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ABSTRACT
Non-linear bias measurements require a great level of control of potential systematic effects in
galaxy redshift surveys. Our goal is to demonstrate the viability of using counts-in-cells (CiC),
a statistical measure of the galaxy distribution, as a competitive method to determine linear
and higher-order galaxy bias and assess clustering systematics. We measure the galaxy bias
by comparing the first four moments of the galaxy density distribution with those of the dark
matter distribution. We use data from the MICE simulation to evaluate the performance of
this method, and subsequently perform measurements on the public Science Verification data
from the Dark Energy Survey. We find that the linear bias obtained with CiC is consistent with
measurements of the bias performed using galaxy–galaxy clustering, galaxy–galaxy lensing,
cosmic microwave background lensing, and shear + clustering measurements. Furthermore,
we compute the projected (2D) non-linear bias using the expansion δg = ∑3

k=0(bk/k!)δk ,
finding a non-zero value for b2 at the 3σ level. We also check a non-local bias model and
show that the linear bias measurements are robust to the addition of new parameters. We
compare our 2D results to the 3D prediction and find compatibility in the large-scale regime
(>30 h−1 Mpc).

Key words: cosmological parameters – cosmology: observations – dark energy – large-scale
structure of Universe.

1 IN T RO D U C T I O N

In recent years, photometric redshift galaxy surveys, such as the
Sloan Digital Sky Survey (Kollmeier, Zasowski & Rix 2017), the

� E-mail: francs1@uci.edu

Dark Energy Survey (DES) (Dark Energy Survey Collaboration
2016), and the future Large Synoptic Survey Telescope (Ivezić et al.
2008) and Euclid (Amiaux, Scaramella & Mellier 2012), have arisen
as powerful probes of the large-scale structure (LSS) of the Universe
and of dark energy. The main advantage of these surveys is their
ability to retrieve information from a vast number of objects, yield-
ing unprecedented statistics for different observables in the study of

C© 2018 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/482/2/1435/5134168 by guest on 24 April 2024

http://orcid.org/0000-0003-3136-9532
http://orcid.org/0000-0001-7288-6435
mailto:francs1@uci.edu


1436 A. I. Salvador et al.

LSS. Their biggest drawback is the lack of line-of-sight precision
and the systematic effects associated with it. Thus, well-constrained
systematic effects and robust observables are required in order to
maximize the performance of such surveys. In this context, simple
observables such as the galaxy number counts serve an important
role in proving the robustness of a survey. In particular, the galaxy
counts-in-cells (CiC), a method that consists of counting the num-
ber of galaxies in a given 3D or angular aperture, has been shown
to provide valuable information about the LSS (Peebles 1980; Ef-
stathiou et al. 1990; Bernardeau 1994; Gaztañaga 1994; Szapudi
1998) and gives an estimate of how different systematic effects can
affect measurements. The CiC can provide insights to higher-order
statistical moments of galaxy counts without requiring the compu-
tation resources of other methods (Gil-Marı́n et al. 2015), such as
the three- or four-point correlation functions.

Understanding the relation between galaxies and matter (galaxy
bias) is essential for the measurement of cosmological parameters
(Gaztañaga et al. 2012). The uncertainties in this relation strongly
increase the errors in the dark energy equation of state or gravita-
tional growth index (Eriksen & Gaztanaga 2015). Thus, having a
wide variety of complementary methods to determine galaxy bias-
ing can help break degeneracies and improve the overall sensitivity
for a given galaxy survey.

In this paper we present a method to extract information from
the galaxy CiC. Using this method, we measure the projected (an-
gular) galaxy bias (linear and non-linear) in both simulations and
observational data from DES, we compare the measured and pre-
dicted linear and non-linear bias, and we test for the presence of
systematic effects. This data set is ideal for this study since it has
been already used for CiC in Clerkin et al. (2017), where it was
found that the galaxy density distribution and the weak lensing con-
vergence (κWL) are well described by a lognormal distribution. The
main difference between our study and that of Clerkin et al. (2017)
is that our main goal is to provide a measurement of the galaxy bias,
whereas Clerkin et al. (2017) study convergence maps.

Gruen et al. (2017) also perform CiC in DES data. Combining
gravitational lensing information and CiC, they measure the galaxy
density probability distribution function (PDF) and obtain cosmo-
logical constraints using the redMaGiC-selected galaxies (Rozo
et al. 2016) in DES Y1A1 photometric data (Drlica-Wagner et al.
2018). In our case we measure the moments of the galaxy density
contrast PDF and compare them to the matter density contrast PDF
from simulations (with the same redshift distributions) to study
different biasing models, in a different galaxy sample (DES SV).

Throughout the paper, we assume a fiducial flat lambda cold dark
matter (�CDM) + ν (one massive neutrino) cosmological model
based on Planck 2013 + WMAP polarization + ACT/SPT + BAO,
with the parameters (Ade et al. 2014) ωb = 0.0222, ωc = 0.119,
ων = 0.00064, h = 0.678, τ = 0.0952, ns = 0.961, and As =
2.21 × 10−9 at a pivot scale k = 0.05 Mpc−1 (yielding σ 8 = 0.829
at z = 0), where h ≡ H0/100 km s−1 Mpc−1 and ωi ≡ 
i h2 for
each species i.

The paper is organized as follows: In Section 2 we present the
data sample used for our analysis. First, we present the simulations
used to test and validate the method and afterwards, the data set
in which we perform our measurements. In Section 3 we present
the CiC theoretical framework and detail our method to obtain the
linear and non-linear bias. Sections 4 and 5 present the CiC moments
and bias calculations for the MICE simulation and DES SV data
set, respectively. In Section 6 we study the systematic uncertainties
in our method. Finally, in Section 7, we include some concluding
remarks about this work.

Figure 1. Footprint of the DES SV benchmark sample (Crocce et al. 2016).
We use approximately 2.3 million objects contained within this area for our
studies.

