the meantime the comet's perihelion passage was computed to occur on November 23, but the comet was moving farther away from the Earth. On the evening of November 2, at $6^{\frac{1}{2}}+0^{\mathrm{m}}$, the comet was observed in R.A. $17^{\mathrm{h}} 20^{\mathrm{m}} 40^{s}$, decl. north $25^{\circ} \mathrm{II}$, when it appeared brighter than at the last observation, and the first glimpse of a broad short tail was noted.

On November 11 , when the comet was in R.A. $1_{7} 7^{\mathrm{h}} 52^{\mathrm{m}}+0^{\circ}$, decl. north $7^{\circ} 54^{\prime}$, two tails were plainly seen nearly at right angles to each other. The more prominent one was pointed away from the Sun, the second tail to the northward. A drawing of the comet is herewith given as it appeared on this occasion, and another drawing showing its appearance on the evening of November 15, when only one tail was visible with the optical power at my command, and that pointing away from the Sun. The comet's position on this date, November 15, at $7^{\mathrm{h}} 14^{\mathrm{m}}$, was R.A. $18^{\mathrm{h}} 0^{\mathrm{m}} 40^{\text {s }}$, decl. north $2^{\mathrm{c}} 33^{\prime}$. The comet at its brightest was just visible to the naked eye, and readily picked up with a good opera or field glass.

As a matter of record in the enduring archives of the Royal Astronomical Society, may I be allowed to say that I have now been permitted to reach "my majority" in cometary discovery, this latest comet being my twenty-first? Thirteen of these were made with reflecting telescopes, of my own construction, of 5 and 9 inches aperture respectively. The remaining eight comets were discovered with the ro-inch equatorial refractor of this observatory.

Smith Observatory, Genera, Mar Iri, ISA.:
1898 November 26.

Observations of Comet Coddington (c 1898). By John Tebbutt.
I have much pleasure in transmitting observations of comet Coddington (c 1898), comprising 67 nights' work, from 1898 June I5 to October I8. They were made with a square barmicrometer on the 8 -inch equatorial. The differential coordinates are corrected for errors in the orientation and form of the micrometer, and for the comet's proper motion, but not for refraction, which was hardly sensible. The comet was small throughout, with a condensation in its centre, and admitted of pretty accurate observations. The concluded values of R.A. and N.P.D. are uncorrected for parallax. I fear the comet will be too faint for re-observation after the full Moon; but should I succeed in picking it up again I will forward the obserrations in due time.

