher matrix. As shown in Abramo &
Leonard (2013), the Fisher matrix can be diagonalized by chang-
ing variables, from the original power spectra Pμ = B2

μPm to a
new set of parameters which correspond to the total clustering
strength and certain ratios between the power spectra – the rela-
tive clustering strengths. In the case of two tracers with spectra P1

and P2, a choice of parameters which diagonalizes the Fisher ma-
trix is logP = P1 + P2, and logR = logP1/P2 (or, equivalently,
logP and logP2/P1 = − logR). The Fisher information per unit
of phase space for this new set of parameters is

F [logP, logR] =
⎛
⎝ 1

2
P2

(1+P)2 0

0 1
4

P2 R
(1+P) (1+R)2

⎞
⎠ . (73)

For an arbitrary number N of tracers, the change of variables
that diagonalizes the Fisher matrix is identical to a change from
Cartesian coordinates to spherical coordinates in N dimensions.
Namely, if we regard the N clustering strengths as P1 → x2

1 ,
P2 → x2

2 , etc. then the variables that diagonalize the Fisher ma-
trix are the radius, P → r2 = ∑

μ x2
μ, together with the (N − 1)

angles tan2 θ = (r2 − x2
N )/x2

N , cot2 φ1 = (r2 − x2
N − x2

N−1)/x2
N−1,

cot2 φ2 = (r2 − x2
N − x2

N−1 − x2
N−2)/x2

N−2, etc. Hence, the angle
variables correspond to certain ratios between the tracers, (or rel-
ative clustering strengths), for which the matter power spectrum
(the radius) cancels out. In particular, this means that the relative
clustering strengths are immune to some statistical limitations that
affect the matter power – namely, the relative clustering strengths
can be measured to an accuracy which is not constrained by cosmic
variance (Abramo & Leonard 2013).

Coming back to our example of the two tracers, if we now stip-
ulate that they are in fact a single species, then P1 = P2, and
R → n̄1/n̄2 is not a free parameter anymore, so d logR → 0. This
is equivalent to projecting the 2 × 2 Fisher matrix into a single
component, thus eliminating the line and column corresponding to
logR, and leaving logP as the sole free parameter. Indeed, since
d logR → 0 in this case, we cannot constrain physical parameters
such as RSDs or NGs on the basis of a measurement of R.

Table 1. The three cases we use to illustrate the application of the multi-
tracer method. In all cases tracer 1 has bias b1 = 1.0, and tracer 2 has bias
b2 = 1.2. In case A, the two tracers have high number densities, so the signal
to noise is high. In case B, tracer 1 is dense, but tracer 2 is sparse. In case C,
both tracers are sparse, so the signal to noise is low.

Case n̄1 (h3 Mpc−3) b1 n̄2 (h3 Mpc−3) b2

A 1 × 10−2 1.0 1. × 10−2 1.2
B 1 × 10−2 1.0 1. × 10−5 1.2
C 1. × 10−5 1.0 1 × 10−5 1.2

Since the Fisher matrix is diagonal, the Fisher information for
logP is unchanged after this projection (or marginalization). In
particular, the variance σ 2(logP) = σ 2(P)/P2 is untouched by a
marginalization over R, and it is still given by the inverse of the
same Fisher matrix element in equation (73), so σ 2(P) = 2(1 +
P)2, which is nothing but the covariance (in units of phase space
volume) for a single tracer species – see equation (17).

The argument above extends to any number of tracers: since the
Fisher matrix is diagonal in the ‘spherical coordinates’ (the total
and relative clustering strengths), projecting some of the tracers out
by combining them into new species does nothing to the Fisher
information of the total clustering strength, or to the relative clus-
tering strengths of the remaining species. Therefore, in principle
there is no difference between treating two identical tracer species
(with the same HODs) separately, or joining them into a single type
of tracer. Of course, one can always destroy information by treating
two different tracer species as if they were just one, but there is
no penalty for breaking a catalogue into as many subcatalogues as
one wishes – even if some of the tracers turn out to be completely
degenerate.

The argument is a bit more involved if we work with the
power spectra as the parameters, but the conclusion is the same
(see Appendix A).

5 TESTI NG THE ESTI MATORS

In Sections 2 and 3, we derived the optimal multitracer estimators.
We also obtained the covariance of the estimators – which is sim-
ply the inverse of the multitracer Fisher matrix. In this Section we
apply that formalism to simple simulated galaxy maps. The im-
plementation of the estimators is quite straightforward, and should
be familiar to anyone who has used the FKP or the PVP methods.
Although we test the method in real space, the extension to redshift
space is trivial: instead of bins in |k|, one should have bins both in
k and in μ2

k .
For the generation of the galaxy maps we chose a simple method

that is both efficient and computationally cheap enough that hun-
dreds of realizations of a single fiducial matter power spectrum
and galaxy model can be analysed. We implemented the multitracer
estimators in a cubic grid with constant, uniform mean number den-
sity (or selection function), for the case of two different species of
tracers, with biases b1 = 1.0 and b2 = 1.2. We checked that the esti-
mators are as robust as the FKP or PVP methods against variations
in the survey geometry.