2 DATA SA MPLE

2.1 Simulations

In order to test and validate the methodology presented in this paper,
we use the MICE simulation (Fosalba et al. 2008; Crocce et al.
2010). MICE is an N-body simulation with cosmological parameters
following a flat �CDM model with 
m = 0.25, 
� = 0.75, 
b =
0.044, ns = 0.95, and σ 8 = 0.8. The simulation covers an octant of
the sky, with redshift z between 0 and 1.4, and contains 55 million
galaxies in the light-cone. The simulation has a comoving size
Lbox = 3072 h−1 Mpc and more than 8 × 109 particles (Crocce et al.
2015). The galaxies in the MICE simulation are selected following
the procedure in Crocce et al. (2016), imposing the threshold ievol

< 22.5. The MICE simulation has been extensively studied in the
literature (Sánchez et al. 2011; Hoffmann, Bel & Gaztanaga 2015;
Crocce et al. 2016; Pujol et al. 2017; Garcia-Fernandez et al. 2018),
including measurements of the higher-order moments in the dark
matter field (Fosalba et al. 2008), providing an ideal validation
sample.

2.2 The DES SV benchmark data sample

In this paper we perform measurements of the density contrast
distribution and its moments on the DES Science Verification (SV)
photometric sample1 (Fig. 1). The DES SV observations were taken
using DECam on the Blanco 4 m telescope near La Serena, Chile,
covering over 250 deg2 at close to the DES nominal depth. From
this sample we make selection cuts in order to recover the LSS
benchmark sample (Crocce et al. 2016). By doing this we minimize
the possible two-point systematic effects and we ensure complete-
ness. We focus on the SPT-E field, since it is the largest contiguous
field and the best analysed, with 60◦ < RA < 95◦ and −60◦ <

Dec. < −40◦ considering only objects with 18 < i < 22.5, where
i is MAG AUTO as measured by SExtractor (Bertin & Arnouts

1This sample is available at https://des.ncsa.illinois.edu/releases/sva1.
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Figure 2. Redshift distribution of the galaxies in each photometric redshift
bin using TPZ (solid line) and BPZ (dashed line) in DES SV benchmark
data from Crocce et al. (2016). These distributions have been obtained
by stacking the photometric redshift PDFs of galaxies in a spectroscopic
subsample detailed in Sánchez et al. (2014). Lighter lines represent higher
redshift slices.

1996) in the i band. The star–galaxy separation is performed by
selecting objects such that WAVG SPREAD MODEL > 0.003. The
total area considered for our study is then 116.2 deg2 with approxi-
mately 2.3 million objects and a number density ng = 5.6 arcmin−2.
Several photo-z estimates are available for these data (Sánchez et al.
2014). We will focus on the TPZ (Carrasco Kind & Brunner 2013)
and BPZ (Benitez 2000) catalogues. We use the same five redshift
bins used in Crocce et al. (2016). We use the redshift distributions
from Sánchez et al. (2014), which are depicted in Fig. 2. These
distributions have been obtained by comparing the DES SV photo-
metric sample including spectroscopic data from zCOSMOS (Lilly
et al. 2007, 2009) and VVDS Deep (Le Fèvre et al. 2013) among
other data sets. For more details about the photometric redshift
measurement and calibration, we refer the reader to Sánchez et al.
(2014).

Several measurements of the linear bias have been performed
using this field (Crocce et al. 2016; Giannantonio et al. 2016; Prat
et al. 2018), making it ideal for this study.

3 TH E O R E T I C A L F R A M E WO R K A N D
M E T H O D O L O G Y

3.1 Counts-in-cells

Counts-in-cells (Peebles 1980) is a method used to analyse the
LSS based on dividing a galaxy survey into cells of equal volume
(Vpix) and counting the number of galaxies in each cell, (Ngal). This
method has also been extensively used in the literature to charac-
terize the galaxy distribution (Efstathiou et al. 1990; Bernardeau
1994; Gaztañaga 1994; Szapudi 1998) and, recently, even the neu-
tral hydrogen in simulations (Leicht et al. 2018). In the case of
photometric redshift surveys, the lack of precision in the redshift
determination makes angular aperture cells more appealing. Nu-
merous examples of the application of CiC using angular aperture
cells can be found in the literature (Gaztañaga 1994; Szapudi et al.
2002; Ross, Brunner & Myers 2006; Yang & Saslaw 2011; Wolk
et al. 2013).

It is particularly useful to work with the density contrast δi in
each cell (or pixel), i, defined as

δi ≡ ρi

〈ρ〉 − 1, (1)

where ρi ≡ Ni,gal

Ai,pix
is the galaxy density in the pixel of area Ai,pix

and 〈ρ〉 is the mean density. In this work, we are going to use 〈〉 to
denote statistical averages. Given these definitions, it follows that
〈δ〉 = 0.

In order to study the statistical properties of the density contrast
distribution, δ, we are interested in the measurement of the average
of the J-point correlation functions, wJ (θ ), in a cell of solid angle
A = 2π(1 − cos θ ) (Gaztañaga 1994):

wJ (θ ) = 1

AJ

∫
A

dA1...dAJ wJ (θ1, ..., θJ ), J ≥ 2, (2)

with dAi = sin θ idθ idφi and wJ(θ ) the J-point angular correlation
function.

To estimate the angle-averaged J-point correlation function,
wJ (θ ), we use the corrected connected moments, 〈δJ〉c, taking into
account the discrete nature of CiC and assuming Poisson-like shot-
noise contributions as introduced by Gaztañaga (1994). In particu-
lar, we are interested in terms up to J = 4:

w2(θ ) = 〈δ2〉c = 〈δ2〉 − 1

N
,

w3(θ ) = 〈δ3〉c = 〈δ3〉 − 3

N
〈δ2〉c − 1

N
2 ,

w4(θ ) = 〈δ4〉c = 〈δ4〉 − 3〈δ2〉2 − 7

N
2 〈δ2〉c − 6

N
〈δ3〉c − 1

N
3 , (3)

where N = N tot
gal∗Apix

Atot
and N tot

gal is the total number of galaxies, Atot is
the total area, and Apix is the area of the pixel.