1898.	Winisor	$\text { F.a. }{ }^{\text {Come }}$	N.P.D.	No. of Comps.	$\begin{gathered} \text { Con } \\ \text { R. } \end{gathered}$	N.P.	Comp Star.
Ju		4					
June	73935	$\begin{array}{r} -454.64 \\ -\quad 119.8 \mathrm{I} \end{array}$	$\begin{array}{r} -956 \cdot 0 \\ +\quad 450.8 \end{array}$	212	$\begin{array}{ccc} 16 & \text { It } & 3.18 \\ 16 & 10 & 42 \cdot 42 \end{array}$	$\begin{array}{ccc} 117 & 16 & 53 \\ 117 & 52 & 26 \cdot 1 \end{array}$	1 2
17	8489	- 50.14	+ 945°	S I	$16 \quad 7 \begin{array}{lll}16 & 2 & 51\end{array}$	1183132.1	3
	82741	- $033 \cdot 11$	+ $246 \cdot 6$	81	15491975	12132163	4
-	63526	- ○ 53.56	+ 8494	151	$154227 \cdot 55$	12238489	5
25	7243	- 251.60	+ 266	10	15384888		6
25	7243	- 54374	- 660	10	153849.02	1231393	7
26	63847	+ 131.19	+ $28 \cdot 1$	5	...		8
26	63847	+ 045.07	+ 274	5	\ldots	...	9
27	65521	- 118.97	+ 026.7	1	153143.50	12418412	10
27	65521	- 144.65	- I 0.9	8	1
27	65521	- 431.69	- 434.7	81	153143.64	1241841.2	12
28	6446	+ 05540	- 11 I2.I	10			3
29	62952	$\div 423.62$	- 42 r 3	21	$152445 \cdot 66$	12521155	14
29	62952	+ 0732	+ 337.6	21	152445.46	12521159	15
July	633	- 156.00	+ 7138	8			16
	633	- 42139	$+832 \cdot 5$	8			17
3	633	- $440 \cdot 17$	+ 3174	8 I	15 II 2.37	1271942 I	18
	$7 \quad 729$	$\bigcirc{ }^{+} \times 4{ }^{\circ} \mathrm{O}$	912	101	15419.91	$128 \quad 15 \quad 293$	19
	64349	- 050.67	- I 49.1	10			20
	65755	+ 74447	+ 7177	71	$145754 \cdot 79$	129 7 $5^{\circ} \mathrm{O}$	21
	64056	+ 23951	+ $240 \cdot 5$	10	14544890	1293245.5	22
8	64056	- - 5749	$\ddagger 1395$	10			23
10	63651	+ 40112	- 156.1	8			24
10	636 51	+ 31280	- 1585	8 I	$144842 \cdot 64$	1302130.5	25
11	64537	- 25445	+ $223{ }^{\circ}$	4	$144543 \cdot 84$	$13045 \quad 1 \cdot 2$	26
12	9195^{8}	+ 10.95	$20 \cdot 1$	12	14422977	13110359	27
13	9932	- 15560	+ 6201	10			28
13	9932	-35778	+ 72.9	101	$143940 \cdot 78$	13132485	29
1	93138	+ 23713	$+810 \cdot 5$	ı	$143651 \cdot 87$	1315458	30
15	91619	- 128.59	- $530 \cdot 9$	10	1434 Iror	1321559.1	31
18	93626	+ $242 \cdot 52$	- 7190	ıо	142625.22	1331735.6	32
19	91831	- 410.59	+ 1400	Io			33
20	8467	$+326 \cdot 87$	$+4343$	8	14214191	$1335548 \cdot 5$	34
21	84616	+ 345.89	$+2454$	61	141923.50	1341439.2	35
21	84616	- 5 52.98	$7 \quad 0 \%$	6 נ	I4 1923330	13414399	36
	$9 \bigcirc 35$	$+251.97$	-10 0.9	9	$1417 \quad 735$	13433223	37
24	74052		-- 347°	ıо	141258.39	135834.6	38

Adopted Mean Places of the Comparison Stars for $1898^{\circ} \mathrm{o}$.

Star.	. Mean E.A.	$\begin{aligned} & \text { Red. to } \\ & \text { App. } \\ & \text { R.A. } \end{aligned}$	Mean X.P.D.	$\begin{aligned} & \text { Red. to } \\ & \text { App. } \\ & \text { N.P.D. } \end{aligned}$	Authorities.
\pm	$\begin{array}{cc} \mathrm{h} & \mathrm{~m} \\ \mathrm{I} 8 & \mathrm{~s} \\ 53 \cdot 56 \end{array}$	$\begin{array}{r} \mathrm{s} \\ +4.26 \end{array}$	$117{ }^{\circ} 25^{\prime} 48{ }^{\prime \prime}{ }_{4}^{\prime \prime}$	$+\mathbf{1} 2 \cdot 9$	Arg.-Oeltzen 15599-600; Argent. Gen. Cat. 22232.
2	16 II 57.98	$+4.25$	$11747{ }^{21} 7$	$+13.6$	Arg.-Oeltzen 15482; Argent. Gen. Cat. 22077 ; Stone, 8858.
3	16115838	$+4.27$	II8 21334	+137	Arg. Oeltzen 1548I ; Argent. Gen. Cat. 22078; Stone, 8857 ; Radcliffe, 1890, 4222.
4	154948	$+4.28$	1212913.2	+16.5	Argent. Gen. Cat. 21576 ; Stone, 8653 ; Radcliffe, $1890,4110$.
5	$154316 \cdot 84$	$+4.27$	$1222942 \cdot 1$	+174	Argent. Gen. Cat. 21432 ; Stone, 8594.
5	$154136 \cdot 13$	$+4.28$	1231046.2	+177	Argent. Gen. Cat, 21390.
7	154428.45	+4.31	$\begin{array}{lllllllll}123 & 18\end{array}$	$+175$	Argent. Gen. Cat. 21454 ; Stone, 8602 ; Radcliffe, 1890, 4083.
8	153342	$+4.25$	12349	$+18 \cdot 6$	Equatcrial. \quad Star $=10 \mathrm{mag}$.
9	153428	$+4.25$	12349	+18.5	quatorial. Star = 10 mag .
10	153258.21	$+4^{26}$	$1241755^{\prime} 7$	+18.8	Argent. Gen. Cat. 21198.