In order to test the performance of the estimators in situations
of high or low signal to noise, we consider three different cases, as
shown in Table 1. In each case we generate 1000 galaxy maps (each
map consisting of two catalogues, one for each tracer), and estimate
the spectra using the methods described in Section 3.
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5.1 Lognormal maps

Our mocks follow the same procedure used in, e.g. PVP. A detailed
description of the generation of lognormal maps can be found in
Coles & Jones (1991). The basic idea is that a Gaussian density
contrast δ(G)(x) is not bounded from below, which implies that
negative values for the density are possible in any finite-volume
realization of such a Gaussian field. Lognormal fields, on the other
hand, are positive definite, so we map the Gaussian field into a
lognormal field.

A lognormal field obeys the condition δ(L)(x) ≥ −1 and approxi-
mately describes the non-linear density field at low redshifts. We can
obtain a lognormal density field in terms of a Gaussian density field
through the definition 1 + δ(L)(x) = exp[δ(G)(x) − σ 2

G/2], where σ 2
G

is the variance of the Gaussian field inside a cell. The Gaussian cor-
relation function is related to the physical (assumed lognormal)
correlation function by ξ (G)(x) = ln [1 + ξ (ph)(x)]. Given a fiducial
cosmology, we obtain the z = 0 matter power spectrum Pm(k) from
the Boltzmann codeCAMB5 (Lewis, Challinor & Lasenby 2000), and
inverse-Fourier transform it to get the physical correlation function
ξ (ph)(x). We then convert the physical (assumed lognormal) cor-
relation function to the correlation function of the corresponding
Gaussian field, and Fourier-transform that correlation function into
a power spectrum for the Gaussian field. This is the power spectrum
which is employed to generate the Gaussian random modes for the
density contrast.

The next step is the generation of biased lognormal maps for
each galaxy type. We define the lognormal maps as 1 + δ(L)

μ (x) =
exp[bμ δ(G)(x) − b2

μσ 2
G/2].6 Finally, we create the galaxy maps as

independent Poisson realizations over the lognormal fields. Each
tracer has its own spatial number density n̄μ(x) and bias bμ, so that
the maps for each tracer are given by integer numbers for each cell
of volume dV in our cube through a Poisson sampling, Nμ(x) ←
P{n̄μ(x)[1 + δ(L)

μ (x)]dV }, where P{λ} is a Poisson distribution with
mean λ.

In the three cases detailed above, we considered cubic 2563

grids with a fiducial cosmology characterized by a flat � cold
dark matter (�CDM) model with �bh2 = 0.0226, �CDMh2 = 0.112
and h = 0.72. Each cube has a physical (comoving) volume of
(1280 h−1Mpc)3. It is important to note that lognormal maps cre-
ated this way do not show the usual effect of suppression in power
at small scales when a smoothing algorithm is applied to convert
from a continuous distribution to a discrete grid, such as nearest
grid point. In any case, the formalism is general enough to accom-
modate this necessity. Furthermore, since the grid used is cubic, it is
unnecessary to deconvolve the estimated spectra from the window
function. Even though any discretization scheme could be used, the
square grid is required in order to employ an implementation in
terms of a fast Fourier transform (FFt), which is, as a matter of fact,
the only practical way to perform a Fourier analysis of large data
sets.

5 http://CAMB.info
6 Notice that, for a lognormal map with bias b, the correlation function
used in the generation of the Gaussian random modes should be defined as
ξ (G)(x) = b−2 ln [1 + b2 ξ (ph)(x)]. Therefore, strictly speaking, this prescrip-
tion only is self-consistent when there is a single type of galaxy, with one
bias. However, using the same correlation function for tracers of different
biases introduces only a small spectral distortion on small scales, which we
corrected for in our simulations.

5.2 The data analysis algorithm

With the galaxy maps nμ(x) as input, along with an initial guess
for the biases bμ, we can start to deploy the machinery developed
in Sections 2 and 3. A previous step, in case we had not explicitly
generated maps with constant, uniform number densities, would be
to estimate n̄μ(x).

We start by constructing random maps, nr
μ(x), for each tracer as

a Poisson process, in each cell of the grid, with the same shape for
the mean number density as the data (i.e. the real maps), but with
a larger number of particles, n̄r

μ = n̄μ/αμ, where αμ are small con-
stants. We then construct the density contrasts according to equation
(59): δμ(x) = (nd

μ − Aμ nr
μ)/n̄μ – where recall that Aμ are constants

found according to the discussion in Section 3.3.
With an initial guess for the biases and for the amplitude of the

power spectrum, we can construct Pμ and P = ∑
μ Pμ, plug them

into the weights (equation 33), and calculate the weighted density
contrasts of equation (59). We then perform an FFt over f (x) and
fμ(x), in order to obtain the integrand of equation (36). Taking
proper care of the volume factors (in real and in Fourier space), this
step should be analogous to the average over modes in equation
(2.4.5) of FKP.

The next step is to subtract the biases of the estimators – the
�Qi

μ in equation (36) or, equivalently, equation (67). Assuming
that averages over bins are such that 〈A B〉i ≈ 〈A〉i 〈B〉i, and taking
a single value for all the αμ → α, equation (40) can be rearranged
to yield:

�Qi
μ = 1 + α

2

∫
vi

d3x d3k

(2π)3

n̄μ

(1 + P)2
. (74)

With our choice of α = 10−6, we find that Aμ → α to an excellent
approximation, which means that the biases of the estimators are
given only by equation (74) – see Section 3.3. Finally, the estimated
power spectra are computed with the help of equation (38).