For our study we use the rescaled connected moments SJ, defined
as

SJ ≡ wJ (θ )

[w2(θ )]J−1
, J > 2, (4)

S2 = w2(θ ). (5)

In most previous studies, the cells considered were spheres with
radii of varying apertures (Peebles 1980; Bernardeau 1994). We
perform our measurements of the projected (angular) density con-
trast by dividing the celestial sphere into HEALpix pixels (Górski
et al. 2005). For our study we vary the HEALPix parameter Nside

from 32 to 4096 (i.e. apertures ranging from 1.83◦ to 0.014◦). The
angular aperture, θ , is estimated as the square root of the pixel area.
According to equation (2) there is a dependence on the boundaries
of the cell and thus on the shape that we choose for the pixels.
Gaztañaga (1994) estimates CiC for square cells of side l in a range
l = 0.03◦–20◦ and compares to the average correlation functions
w2(θ ). The agreement between the two estimates indicates that
square cells give very similar results to circular cells when the sizes
of the cells are scaled to θ = l/

√
π. Using data from MICE, we per-

form several tests to see that the concrete shape of the pixel, when
it is close to a regular polygon, does not affect the measured mo-
ments despite boundary effects (Appendix A). Furthermore, when
working with the acquired observational data, the geometry of the
survey becomes complicated. A discussion of how we deal with
this is found in Appendix B. The error bars throughout this paper
are estimated using the bootstrap method (Efron 1979; Masci &
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Figure 3. Moments of the density contrast distribution as a function of
cell scale in the MICE simulation for the redshift bin 0.2 < z < 0.4, with
jack-knife errors (solid circles) and bootstrap errors (solid triangles). The
results for a given scale θ have been separated in the figure for visualization
purposes, being the blue triangles, the ones shown at the nominal measured
scale.

SWIRE Team 2006; Ivezić et al. 2014). This choice is mainly due
to the lack of number of samples for large pixel sizes that might
limit the precision of other methods such as the jack-knife, given
that the latter depends highly on the number of samples, as pointed
out in Norberg et al. (2009). Fig. 3 shows agreement between the
uncertainties computed using the jack-knife and bootstrap methods
for a randomly chosen redshift bin in the MICE simulation. We use
Nb = min (Npix, 100) bootstrap and jack-knife realizations of the
density contrast distribution to estimate our errors, where Npix is the
total number of unmasked pixels in our map.

3.2 Galaxy bias

One of the most important applications of the CiC observable is the
determination of the galaxy bias. We observe the galaxy distribu-
tion and use it as a proxy to the underlying matter distribution. Both
baryons and dark matter structures grow around primordial over-
densities via gravitational interaction, so these distributions should
be highly correlated. This relationship is called the galaxy bias,
which measures how well galaxies trace the dark matter. Galaxy
biasing was seen for the first time analysing the clustering of differ-
ent populations of galaxies (Davis, Geller & Huchra 1978; Dressler
1980). The theoretical relation between galaxy and mass distribu-
tions was suggested by Kaiser (1984) and developed by Bardeen
et al. (1986). Since then, many different prescriptions have arisen

(Fry & Gaztañaga 1993; Bernardeau 1996; Mo & White 1996;
Sheth & Tormen 1999; Manera, Sheth & Scoccimarro 2010; M

anera & Gaztañaga 2011). However, there is no generally ac-
cepted framework for galaxy biasing. While the galaxy and dark
matter distribution are related, the exact relation depends on galaxy
formation (Press & Schechter 1974), galaxy evolution (Nusser &
Davis 1994; Tegmark & Peebles 1998; Blanton et al. 2000), and
selection effects. Bias depends strongly on the environment. Us-
ing dark matter simulations, Pujol et al. (2017) show how the halo
bias is determined by local density and not by halo mass. Sev-
eral studies have demonstrated the different behaviours of early-
type and late-type galaxies at both small and large scales (Willmer
et al. 1999; Norberg et al. 2002; Zehavi et al. 2002; Ross et al.
2006). To have a good estimate of the real matter distribution,
it is convenient to use a galaxy sample that is as homogeneous
as possible. With the linear bias b(z) approximation, we can re-
late the matter fluctuations δm with the fluctuations in the galaxy
distribution δg:

δg = bδm. (6)

In the linear approximation, up to scalings, all statistical properties
are preserved by the biasing and the observed galaxy properties
reflect the matter distribution on large scales, as long as we con-
sider only two-point statistics. However, in the general case, it is
highly unlikely that the relation is both local and linear. Non-local
dependencies might come from some properties such as the lo-
cal velocity field or derivatives of the local gravitational potential
(Fry & Gaztañaga 1993; Scherrer & Weinberg 1998). Bias also
depends on redshift (Fry 1996; Tegmark & Peebles 1998). When
non-Gaussianities are taken into account, linear bias fails to be a
good description. If we want to measure higher orders, we can as-
sume that the (smoothed) galaxy density can be written as a function
of the mass density and expand it as a Taylor series (assuming a local
relation) (Frieman & Gaztañaga 1999; Fry & Gaztañaga 1993):

δg = f (δ) =
∞∑

k=0

bk

k!
δk

m. (7)

The linear term b1 = b is the usual linear bias. Using this expansion
we can relate the dark matter and the galaxy density contrast mo-
ments using the following relationships (Fry & Gaztañaga 1993):

S2,mod = b2S2m, (8)

S3,mod = b−1(S3m + 3c2), (9)

S4,mod = b−2
(
S4m + 12c2S3m + 4c3 + 12c2

2

)
, (10)

where ck = bk/b for k ≥ 2, the subscript ‘m’ refers to the underlying
matter distribution and the subscript ‘mod’ to the galaxy distribu-
tion. We will refer to this model as local.

Bel, Hoffmann & Gaztañaga (2015) point out that ignoring the
contribution from the non-local bias can affect the linear and non-
linear bias results. As a consequence, we analyse the case when the
non-local contribution is included. To do so, we substitute c2 by
c′

2 = c2 − 2
3 γ2, where γ 2 is the so-called non-local bias parameter

(Bel et al. 2015). We will refer to this model as non-local.
Note that we omit the terms higher than third order because, as

we will show later, we have very limited sensitivity to b3, and expect
to have no sensitivity to b4.
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Figure 4. Ratio between S2,m for 
m = 0.2 (the minimum allowed by
Planck priors) and S2,m for our fiducial model as a function of the cell
aperture angle θ . The different lines represent different redshift bins. We see
that the variation is within 12 per cent of the linear prediction.