Dec. 1898. Comet Coddington (c 1898). 97

Star.	Mean R.A.	$\begin{aligned} & \text { Red. to } \\ & \text { App. } \\ & \text { R.A. } \end{aligned}$	Mean N.P.D.	Red. to App. N.P.D.	Aathorities.
	h m 15	$4 \cdot 26$	124*' ${ }^{\circ}$	+18.8	
	1533				
12	153611005	± 428	$1242257 \% 4$	$+18.5$	$\begin{aligned} & \text { Argent. } \dot{\text { A }}=. \text { Ci. } 2127+\text {; Stone, } \\ & \text { S533. } \end{aligned}$
13	152717	$+4.24$	125 I	+ 19.5	Equaiorin. Sia= 9 rag.
14	152017.85	$+4.19$	1252516.6	$+202$	Argent. Giz. Car. 20go3: Fione, 8395.
15	152433.92	$+4.22$	1251718.5	+ 19.8	Argent. Gen. Cat. 21003.
16	151254	$+4 \cdot 16$	12712	$+215$	Equatorial. Star $=9 \mathrm{mag}$.
17	151520	$+4.18$	127 II	$+2 \mathrm{I}^{\prime} 3$	Equatorial. Star $=8 \frac{1}{2} \mathrm{mag}$.
18	15 1538.35	$\div 4.19$	$\begin{array}{lllll}127 & 16 & 3.4\end{array}$	$+2 \mathrm{I} 3$	Argent. Gen. Cat. 20803 ; Stone, 835 I.
19	I5 $3 \quad 34.78$	$+4.10$	$128 \quad 24 \quad 79$	$+22.6$	Argent. Gen. Cat. 20546 ; Stone, 8237.
20	15 I 55	$+4.09$	12843	$\div 22.9$	Equatorial. Star $=8 \frac{1}{2} \mathrm{mag}$.
2 I	$1450 \quad 635$	$+3.97$	$129 \quad 0 \quad 8.5$	$\div 23.8$	Argent. Gen. Cat. 2022I; Stone, 8 I 28.
22	$14 \quad 52 \quad 540$	+3:99	$1292941 \times$	$\div 23.9$	Argent. Gea. Cat. 20274 ; Stone, 8150.
23	145542	$+4.03$	12931	--23.6	atoria'. $\quad \therefore u=9$ mag.
24	144439	$+3.92$	13023	-247	Equatoria. stu= 9 mug.
25	$14 \quad 45 \quad 25.82$	$+3.93$	I 302344	$\div 246$	Angert Give tai 20120.
26	144834.33	$+3.9$	13042137	$\div 245$., 20185.
27	14 41 24.94	$+3.88$	I3I $1210 \cdot 8$	$\div 252$	20026.
28	144132	$+3 \cdot 8$	131 26	$\div 25.2$	Equatorial. Star $=9 \mathrm{mag}$.
29	$144334 \cdot 66$	$+3.90$	131 25 20.5	$+25^{1}$	Argent. Gen. Cat. 2008I ; Stone, 8067.
30	$1434 \quad 10.95$	$+379$	131 4622.4	$\div 25$	Argent. Gen. Cat. 19858.
3 I	$143535 * 79$	$+3.8 \mathrm{I}$	I32 2141 I	$+25.9$	Argent. Gen. Cat. I9889; Stone, 7993.
32	142339.05	$+3.65$	I33 2427.8	$+26 \cdot 8$	Argent. Gen. Cat. 19604; Stone, 7893.
33	14288	$+3 \cdot 69$	13334	$+26 \cdot 7$	Equatorial. \leqslant tar $=8 \frac{1}{2}$ mag.
34	14 18 11.48	$+3.56$	$1335047{ }^{\circ}$	$+27.2$	$\begin{aligned} & \text { Argent. Gen. Ca:. } 19477 \text {; Stone, } \\ & 7853 . \end{aligned}$
35	14 I5 34*10	$+3.51$	1341126.4	+274	Argent. Gen. Cat. 19418.
36	$14 \quad 25 \quad 12.64$	$+3.64$	134 2x 130	+27.1	Argent. Gen. Cat. 19649; Stone, 7909.
37	14 I4 II.89	$+349$	I34 $4255 \cdot 6$	$+27 \cdot 6$	Argent. Ger. Cat. 19379 ; Stone, 7819.
38	14 I7 15.97	$+350$	I 351154°	$+27.6$	Argert. Gen. Cat. 19453.
39	141252.42	$+3.4 \mathrm{I}$	1353513.8	$+278$	Argent. Gen. Cat. 19354; Melb. 187c, 723; Stone, 7806; Cape Cat. 1885, 982.