We present our results for the estimated spectra of two types of
tracers in three cases, A, B and C – see Table 1 and Fig. 1. Case A
represents a low-redshift survey which is highly complete, so both
tracers are dense. Case B represents a low- or intermediate-redshift
survey, with one dense species of tracer (type 1 – say, red galaxies)
and one sparse species of tracer (type 2 – say, quasars). Case C
represents a high-redshift survey, with two sparse types of tracers.

Our estimates were evaluated in evenly separated bandpowers
with �k = 0.005 h Mpc−1. We show the estimated spectra in Fig. 1,
only up to k = 0.2 h Mpc−1 – slightly into the non-linear regime
but still below the Nyquist frequency, such that our results are not
affected by discretization effects. When estimating the spectra we
adopted a commonly used simplification, which is to fix the value of
the matter power spectrum that is used in the weights, equation (33)
– in our case, we found that fixing Pm → 104 h−3 Mpc3 in the weights
was a suitable choice. Our results did not change significantly over
the dynamical range of interest when that value was multiplied by
2 or by 1/2.

5.3 Empirical versus theoretical covariances

We now check whether the theoretical covariance matrix (the inverse
of the multitracer Fisher matrix) is a good approximation to the true
(i.e. empirical) covariance matrix. If the theory is accurate, then the
method is validated; if it is not, then the multitracer estimators are
suboptimal.
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Figure 1. Estimated auto-spectra v. real auto-spectra. Filled (red) circles
correspond to the power spectrum of the tracer 1, with b1 = 1.0, and filled
(blue) squares correspond to the estimated power spectrum of the tracer 2,
with bias b2 = 1.2. The symbols and error bars correspond to the mean and
to the variance, respectively, of 1000 realizations. The dashed lines are the
input (theoretical) spectra of the tracers, given their biases and our fiducial
cosmology. The upper, middle and lower panels correspond to cases A, B
and C, respectively (see Table 1). The error bars are the theoretical ones –
i.e. the inverse of the Fisher matrix, equation (25).

The empirical result was obtained from 1000 realizations. This
was compared with the theoretical covariance – i.e. the inverse of
the binned Fisher matrix of equation (25):

Cov(P i
μ, P j

ν ) = δij

[
1

P i
μ P i

ν

∫
vi

d3x d3k

(2π)3
Fμν

]−1

, (75)

where Fμν was defined in equation (26).
In Fig. 2, we present the comparison between the theoretical and

empirical covariances for the auto-spectra of the two species, ob-
tained, respectively, from equation (75) and from taking the standard
deviation of 1000 lognormal realizations. We find that our theoret-
ical expression properly reproduces the behaviour of the statistical
fluctuations in all cases, matching more closely the variances when
compared with the FKP method. The theoretical variances sometime
underestimate slightly the empirical variance, which is consistent
with the notion that the inverse of the Fisher matrix is an under-
estimate of the true covariance – which is consistent with what is
usually found in implementations of the FKP method. In cases B
and C the multitracer estimator performs better (much better, in
case B) than the FKP estimator on all scales. The reason this im-

Figure 2. Theoretical versus empirical relative covariances of the auto-
spectra, Cov(P i

μ, P i
μ)/(P i

μ)2. The upper, middle and lower panels corre-
spond to cases A, B and C, respectively (see Table 1). Red circles and
blue squares correspond to the theoretical covariances of the tracers 1
and 2, respectively. The lines of the same colours are the standard devi-
ation of our 1000 lognormal mocks. Solid symbols and lines correspond
to multitracer estimates, while open symbols and dashed lines correspond
to FKP estimates. In case A (upper panel), since the two tracers have
high signal to noise (both P1 � 1 and P2 � 1 in this range of scales),
both the multitracer and the FKP formulas for the auto-covariances reduce
to Cov(P i

μ, P i
μ)/(P i

μ)2 � 2/vi = 2/(ViṼi ) ∼ k−2
i (see equations (41) and

(42)). Hence, in this case most symbols and lines overlap. In most cases,
the empirical covariances are slightly higher than the theoretical ones – as
expected. In case B (middle panel), the covariance of spectrum of the sparse
tracer species is significantly higher in the FKP method: in this case, the
multitracer method reduces the uncertainty in the spectrum by a large factor.

provement is that, in the multitracer analysis, the estimation of the
power spectrum of any one type of tracer factors in the data from
all tracers – in particular, the estimation of the power spectrum of
a sparse tracer includes data coming also from the more abundant
tracer populations.