3.3 Estimating the projected linear and non-linear bias

The relations in equations (8–10) refer to the 3D case and connect
an observed galaxy distribution with its underlying dark matter dis-
tribution, both tracing the same redshift range and cosmological
parameters. We assume that this bias model is also valid for the pro-
jected moments (we will check the validity of this assumption later).
Moreover, given the measurements in a dark matter simulation with
the same redshift distribution and angular footprint as our galaxy
data set, we estimate the linear and non-linear bias of these galaxies
using equations (8–10). Note that these relations apply when we are
comparing two data sets with the same value for the σ 8 parameter.
In the case that σ 8 �= σ 8,m we will have to correct the resulting bias
so

bcorr = buncorr
σ8,m

σ8
. (11)

We will use this correction in Section 6.3. We also take advan-
tage of the fact that the skewness and kurtosis depend weakly on
the cosmological parameters (Bouchet et al. 1992). In particular, a
5 per cent variation choosing 
m = 0.25 translates to a variation of
0.2 per cent in the measured S3m, which is much smaller than the
statistical fluctuations that we expect from our samples. In the case
of S4m our sensitivity is even lower, making it safe to use a simula-
tion with the same footprint and redshift distribution, as long as the
variation in the cosmological parameters is small. However, this is
not necessarily true for the case of S2m, where the dependency on the
cosmological parameters is higher. We check this using equation (2)
to compute the projected S2m for two different sets of cosmological
parameters: our fiducial Planck cosmology (Ade et al. 2014) and a
model with 
m = 0.2. We use a Gaussian selection function φ(z)
with σ z = 0.05(1 + z) since this is representative of the data sets
that we analyse in this work. After this, we check the ratio

δpij (z, θ ) = S2m,i(z, θ )

S2m,j (z, θ )

D2
+,j (z̄)

D2
+,i(z̄)

(12)

for the different redshift slices considered in our analysis, where the
subscripts i and j correspond to two different sets of cosmological
parameters and D+(z̄) is the linear growth factor (Heath 1977;
Peebles 1980) evaluated at the mean redshift of the considered
slice. This gives us an upper limit to the expected variation in S2m

to consider in our analysis. In Fig. 4 we can see that the variation is
within 12 per cent of the linear prediction; thus, we conservatively
assign 12 per cent systematic error to S2m due to this variation.

Under these conditions we perform a simultaneous fit to b, b2, b3,
and γ 2. In order to do so we consider the likelihood:

logL = −1

2

4∑
k=2

∑
i,j

[
Sk,g(θi) − Sk,mod(θi)

]

×C−1
k,ij

[
Sk,g(θj ) − Sk,mod(θj )

] = −χ2

2
, (13)

where Sk,g are the measured galaxy moments and Sk,mod are the mod-
els in equations (8), (9), and (10). We checked that the measured Sk

follow a Gaussian distribution. The covariances Ck,ij are computed
as follows:

Ck,ij = Nu,pix(θi)

Nu,pix(θj )
22(j−i)σk(θi)σk(θj ), (14)

with Nu,pix(θ i) being the number of pixels used in an aperture, θ i.
Note that, since we are usingHEALPix, which imposes a fixed grid,
and we are not repeating the measurements in translated/rotated
galaxy fields, we are reusing the same galaxies for different scales,
so the factor Nu,pix(θi )

Nu,pix(θj ) 22(j−i) accounts for the induced correlation due
to this reuse. We assume that the errors in the dark matter moments
and the errors in the galaxy moments are not correlated and add
them in quadrature, so

σk(θi) =
√

σ 2
k,g(θi) + σ 2

k,m(θi), (15)

where σ k,g/m(θ i) is the standard deviation of the k-th (galaxy or
matter) moment in an aperture θ i computed using bootstrapping.

We use the following flat priors:

(i) 0 < b < 10.
(ii) −10 < b2 < 10.
(iii) −10 < b3 < 10.
(iv) γ 2 = 0 (or in the case of the non-local model −10 < γ 2 <

10).

These priors have been chosen to prevent unphysical results. We
evaluate the likelihood and obtain the best-fitting values and their
uncertainties by performing a Markov chain Monte Carlo (MCMC)
using the software package emcee (Foreman-Mackey et al. 2013).
Summarizing, the method works as follows:

(i) Measure CiC moments using HEALPix pixels in the galaxy
sample.

(ii) Measure CiC moments using the same pixels and selection
function in a dark matter simulation with comparable cosmological
parameters.

(iii) Evaluate the statistical and systematic uncertainties in the
measured moments.

(iv) Obtain the best-fitting b, b2, and b3 (and γ 2 in the non-local
model) using MCMC with the models from equations (8–10).

In summary, in the local model we fit three free parameters,
whereas in the non-local model we fit four.

Hoffmann et al. (2015) present a prediction for the non-linear
bias as a function of the linear bias in the 3D case:

b2 = b2 − 2.45b + 1.03, (16)

b3 = b3 − 7.32b2 + 10.79b − 3.90. (17)

We will use these predictions to test the compatibility between the
3D and the measured projected values for the non-linear bias.
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Figure 5. Moments of the density contrast distribution as a function of cell
scale in the MICE simulation with Gaussian photometric redshift (�z =
0.2σz = 0.05(1 + z)) for different redshift bins. The results for a given scale
θ have been separated in the figure for visualization purposes.

4 R ESULTS IN SIMULATIONS

In order to validate this method, we first compute the CiC mo-
ments in the MICE simulation (in both galaxies and DM) using
a Gaussian selection function φ(z) with σ z = 0.05(1 + z). This
σ z is similar to the photometric redshifts found in the data using
TPZ (Carrasco Kind & Brunner ) and BPZ (Benitez 2000). We
split our sample into five photometric redshift bins: z ∈ [0.2, 0.4],
[0.4, 0.6], [0.6, 0.8], [0.8, 1.0], [1.0, 1.2], mirroring the choice in
Crocce et al. (2016). Then we do the same with the SV data sample
presented in Section 2.2 with TPZ photometric redshifts.

4.1 Angular moments for MICE

Fig. 5 shows the moments of the density contrast distribution as a
function of the cell scale for the different photometric redshift bins.
We observe that the moments follow the expected trend; that is,
lower redshift bins have higher values for the higher-order moments
since non-linear gravitational collapse has a larger effect on these.
This is true for all measurements except for the last two redshift
bins of the variance S2. This can be due to the magnitude cuts,
since the galaxy populations are different at different redshifts. We
also see that the larger the cell scale, the smaller the variance S2,
since larger cell scales should be more homogeneous. The skewness
and kurtosis at linear scales (θ > 0.1◦) are constant and of the
same order of magnitude as the expected values (S3 ≈ 34/7, S4

Figure 6. Linear and non-linear bias results as a function of redshift for
MICE data with Gaussian photo-z. The different marker shapes represent
the best-fitting results considering different ranges of the aperture angle θ .
For the solid triangles we consider the range from 0.05◦ to 0.92◦, the open
circles are our fiducial case with 0.11◦ < θ < 0.92◦, for the solid circles, we
take out the smallest scale in our fiducial case, and in the open triangles we
take out the largest scale. The top panel shows the projected linear bias b as
a function of redshift, the middle panel shows the best-fitting results for the
projected b2, and the lower panel shows b3. The shaded region corresponds
to the 3D predicted values using equation (17). The results for a given
redshift z have been separated in the figure for visualization purposes.

≈ 60 712/1323) (Bernardeau 1994). The behaviour at non-linear
scales is due to the non-linearities of the MICE simulation.

4.2 Projected galaxy bias in MICE simulation

We smear the true redshift with the proper selection function in
the MICE dark matter field, obtained from a dilution of the dark
matter particles (taking 1/700 of the particles). Chang et al. (2016)
demonstrate that the dilution of the dark matter field does not impact
their statistics and using the measured moments from the previous
section we proceed to perform a simultaneous fit for b, b2, and b3

using the local, non-linear bias model from equations (11)–(13).
The fit results are summarized in Fig. 6. We can see the impact of
changing the range of θ considered in the fit. In this case we see that
including scales smaller than 0.1◦, where non-linear clustering has
a large impact, affects the b2 results. This, together with the fact that
the reduced χ2 minimum value doubles when including θ = 0.05◦,
clearly shows that we should not consider scales smaller than θ =
0.1◦. We can see as well that b3 is compatible with zero and that
we have a limited sensitivity to it, given the area used. Thus, the
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choice of ignoring terms of orders higher than b3 becomes a good
approximation. However, for b2 we are able to measure a significant
non-zero contribution. We can also see that the predicted values for
the 3D non-linear bias parameter b2 are not in good agreement
at small scales, while there is an indication of better agreement
at larger scales. This suggests that the 2D and 3D values for b2

might be compatible at larger scales, in agreement with Manera &
Gaztañaga (2011), who show that the local bias is consistent for
scales larger than R > 30–60 h−1 Mpc. They also show that the
values of b1 and b2 vary with the scale and converge to a constant
value around R > 30–60 h−1 Mpc, which means that the values that
we measure here have not yet fully converged. The prediction for
b3 seems to be compatible with the estimated values given the size
of the error bars. These results show that we should consider b2 as a
first-order (small) correction to the linear bias model at these scales
for projected (angular) measurements. The individual fits can be
seen in Appendix C.

4.3 Verification and biasing model comparison

In order to verify this method and check if the local non-linear
model considered induces certain systematic biases on the results,
we check that the measured linear bias is compatible with cor-
responding measurements from the two-point correlation function
(Fig. 7). In particular, we use the best-fitting parametrization from
Crocce et al. (2016):

bbest(z) = 0.98 + 1.24z − 1.72z2 + 1.28z3. (18)

In Fig. 7, we can see that the local bias and the non-local bias are
in agreement, most likely due to the scale range that we are dealing
with and the projection effects due to the size of the redshift slices.
In this figure, we can also notice that the reduced chi-square for both
models is similar, and that they are well below one. Given that the
number of degrees of freedom is small, it is still possible that these
values are correct; however, it is unlikely that this happens for all
redshift bins. This suggests that, in agreement with Norberg et al.
(2009), bootstrapping uncertainties are overestimated. However, we
prefer to use these conservative uncertainties rather than state un-
certainties that are too optimistic since one of the main goals of this
work will be to state the statistical significance on the non-linear b2

term. Another interesting feature in Fig. 7 is that the uncertainties
in b2 for the non-local model are considerably larger than those in
the local model. This is due to the fact that γ 2 is highly correlated
with b2, which makes the posterior distribution for b2 much wider,
increasing the resulting uncertainty.

5 R ESULTS IN DES SV DATA

5.1 Angular moments for DES SV

Using the same footprint, selection cuts, and redshift bins as in
Crocce et al. (2016), we compute the moments of the density con-
trast distribution for the SV data. These results are depicted in
Fig. 8 as a function of cell scale for different redshift bins. Here,
as in the case of MICE, the variance decreases with the scale. The
skewness and kurtosis are also constant and of the same order of
magnitude as the theoretical values within errors. The largest dif-
ferences when compared with the simulation are in the non-linear
regime due to the different way in which non-linearities are induced
in the simulation and in real data. We also compare to the results
from Canada-France-Hawaii Telescope Legacy Survey (CFHTLS)
found in Wolk et al. (2013). We find a similar general behaviour

Figure 7. (Top) Comparison between the MICE simulation bias obtained
using CiC with different biasing models: non-local (solid triangles) and local
(open triangles). We also show the best fit from Crocce et al. (2016; figure
17) as reference. The middle panel shows the equivalent results for b2. This
is done for Gaussian photo-z with σz = 0.05(1 + z). (Bottom) Total reduced
chi-square for each of the models when fitting the moments to obtain the
bias.

as well as the same order of magnitude in the measured S3 and S4.
However, we do not expect the same exact results since the redshift
distributions from CFHTLS do not match exactly the corresponding
distributions in the DES SV data.

5.2 Projected galaxy bias in DES SV

Repeating the procedure that we used for the MICE galaxy sim-
ulation, we analyse the DES SV data and the MICE dark matter
simulation, and compare their moments. In Fig. 9 we can see the
results of simultaneously fitting for b, b2, and b3. The measurements
in this figure include the systematic uncertainties that are introduced
in Section 6. The resulting b is corrected by the ratio of σ 8 between
MICE and our adopted fiducial cosmology using equation (11).
The fit results can be seen in Appendix C. In this case, we detect a
non-zero value for b2. We check the probability of b2 being zero by
computing

χ2
z =

∑
i,j=1,Nzbins

b̂2,iC−1
2,ij (z)b̂2,j . (19)

The sum runs for all the redshift bins. b̂2 is the weighted average
of the fit results with the different fitting ranges and C2,ij (z) is
the covariance matrix for b2. Taking into account the correlations
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Figure 8. Moments of the density contrast distribution of the DES SV
benchmark sample as a function of cell scale, for five different redshift bins
and different scales. The results for a given scale θ have been separated
in the figure for visualization purposes. We compare with the results from
Wolk et al. (2013) for CFHTLS marked with solid lines of different colours
for the different redshift bins: navy (0.2 < z < 0.4), cyan (0.4 < z < 0.6),
lime (0.6 < z < 0.8), yellow (0.8 < z < 1.0).

between different redshift bins,

C2,ij (z) = NijNji

NiiNjj

�b̂2,i�b̂2,j , (20)

where Nij is the number of galaxies observed in the photo-z bin i
from the true-z bin j and �b̂2,i is the weighted uncertainty in b̂2,i

for the photo-z bin i. The value of χ2
z = 64.75 with 4 degrees of

freedom, so the probability is essentially 0, making it clear that the
overall value of b2 is non-zero for the local model. However, we
lack the sensitivity necessary to detect a non-zero b3.