In Fig. 3, we compare the theoretical and empirical cross-
covariances for the spectra of the two tracers (green triangles),
as well as the covariance for the ratios of the two spectra, P1/P2

(black diamonds). Since the FKP method cannot predict theoreti-
cal covariances in these two cases, we only show the multitracer
theoretical variances. The theoretical variance for the ratio P1/P2

follows from the multitracer Fisher information matrix, equation
(26), which can be diagonalized by a change of variables (Abramo
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Figure 3. Theoretical versus empirical covariances between the different
auto-spectra, σ12 = Cov(P i

1 , P i
2 ), and for the ratio between the spectra,

Cov(P i
1/P i

2 , P i
1/P i

2 ) (the relative covariance is identical for P2/P1). The
upper, middle and lower panels correspond to cases A, B and C, respec-
tively (see Table 1). Diamonds (black) correspond to the theoretical relative
cross-covariances of the two spectra, while triangles (green) correspond to
the theoretical covariance for the ratios between the spectra (see text). The
solid lines correspond to the empirical covariances, using the multitracer
estimators (we do not show the results using the FKP estimator in these
plots because it performs significantly worse compared with the multitracer
estimators, and in any case the FKP method does not predict these covari-
ances). Notice that in case C (lower panel) the cross-covariance is negative,
since P < 1 – see equations (41) and (42). Notice also that in case A the
ratio between the spectra has a much lower relative uncertainty than the
cross-correlation between the two spectra (for an explanation, see the text).

& Leonard 2013), where the new parameters (the ‘eigenvectors’ of
the Fisher matrix) are not the individual clustering strengths Pμ,
but the total clustering strength, P , and certain ratios between the
clustering strengths. In particular, a diagonal Fisher matrix means
that the degrees of freedom are independent – there are no cross-
covariances. For two types of tracers, the variables which diagonal-
ize the 2 × 2 Fisher matrix are P = P1 + P2, and P1/P2 (or, equiv-
alently, P and P2/P1). As shown in Abramo & Leonard (2013),
the Fisher matrix per unit of phase space volume for log (P1/P2) is
Fratio = P1 P2/4(1 + P1 + P2), from which follows that the rela-
tive covariance of that ratio is [

∫
d3x d3k/(2π)3Fratio]−1. This figure

demonstrates the power of the multitracer technique to measure
P1/P2 = B2

1 (z, k, μk)/B2
2 (z, k, μk), something that can be used to

place stronger constraints not only the biases of the two species, but
also on RSDs, NGs, etc.

Figure 4. Upper panel: covariance matrix for tracer 2 in case B. The upper
triangle is the result using the multitracer estimator, and the lower triangle
results from using the FKP estimator. The multitracer technique performs
significantly better on all scales. Lower panel: correlation matrix for tracer
2 in case A. Both the multitracer and the FKP estimators perform similarly
regarding the correlations between Fourier bins. We checked that the esti-
mators result in similar correlation matrices for both tracers, in the three
different cases we analysed.

The upper panel of Fig. 4 shows the covariance matrix for tracer
2 (b2 = 1.2) in case B – i.e. Cov(B)

22 (ki, kj ). We exploited the sym-
metry of the covariance matrix under ki ↔ kj in order to com-
pare the multitracer and FKP estimators directly. In the lower
panel of this figure we show the correlation matrix, defined as
Corrij = Covij /

√
Covii Covjj . We find that both the multitracer

and the FKP estimators yield roughly similar correlation matrices,
with weakly correlated bins up to scales k � 0.1 h Mpc−1.

The upper panel of Fig. 4, together with the middle panels of
Figs 2 and 3, shows that in case B the multitracer estimator per-
forms significantly better than the FKP estimator at all scales, with
uncertainties up to one order of magnitude smaller for the spec-
trum of the sparse tracer. The multitracer technique is also clearly
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superior in estimating the auto-spectra in case C, when both tracers
are sparse – see the lower panel of Fig. 2.

6 IN C L U D I N G T H E O N E - H A L O T E R M

The fundamental object in this paper, which was used to derive the
Fisher information matrix, as well as the optimal weights, is the
pixel covariance. In the limit where bias and RSDs depend weakly
on k, the covariance can be approximated by equation (20). How-
ever, this is not a complete description: in addition to the ‘signal’,
Pα = B2

αPm, and the shot noise, δαβ/n̄α , there is another source of
correlations between the density contrasts of different species of
tracers at different points in space: the one-halo term of the power
spectrum. According to the Halo Model (Cooray & Sheth 2002),
dark matter haloes are the genuine tracers of the underlying mat-
ter density, while galaxies only trace the haloes. In particular, this
means that many galaxies may be hosted by the same halo, in which
case they would be tracing the same features of the underlying fluc-
tuations of the matter density.

This additional covariance between galaxy counts is expressed
by the one-halo term:

P 1h
αβ (k) = 1

n̄α n̄β

∫
d ln M

d n̄h

d ln M
u2(k|M) 〈〈NαNβ〉〉M, (76)

where d n̄h/d ln M is the mass function for haloes of mass M, Nα is
the number of galaxies of type α, and u(k|M) is the Fourier transform
of the halo profile (Cooray & Sheth 2002). The expectation value is
over the probability distribution function for the numbers of galaxies
(the HOD) at a given halo mass. For the species of tracers which
are typically used in cosmological surveys the one-halo term is only
relevant on small scales (k � 1 h Mpc−1) – although, since u(k →
0) = 1, it still contributes a constant factor on large scales.