We also check the measurement of linear bias obtained in this
work and compare it with previous measurements on the same data
set in Fig. 10. The measurements are generally in good agreement
with each other, showing the robustness of the method.

Future DES data will have a considerably larger area and, as
previous MICE measurements show, these measurements will im-
prove. Here we also use the skewness and kurtosis of dark matter
from the MICE dark matter simulation, as these quantities hardly
depend on the cosmology (Bouchet et al. 1992). We also find that
our results are similar to those in Ross et al. (2006). We do not
expect them to be equal as the samples are different and the bias
depends strongly on the population sample.

Figure 9. Linear and non-linear bias results as a function of redshift for
DES SV data. Systematic uncertainties from Section 6 are already included
in these results, excluding the uncertainties associated with the modelling.
The different marker shapes represent the best-fitting results considering
different ranges of aperture angle θ . For the solid triangles we consider
the range from 0.05◦ to 0.92◦, open circles symbolize our fiducial case
with 0.11◦ < θ < 0.92◦, in solid circles, we take out the smallest scale in
our fiducial case, and in open triangles we take out the largest scale. The
shadowed region corresponds to the 3D predicted values using equation (17).
The top panel shows the projected linear bias b as a function of redshift, the
middle panel shows the best-fitting results for the projected b2, the lower
panel shows b3. The results for a given redshift z have been separated in the
figure for visualization purposes.

6 SYSTEMATI C ERRO RS

In this section, we explore the effects that several potential sources
of systematic uncertainty have on our moment measurements. Since
our main observable is related to the number of galaxy counts in
a given redshift interval, we are interested in observational effects
that can affect this number. The main potential sources of systematic
uncertainties are changes in airmass, seeing, sky brightness, star–
galaxy separation, galactic extinction, and possible errors in the
determination of the photometric redshift. In order to evaluate their
effects, we use the maps introduced in Leistedt et al. (2016). To
account for the stellar abundance in our field we proceed as in
Crocce et al. (2016) and use the USNO-B1 catalogue (Monet et al.
2003). We also use the dust maps from Schlegel, Finkbeiner & Davis
1998. What follows is a detailed step-by-step guide to our systematic
analysis: We select one of the aforementioned maps and locate the
pixels where the value of the systematic is below the percentile level
t. We compute the moments of the density contrast distribution in
these pixels and their respective errors using bootstrapping. We
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Figure 10. Bias obtained from second-order CiC, including systematic
uncertainties from Section 6, compared with the two-point correlation study
(Crocce et al. 2016), the CMB–galaxy cross-correlation study (Giannantonio
et al. 2016), galaxy–galaxy lensing (Prat et al. 2018), and the shear + density
analysis (Chang et al. 2016). The points for the same z have been separated
in the horizontal axis for visualization purposes.

change the threshold to t + 5, repeat the process, and evaluate
the difference between the moments calculated using this threshold
divided by the moments in the original footprint �Si(t)/〈Si〉. An
example of the results of this procedure can be found in Fig. 11. Note
that the plot showing the variation of the moments with USNOB
shows less points in the horizontal axis. Due to the discrete nature
of the map of stellar counts, the 50th and 60th percentiles of the
δ distribution of the stellar counts are the same; in order to avoid
these problems, we make less bins in this case.

We consider that a systematic effect is present if the average of
�Si(t)/〈Si〉 is different from zero at a 2σ confidence level or above
for the different values of t from the 50th percentile to the 100th
percentile. Then, we assign a systematic uncertainty equal to the
value of this average. To be conservative, we consider these effects
as independent, so we add them in quadrature. We summarize the
main systematic effects observed in each redshift bin of our sample.

(i) Bin 0.2 < z < 0.4:

(a) Seeing in i band: We assign a 3 per cent systematic uncer-
tainty in S4.

(b) Seeing in z band: We assign a 2.5 per cent systematic un-
certainty in S4.

(c) Sky brightness r band: We assign a 1 per cent systematic
uncertainty in S4.

(d) Sky brightness i band: We assign a 1 per cent systematic
uncertainty in S4.

(e) Airmass in g band: We assign a 1 per cent uncertainty in
S4.

(f) Airmass in r band: We assign a 1 per cent uncertainty in S4.
(g) Airmass in i band: We assign a 1 per cent uncertainty in

S4.
(h) USNO-B stars: We assign a 4 per cent uncertainty to S2,

7 per cent uncertainty to S3, and 9 per cent to S4.

(ii) Bin 0.4 < z < 0.6:

(a) Seeing in z band: We assign a 1.5 per cent uncertainty to
S4.

(b) USNO-B stars: We assign a 4 per cent uncertainty to S2,
3 per cent uncertainty to S3, and 4 per cent uncertainty to S4.

(iii) Bin 0.6 < z < 0.8:

(a) Seeing in g band: We assign a 2 per cent uncertainty to S4.
(b) Seeing in r band: We assign a 2 per cent uncertainty to S4.
(c) Sky brightness i band: We assign a 1.5 per cent uncertainty

to S3 and 3 per cent systematic uncertainty to S4.
(d) Airmass in g band: We assign a 2.5 per cent uncertainty to

S4.
(e) Airmass in r band: We assign a 2 per cent uncertainty to

S4.
(f) Airmass in z band: We assign a 1.5 per cent uncertainty to

S3 and 3 per cent uncertainty to S4.
(g) USNO-B stars: We assign a 3 per cent uncertainty to S3

and 5 per cent uncertainty to S4.

(iv) Bin 0.8 < z < 1.0:

(a) Seeing in g band: We assign a 2 per cent uncertainty to S4.
(b) Sky brightness in i band: We assign a 2 per cent uncertainty

to S3 and a 3.5 per cent uncertainty to S4.
(c) Airmass in g band: We assign a 2 per cent uncertainty to

S4.
(d) Airmass in r band: We assign a 3 per cent uncertainty to

S4.
(e) USNO-B stars: We assign a 3 per cent uncertainty to S4.