Inclusion of the one-halo term would lead the approximated pixel
covariance of equation (20) to assume the expression:

Cαβ (x, x′) → δD(x, x′) ×
[

δαβ

n̄α

+ P 2h
αβ + P 1h

αβ

]
, (77)

where we write the two-halo term P 2h
αβ = BαBβPm. In principle, if

we are only interested on the properties of the clustering on large
scales, this term can be included systematically, in every step of the
calculations – see also Hamaus et al. (2010), in a similar context.
These are straightforward computations, but for a general form
of P 1h

αβ there is no closed-form expression for the inverse of the
pixel covariance matrix, which means that we cannot give explicit
formulas for the Fisher matrix, the weights, the window functions,
etc.

6.1 Fisher matrix of the two-halo term for separable one-halo
terms

In some cases the populations of tracers are such that the one-
halo term is approximately separable, i.e. it can be expressed as a
direct product of two terms, P 1h

αβ ∼ HαHβ – just as happens with
the two-halo term. We have checked that, for a class of HODs
that is commonly used to describe red and blue galaxies (Zheng

et al. 2005), all entries of the correlation matrix P 1h
αβ /

√
P 1h

ααP
1h
ββ are

very close to unity, which justifies this approximation. However,
we only verified this feature of the one-halo term while ignoring
the distinction between central and satellite galaxies, since it is not
clear how to generalize 〈NαNβ〉 in that case. It would be interesting
to find out whether this property holds for more realistic HODs.

If the one-halo term is separable, it turns out that we can invert the
covariance matrix. This result follows from the exquisite properties
of matrices that can be written as Mαβ = δαβ + vαvβ + uαuβ . This
type of matrix appeared already in Section 2, where we showed
that the inverse of Mv, αβ = δαβ + vαvβ is given by M−1

v,αβ = δαβ −
vαvβ/(1 + v2), where v2 = ∑

μ v2
μ.

As shown in Appendix B, the inverse of the matrix
Mαβ = δαβ + vαvβ + uαuβ is

M−1
αβ =

∑
μν

M−1/2
v,αμ M−1

u′,μν M
−1/2
v,νβ , (78)

where

M
−1/2
v,αβ = δαβ − vαvβ/(1 + v2 + √

1 + v2), and

u′
α = ∑

μ M−1/2
v,αμ uμ.

After some algebra, using equation (78) we can express the in-
verse of the covariance, equation (77), as

C−1
αβ (x, x′) → δD(x, x′)

×
[
δαβ n̄α − n̄α

P 2h
αβ + P 1h

αβ + Yαβ

1 + T n̄β

]
, (79)

where the cross-term is

Yαβ =
∑

μ

n̄μ

(
P 2h

αμ P 1h
μβ + P 1h

αμ P 2h
μβ

− P 2h
αβ P 1h

μμ − P 1h
αβ P 2h

μμ

)
, (80)

and the term appearing of the denominator in equation (79) is

T =
∑

μ

n̄μ (P 2h
μμ + P 1h

μμ) +
∑
μν

n̄μn̄ν(P 2h
μμ P 1h

νν − P 2h
μν P 1h

μν). (81)

Compare this result with equation (22). We detect some familiar
expressions, in particular:

P =
∑

μ

n̄μB2
μPm ≡

∑
μ

Pμ =
∑

μ

n̄μP 2h
μμ. (82)

It is now useful to rename the clustering strength of the two-halo
term as Pμ → P2h

μ , P → P2h, and to define the one-halo clustering
strength as P1h = ∑

μ n̄μP 1h
μμ = ∑

μ P1h
μ . The cross-terms mixing

the one-halo and the two-halo terms appear in the combinations:

P c
αβ ≡

∑
μ

P 2h
αμ n̄μ P 1h

μβ,

Pc
αβ ≡ n̄αn̄βP 2h

αβP 1h
αβ . (83)

Once again, we find it useful to define the dimensionless clustering
strengths of these cross-terms, as was done for the two-halo and the
one-halo terms. They are

Pc
α ≡ n̄αP

c
αα =

∑
β

Pc
αβ,

Pc ≡
∑

α

n̄αP
c
αα =

∑
αβ

Pc
αβ . (84)

With these definitions we find that

T = P2h + P1h + P2hP1h − Pc. (85)

Similarly, we get:

Yαβ = P c
αβ + P c

βα − P 2h
αβ P1h − P 1h

αβ P2h. (86)
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The Fisher matrix was defined in a generic sense in equation (18).
That definition, as well as the construction of the optimal quadratic
estimators, are valid for any Gaussian variables (Tegmark et al.
1998). In a related result, Smith & Marian (2015) recently derived
an optimal estimator for the matter power spectrum, as well as
the Fisher matrix for the power spectrum, including not only the
one-halo term, but also the two- and three-halo contributions to the
trispectrum – most of which are, strictly speaking, non-Gaussian
contributions. We did include the one-halo term in the pixel covari-
ance, as well as in the trispectrum, but only through the assumption
of Gaussianity of the four-point function. Due to the non-Gaussian
terms that will appear in the trispectrum, our estimators are not
exactly optimal. Nevertheless, in some sense our result are more
general than those of Smith & Marian (2015), since the multitracer
estimators can be employed not only in the computation of the
matter power spectrum, but also for the biases and the RSDs.

Since we keep the assumption of Gaussianity, all we have to do
is work out the algebra with the covariance of equation (77), and
its inverse, given by equation (79). After a lengthy calculation, we
find that the Fisher matrix which generalizes the expression in the
integrand of equation (25) can be expressed as

F2h
μν = 1

4(1 + T )2

{ [
(1 + P1h)P2h − Pc

]
× [

δμνP2h
μ (1 + T ) − (1 + P1h)P2h

μ P2h
ν

+ (1 + P2h)Pc
μν + P2h

μ Pc
ν + P2h

ν Pc
μ

]
+ (1 + P1h)2 P2h

μ P2h
ν − (Pc)2Pc

μν

− (1 + P1h) (P2h
μ Pc

ν + P2h
ν Pc

μ)
}

. (87)

It can be easily verified that taking P 1h
μν → 0 implies Pc

μν → 0,
T → P2h, etc. and this expression reduces to the matrix Fμν which
is inside the integral in equation (25). The matrix is also manifestly
symmetric.

It can also be shown that this Fisher matrix is positive definite,
with positive diagonal terms and a positive determinant. This guar-
antees that the covariance of the two-halo power spectrum is also
positive definite.

We should stress once again that the expression above is only
valid in the approximation that the one-halo term is separable, i.e.

P 1h
αβ /

√
P 1h

ααP
1h
ββ � δαβ . For a general form of the one-halo term,

the pixel covariance matrix cannot be inverted analytically, which
means that there are no closed-form expressions for the Fisher
matrix or for the optimal weights. One could still go ahead and
compute them numerically, without any difficulty.

6.2 Fisher matrix and optimal weights for the one-halo term

Now, suppose that what we are in fact interested in measuring the
one-halo term. The one-halo term is now the ‘signal’, while the two-
halo term, as well as shot noise, become the ‘noise’. This should in
fact be the case for very small scales (k � 1 h Mpc−1), where the
one-halo term dominates over the two-halo term (Cooray & Sheth
2002).

The pixel covariance is still the same, as in equation (77), and, as
long as the one-halo term is separable, the inverse covariance is also
unaltered – see equation (79). The basic difference is that now in-
stead of writing P 2h

αβ = Bα(z, k, μk)Bβ (z, k, μk)Pm(k), we assume
that the one-halo term can be written effectively as something like
P 1h

αβ = Hα(z, k, μk)Hβ (z, k, μk)U (k), where U(k) contains infor-
mation about the shape of the mean halo profile. This is a strong

assumption: it means that, for N species of tracers, the one-halo term
would have only N degrees of freedom (the P 1h

α = H 2
α U ), while the

full expression in fact has N(N − 1)/2 degrees of freedom.
Keeping the hypothesis that the one-halo term is separable, all

we need to do now, in order to find its Fisher matrix, is to exchange
all the two-halo terms by the one-halo terms in equation (87). This
procedure can also be used to define the optimal weights that ought
to be used when extracting information about the one-halo term
from galaxy surveys.

Since many of the objects defined above are already symmetric
under the exchange P 2h

μν ↔ P 1h
μν (this includes T , Yμν and Pc

μν), the
one-halo Fisher matrix can be immediately written as

F1h
μν = 1

4(1 + T )2

{ [
(1 + P2h)P1h − Pc

]
× [

δμνP1h
μ (1 + T ) − (1 + P2h)P1h

μ P1h
ν

+ (1 + P1h)Pc
μν + P1h

μ Pc
ν + P1h

ν Pc
μ

]
+ (1 + P2h)2 P1h

μ P1h
ν − (Pc)2Pc

μν

− (1 + P2h) (P1h
μ Pc

ν + P1h
ν Pc

μ)
}

. (88)

For very small scales the two-halo term can be neglected, and we
are left just with the one-halo terms.

The Fisher matrix in bins of k is just as in equation (25):

F ij (1h)
μν = δij

[P i(1h)
μν ]2

∫
vi

d3x d3k

(2π)3
F1h

μν. (89)

The optimal weights follow in a straightforward manner from this
expression, just as was done for the two-halo term.

6.3 Joint Fisher matrix for the two-halo and one-halo terms

The next obvious question is: what if we wish to estimate both the
two-halo and the one-halo terms in a multitracer cosmological sur-
vey, simultaneously? The two contributions are clearly correlated,
so their information contents are not independent. Evidently, on
either very large or very small scales the correlations between the
two are small, and one can treat the signal (P2h on large scales; P1h

on small scales) as effectively independent of the noise. However,
on intermediate scales (around k ∼ 1 h Mpc−1) the one-halo and the
two-halo terms may have significant correlations. Furthermore, the
approximation of separable one-halo term becomes more accurate
on those intermediate scales.