(v) Bin 1.0 < z < 1.2:

(a) The measurement of S4 in this bin is dominated by system-
atics.

(b) Sky brightness in i band: We assign 2 per cent to S3.
(c) Sky brightness z band: We assign 3 per cent to S3.
(d) USNO-B stars: We assign a 4.5 per cent uncertainty to S3.

The estimated systematic errors for the bias are propagated from the
estimation of the systematics in S2, S3, and S4. Their behaviour is
compatible with the systematics found in Crocce et al. (2016). We
use the same data masking, excluding regions with large systematic
values to recover w(θ ). The linear bias is more robust using CiC
since the variance, S2, is less affected by the small-scale power
induced by the systematics given that these scales are smoothed
out. On the other hand, the non-linear bias is more sensitive to the
presence of systematics because they can induce asymmetries in the
density contrast distribution.

6.1 Photometric redshift

Photometric redshift is one of the main potential sources of system-
atic effects in photometric surveys like DES. We have repeated the
analysis in DES SV data for a second estimate of the photometric
redshift using BPZ (Benitez 2000). In Fig. 12 we compare the re-
sults for the two photometric redshift codes and we see that they are
in good agreement. The linear bias seems to be the most affected
by the choice of a photometric redshift estimator but the results do
not show any potential systematic biases. For the non-linear bias
we get remarkably consistent results, showing the robustness of this
method.
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Figure 11. Dependence of the moments Si with the variation in the value of potential systematic effects. We show an example for Nside = 2048 in the redshift
bin 0.2 < z < 0.4 using TPZ. The left column shows the behaviour for S2, the middle column shows S3, and the last column shows the results for S4. The first
row corresponds to the results for the seeing in the i band, the second row shows the results for the seeing in the g band, the third row shows the sky brightness
in the i band. Finally the last row shows the evolution of the moments with the variation in the number of stars per pixel.

6.2 Biasing models

Apart from the terms that we considered in our model, Bel et al.
(2015) found that non-local bias terms are responsible for the over-
estimation of the linear bias from the three-point correlation in
Pollack, Smith & Porciani (2014), Hoffmann et al. (2015), and
Manera & Gaztañaga (2011) but that they should not significantly
affect second-order statistics. As we mentioned previously in Sec-
tion 5, we do not expect these terms to have a significant impact
on our estimations because we analyse projected quantities over
considerable volumes (note that we integrate in the cell and in the
redshift slice). Having said that, we test the local and non-local
models and find the results depicted in Fig. 13. We can see, as in the
case of the simulation, that both models are consistent within errors.
This means that choosing the local model does not introduce any
systematic uncertainties in our linear bias measurements. However,
it affects the b2 measurements and their uncertainty since the new
parameters introduced with these more complicated models are cor-
related with them. We check the probability of b2 being zero for the
different models and obtain the results in Table 1. We find b2 to be
different from zero at a 3σ level in the worst case (non-local). We
also can see that in the first bin, none of the models fit the data well,
which is not surprising, given that the range of (comoving) scales is
very small (∼1−20 h−1 Mpc) and non-linear clustering dominates.

Finally, we are not considering stochastic models and we are
assuming a Poisson shot-noise. This means that our measured b2

could be entangled with stochasticity (Pen 1998; Sato & Matsubara
2013). We leave the study of stochasticity to future works.

6.3 Value of σ 8

As mentioned in previous sections, our bias estimation depends
linearly on the value of σ 8. Thus, if the actual value of σ 8 is different
from our assumed fiducial value, our results will be biased, and we
have to correct for the difference using equation 11. This is why we
introduce a systematic uncertainty of 1.4 per cent (the uncertainty
level in σ 8 from Ade et al. 2014) which we add in quadrature to the
statistical errors in the final estimation of the bias.

7 C O N C L U S I O N S

CiC is a simple but effective method to obtain the linear and non-
linear bias. A good measurement of the galaxy bias is essential to
maximize the performance of photometric redshift surveys because
it can introduce a systematic effect on the determination of cosmo-
logical parameters. The galaxy bias is highly degenerate with other
cosmological parameters and an independent method to determine
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Figure 12. Bias obtained in the SV data from second-order CiC for TPZ
(solid blue circles) and BPZ (green crosses). The results for a given redshift
z have been separated in the figure for visualization purposes.

it can break these degeneracies and improve the overall sensitiv-
ity to the underlying cosmology. In this paper we have developed
a method to extract the bias from CiC. We use the MICE simu-
lation to test our method and then perform measurements on the
public Science Verification data from the Dark Energy Survey. The
strength of this method is that it is based on a simple observable,
the galaxy number counts, and is not demanding computationally.

We check that our linear bias measurement from CiC agrees with
the real bias in the MICE simulation. Fig. 7 shows an agreement
between our measurement and the one obtained using the angular
two-point correlation function. We then obtain the linear bias in the
SV data and find that it is in agreement with previous bias mea-
surements from other DES analyses. In Fig. 10, we see that the CiC
values are compatible with the two-point correlation study (Crocce
et al. 2016), the CMB–galaxy cross-correlation study (Giannanto-
nio et al. 2016), and the galaxy–galaxy lensing (Prat et al. 2018),
and we demonstrate that these results are robust to the addition of
new parameters in the biasing model, such as the non-local bias. Fi-
nally, we compute the non-linear bias parameters up to third order.
We detect a significant non-zero b2 component. It appears that the
2D and 3D predictions of the non-linear bias are in better agreement
at larger scales, as expected. However, given the uncertainties asso-
ciated with these quantities, it is difficult to draw any conclusions
from b3 despite its compatibility with the expected 3D prediction.
When more data is available, we plan to check if we can improve our
constraints on b3 and whether the agreement with the 3D prediction
improves as well. The systematic errors are in general lower than

Figure 13. (Top) Comparison between the linear bias results obtained with
CiC for SV using different biasing models: non-local (solid triangles) and
local (open triangles) using the TPZ sample. (Middle) Comparison between
b2 results for the same models as above. (Bottom) Total reduced chi-square
for each of the models.

Table 1. Comparison of the null hypothesis for b2 in DES SV data for the
different bias models considered in this work.