The pixel covariance is still given by equation (77), and its inverse
also remains unchanged, but we would now be considering our
‘signal’ as the sum Pμ = P 2h

μ + P 1h
μ . The main difference is that

the derivatives of the pixel covariance, which in the case when we
neglected the one-halo term were given by equation (24), should
now be computed with respect to the signal including the one-halo
term:

∂Cαβ (x, x′)
∂P i

μ

= ∂P i(2h)
μ

∂P i
μ

∂Cαβ (x, x′)

∂P
i(2h)
μ

+ ∂P i(1h)
μ

∂P i
μ

∂Cαβ (x, x′)

∂P
i(1h)
μ

=
∫

d3k

(2π)3
eik·(x−x′) (δαμδi

x,k + δβμδi
x′,k

)

×
[

Bα(x, k)Bβ (x′, k)

2 (Bi
μ)2

+ Hα(x, k)Hβ (x′, k)

2 (Hi
μ)2

]
. (90)
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Substitution of this expression, together with the inverse of the pixel
covariance, into equation (18), leads to the full Fisher matrix for the
power spectrum. This can be written as

F ij
μν = δij

∫
vi

d3x d3k

(2π)3

⎧⎪⎨
⎪⎩

F2h
μν[

P
i(2h)
μν

]2 + F1h
μν[

P
i(1h)
μν

]2

+ F c
μν

[
1

P
i(2h)
μμ P

i(1h)
νν

+ 1

P
i(2h)
νν P

i(1h)
μμ

]}
, (91)

where F c
αβ contains the cross-terms between the one-halo and

the two-halo terms which follow from equation (90). Expressing
the inverse covariance of equation (79) in terms of C−1

αβ (x, x′) =
δD(x, x′)Dαβ , the information mixing between the one-halo and
two-halo terms is given by

F c
μν = 1

8

∑
αβ

(
P 1h

αβDαβ P 2h
μνDμν + P 2h

αβDαβ P 1h
μνDμν

+ P 2h
ναDαμP 1h

μβDβν + P 1h
ναDαμP 2h

μβDβν

)
. (92)

It is trivial to obtain the full expression, although it turns out to
be rather long. It can be significantly simplified if we employ two
additional auxiliary definitions:

Z(1,2)h
μν ≡

∑
α

P (1,2)h
μα Dαν, (93)

W (1,2)h
μν ≡ P (1,2)h

μν Dμν. (94)

In terms of these variables we have, e.g.:

Z2h
μν = n̄ν

1 + T
[(

1 + 2P2h + P1h
)
P 2h

μν + P c
μν

]
, (95)

and

W 2h
μν = δμνP2h

μ +
(
1 − P1h

)
P2h

μ P2h
ν

1 + T

+ P2h
μ Pc

ν + P2h
ν Pc

μ + (
1 − P2h

)
Pc

μν

1 + T , (96)

as well as the analogous expressions obtained by exchanging
1h↔2h. In terms of these definitions we have:

F c
μν = 1

8

[
Z1hW 2h

μν + Z2hW 1h
μν

+
∑

α

(
Z2h

μαZ1h
αν + Z1h

μαZ2h
αν

)]
,

where Z = ∑
μZμμ = ∑

μνWμν . In fact, these definitions are also
helpful when computing F2h

μν (taking all Z → Z2h and W → W2h)
and F1h

μν (taking all Z → Z1h and W → W1h).

7 C O N C L U S I O N S

We have obtained optimal estimators for the Fourier analysis of
multitracer cosmological surveys. The formulas were derived in
Section 3, and a practical algorithm for the Fourier analysis of
multitracer surveys was summarized in Section 5.2. Those are the
main results of this paper.

The multitracer technique estimates the individual redshift-space
power spectra for each tracer, Pα(z, k, μk), taking into account the
covariance between the tracers which is induced by the large-scale
structure. In contrast to the estimators obtained by Percival et al.
(2004) or Smith & Marian (2015), which are suited for estimating

the underlying matter power spectrum after fixing the biases and
the RSDs, our optimal estimators can be used to measure both the
power spectrum, the biases, the shape of RSDs, etc. In particular, our
estimators facilitate measurements of RSDs, scale-dependent bias
and NGs from cosmological surveys of multiple tracers, helping
realize the potential for determining those physical parameters to
an accuracy which is not limited by cosmic variance (Seljak 2009;
McDonald & Seljak 2009; Gil-Marı́n et al. 2010; Hamaus et al.
2011; Abramo & Leonard 2013).

We also included the contribution from the one-halo term
in our calculations (Section 6). Although on very large scales
(k � 1 h Mpc−1) the two-halo term is dominant, the one-halo term
gives a nearly constant contribution in that limit, adding to shot
noise – and, unlike shot noise, it does affect the cross-correlations.

It is important to stress that our formulas are relatively simple
generalizations of those by FKP (Feldman et al. 1994) and PVP
(Percival et al. 2004), so readers familiar with these standard meth-
ods should have no trouble implementing the multitracer technique.
We tested the estimators (see Section 5) in a wide variety of sit-
uations, and they performed quite robustly – in many instances,
significantly better than the FKP method. It should now be straight-
forward to combine cosmological surveys targeting different types
of galaxies, quasars and other tracers of large-scale structure.
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A P P E N D I X A : D E G E N E R AT E T R AC E R S I N
T H E BA S I S O F T H E AU TO - P OW E R SP E C T R A

Suppose we have N types of tracers, but we would like to combine
the last two of those tracers into a single species, for a new total of
N − 1 tracers. For simplicity, let us regard our original parameters
as Pμ (μ = 1. . . N). We would like to change variables to P ′

a

(a = 1. . . N − 1), where P ′
a = Pa for a = 1, . . . N − 2, and the

new tracer species is constructed by combining the last two tracers,
P ′

N−1 = PN−1 + PN . When the biases of the two species which are
combined into one are identical, BN−1 = BN−2 = B ′

N−1, this linear
combination ensures that P ′

N−1 = (n̄N−1 + n̄N )B ′2
N−1Pm, so clearly

n̄′
N−1 = n̄N−1 + n̄N – i.e. the total number of galaxies of the new

species is the sum of the number of galaxies of the two original
species.