Bias model χ2 p-value ndof

Local 64.75 3 × 10−13 4
Non-local 12.63 0.013 4

the statistical errors, in agreement with the systematic study done
by Crocce et al. (2016).
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Frieman J. A., Gaztañaga E., 1999, ApJ, 521, L83
Fry J. N., 1996, ApJ, 461, L65
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APPENDIX A : D IFFERENT PIXEL SHAPE S

We check with the MICE simulation in a thin redshift bin (0.95 < z

< 1.05) that as long as we have regular polygon pixels the difference
in the moments of the density contrast is negligible. In Fig. A1
we see that the difference is negligible for the more symmetrical
pixels and higher for less symmetrical ones. The angular aperture,
θ , is estimated as the square root of the pixel area. We compare
rectangular pixels with HEALpix pixels. We divide the sphere into
rectangular pixels taking nra parts in right ascension and nct parts in
sin dec where the number of pixels is npix = nra × nct = 12(Nside ×
Nside). We have taken six different pixel shapes numbered from 1 to
6. Pixels number 3 (nra = 3Nside, nct = 4Nside), 4 (nra = 4Nside, nct =
3Nside), and 6 (nra = 6Nside, nct = 2Nside) are close to being squares,
but pixels number 1 (nra = 12Nside, nct = 1Nside), 2 (nra = 1Nside, nct =
12Nside), and 5 (nra = 2Nside, nct = 6Nside) are far from being regular
polygons. When we compare square and HEALpix pixels, we see
that the measured moments are in perfect agreement.

Figure A1. Moments of the density contrast distribution as a function of
the cell scale using data from MICE in the redshift slice 0.95 < z < 1.05
for different pixel shapes. Pixels number 3 (nra = 3Nside, nct = 4Nside), 4
(nra = 4Nside, nct = 3Nside), and 6 (nra = 6Nside, nct = 2Nside) are close to
being squares, but pixels number 1 (nra = 12Nside, nct = 1Nside), 2 (nra =
1Nside, nct = 12Nside), and 5 (nra = 2Nside, nct = 6Nside) are far from being
regular polygons.

APPENDI X B: BOUNDARY EFFECTS

To deal with the boundary effects of an irregularly shaped area, we
use the mask and degrade its resolution to match each of the pixel
scales being used. However, degrading the mask (or increasing the
scale) results in an increasing number of partially filled pixels. Only
a fraction rA = Afilled/Apixel remain completely inside the footprint.
This means that if we assign the same scale to all the pixels of a given
Nside value, some pixels will be effectively mapping a different scale.
To solve this problem we can either require a minimum fraction of
the pixel to be full, rA ≥ X, or compute the fraction of full pixels and
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Figure B1. Area covered by different HEALpix pixellation resolutions as
a function of the minimum fraction of pixel coverage of said resolution with
respect to the Nside = 4096 footprint (larger pixels from lower Nside will
be partially filled at times). This test is done using the MICE simulation
considering the same footprint as the SV data set.

Figure B2. DES SV mask for different Nside (64, 256) and different area
cuts rA = 0.6, 0.9. The pixels that we discard are blue and the ones that we
keep are red. The bigger the pixel, the larger the amount of data we lose.

perform CiC for that scale. We prefer to use the former because we
consider that the scales where we perform the study appropriately
map the variations of the density field in which we are interested.
This approach also helps to avoid certain boundary effects. For
small pixel sizes (similar to the size in the mask), given the large
number of pixels, we can safely choose rA = 1. For bigger pixels
we try to find a compromise between the amount of area that we
lose and the boundary effects. In Figs B1 and B2 we show the area
loss using data from MICE in the redshift bin 0.95 < z < 1.05

Figure B3. Moments of the density contrast distribution obtained from
MICE (0.95 < z < 1.05) considering the same footprint as the SV data
for different values of the fraction of the pixel inside the mask, rA. The
results for a given scale θ have been separated in the figure for visualization
purposes.

with the SV mask for different thresholds in rA and in Fig. B3 the
change in the moments for these different area cuts. We see that
if we choose pixels that are completely contained inside the mask
(rA = 1.0), we lose a lot of area for smaller values of Nside; however,
very little area is lost for large values of Nside. It can be seen that
results are consistent for the different threshold values for rA. We
also see that if we take all the pixels (rA ≥ 0), the difference in the
moments is considerable in some cases, and we cannot take just all
the pixels inside the mask (rA = 1) because we run out of them for
large scales. We set a threshold rA ≥ 0.9 to ensure that the pixels are
almost completely embedded in the footprint. This prevents us from
mixing scales even for the largest pixel sizes. This can be noted in
Fig. B1 where a large drop in area occurs between rA = 0.8 and
rA = 0.9 for Nside ≤ 1024, setting this threshold naturally. For most
scales this threshold does not change the errors. By choosing rA ≥
0.9 the effective cell sizes are well determined and the errors are
reasonably small.

APPENDI X C : SI MULTANEOUS FI TS R ESULTS

In this section we show the fitting results for the simultaneous fits
in MICE. In Figs C1 and C2, the red line corresponds to the mean
value of the samples and the grey lines are the different models
evaluated by the MCMC.
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Figure C1. Fit results for the non-linear bias simultaneous fits method using MICE with Gaussian photo-z. The points are the measured moments and the
error bars are calculated by adding in quadrature the uncertainties from the moments in the dark matter and the galaxies. The thick dark line is the best-fitting
curve corresponding to the mean of the posterior distribution. The thin grey lines are the different models evaluated by the MCMC. The top row corresponds
to the first redshift bin (0.2 < z < 0.4), the second row corresponds to the second redshift bin, and so on.
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Figure C2. Non-linear bias fits for DES SV data. See caption in Fig. C1 for more details.
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Gif-sur-Yvette, France
8Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510,
USA
9Institut d’Estudis Espacials de Catalunya (IEEC), E-08193 Barcelona,
Spain
10Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can
Magrans, s/n, E-08193 Barcelona, Spain
11Center for Cosmology and AstroParticle Physics, Department of Physics,
the Ohio State University, 191 W Woodruff Ave,Columbus, OH 43210, USA
12Cerro Tololo Inter-American Observatory, National Optical Astronomy
Observatory, Casilla 603, La Serena, Chile
13Institute of Cosmology & Gravitation, University of Portsmouth,
Portsmouth PO1 3FX, UK
14CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris,
France
15Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut
d’Astrophysique de Paris, F-75014 Paris, France
16Department of Physics & Astronomy, University College London, Gower
Street, London WC1E 6BT, UK
17Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450,
Stanford University, Stanford, CA 94305, USA
18SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
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