The Jacobian for the transformation P ′
a → Pμ is ∂P ′

a/∂Pμ, and
this Jacobian equals δaμ when μ < N − 1, it vanishes if a = N − 1
and μ < N − 1, and it is equal to 1 if a = N − 1 and μ ≥ N − 1.

However, what we need for the new Fisher matrix is the
Jacobian for the inverse transformation,7 Pμ → P ′

a , i.e. Jμa =
(∂Pμ/∂P ′

a)−1. But this turns out to be a very simple matrix:
Jμa = δμa when μ < N − 1, it vanishes if a = N − 1 and μ <

N − 1, and when a = N − 1 and μ ≥ N − 1 the Jacobian is equal
to Pμ/P ′

N−1 = Pμ/(PN−1 + PN−1) – see also the discussion at the
beginning of Section 4.

Hence, in the new variables the Fisher matrix (or, more precisely,
the Fisher information density per unit of phase space volume) is:

F ′
ab = F [P ′

a,P ′
b] =

N∑
μν

Jμa

Fμν

Pμ Pν

Jνb, (A1)

where Fμν = F [logPμ, logPν] – see equation (26). This turns out
to be given by

F ′
ab =

⎛
⎜⎝

1
P ′

a P ′
b
Fab

1
P ′

aP ′
N−1

∑N
ν=N−1 Faν

Sym 1
(P ′

N−1)2

∑N
μ,ν=N−1 Fμν

⎞
⎟⎠ , (A2)

where the upper left block is an (N − 2) × (N − 2) matrix, the
right block is an 1 × (N − 2) column, the lower left block is an
(N − 2) × 1 row, and the lower right block is a single entry. Hence,
the resulting (N − 1)-dimensional Fisher matrix is given simply by
summing the lines and columns corresponding to the two tracers
which were combined into a single type.

Now, it can be easily verified from equation (26) that summing
any two lines and columns of the fisher matrix Fμν yields precisely
the Fisher matrix where the new entries correspond to the Fisher
information for the sum of the clustering strengths of the two species
that were combined. In other words, if we take equation (26) and
use P ′

a to compute F ′
ab = F [logP ′

a, logP ′
b], then the Fisher matrix

F ′
ab = F ′

ab/P ′
aP ′

b is identical to equation (A2).
This argument can be iterated to show that combining any number

of tracers into a single species corresponds to adding their clustering
strengths, and this operation results in a simple sum of the Fisher
information of those tracers.

7 In fact, since this Jacobian is not a square matrix, it only has a pseudo-
inverse. However, in this case the pseudo-inverse is exact.
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A P P E N D I X B: IN V E R S I O N O F TH E
C OVA R I A N C E M AT R I X

Consider a matrix of the form Mv = 1 + v ⊗ v – i.e.
Mv, μν = δμν + vμvν . As discussed in Section 2, it can be shown
that

M−1
v = 1 − v ⊗ v

1 + v2
, (B1)

where v2 = Tr(v⊗v) = ∑
αvαvα . This is in fact a special case of

the Sherman–Morrison–Woodbury formula (Woodbury 1950).
The matrix Mv also has a simple ‘square root’, as well as an

‘inverse square root’, given by

M1/2
v = 1 + v ⊗ v

1 + √
1 + v2

(B2)

M−1/2
v = 1 − v ⊗ v

1 + v2 + √
1 + v2

, (B3)

where M−1/2
v · M−1/2

v = M−1
v and M−1/2

v · Mv = M1/2
v , from which

follows that

M−1/2
v · Mv · M−1/2

v = 1. (B4)

Now, take a matrix M = Mv + u⊗u. The first piece of that
matrix can be diagonalized following the procedure outlined

above, so we have that

M−1/2
v · M · M−1/2

v = 1 + (M−1/2
v · u) ⊗ (u · M−1/2

v )

= 1 + u′ ⊗ u′, (B5)

where u′ = M−1/2
v · u (i.e. u′

α = ∑
μ M−1/2

v,αμ uμ). But the matrix of
equation (B5) can now be inverted using the equivalent of equa-
tion (B1), and moreover it has an inverse square root M

−1/2
u′ , as in

equation (B3). Therefore, we have that

M
−1/2
u′ · M−1/2

v · M · M−1/2
v · M

−1/2
u′ = 1.

Therefore, the inverse of the matrix M is given by

M−1 = M−1/2
v · M

−1/2
u′ · M

−1/2
u′ · M−1/2

v

= M−1/2
v · M−1

u′ · M−1/2
v . (B6)

Of course, one could equally write this inverse as

M−1 = M−1/2
u · M−1

v′ · M−1/2
u ,

where v′ = M−1/2
u · v.
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