Star.	. Mean E.as.	$\begin{aligned} & \text { Red. to. } \\ & \text { Ap.p. } \end{aligned}$	Mean N.P.D.	$\begin{aligned} & \mathrm{Re}^{\boldsymbol{\lambda} .} \text { to } \text { to } \\ & \text { Ap.p. } \end{aligned}$	Authorities.
	$\begin{array}{ccc} \mathrm{h} & \mathrm{~m} & { }^{5} \\ \mathrm{I} 4 & \mathrm{I} 4 & 56^{\prime} \end{array}$	$+3.43$	$13^{\circ} 612$	27'9	Equatorial. Star $=9 \mathrm{mag}$.
41	141628	$\div 3.46$	13612	$+27.9$	toria
42	$14 \begin{array}{llllllll}18 & 18\end{array}$	+3.48	$\begin{array}{lllll}156 & 3 & 57\end{array}$	$\div 277$	Argent. Gen. Cat. 19482 ; Stone, 7855.
43	$14 \quad 429$	+3.28	13626	+28.3	Equatorial. Star $=7 \frac{1}{2} \mathrm{mag}$.
44	14 10 $36 \cdot 39$	$+3 \% 6$	1362614.6	-I	Argent. Gen. Cat. 19318
45	$14 \quad 426$	$+3.26$	13626	+28.2	Equatorial. Double star $=8 \frac{1}{2}$ and 9 mag. Preceding and south component employed.
46	14×28.97	$+3.17$	137651	+28.4	Argent. Gen. Cat. 19120 ; Stone, 7713.
47	$14.410 \cdot 30$	$+3.23$	137179	+ 28.4	Argent. Gen. Cat. 19198.
47	$14 \quad 41030$	$+321$	$\begin{array}{llll}137 & 17 & 9\end{array}$	+28.3	.
48	13493949	+2.93	1382324.2	+28.7	Argent. Gen. Cat. 18907 ; Stone, 7631.
49		$+2.96$	1383512.4	+28.7	Argent. Gen. Cat. 18945 ; Stone, 7650.
50	135021	+2.92	13836	+ 28.6	Equatorial. Star $=8 \frac{1}{2} \mathrm{mag}$.
51	134855	+2.86	139 II	8.6	quatorial. \quad Star $=0 \frac{1}{2}$
52	$134^{1} 16.15$	+273	1393653.0	+28.7	Argent. Gen. Cat. 18721 ; Stone, 7545.
53	134339	$+2.77$	13938	$\div 28$.	Equatorial. Star $=8 \frac{1}{2} \mathrm{mag}$.
54	13524456	+2.86	13952194	+28.5	Argent. Gen. Cat. 18973; Stone, 7665.
55	$134613 \cdot 67$	$+2.74$	140245	+28.6	Argent. Gen. Cat. 18837 ; Stone, 7589.
56	134011.97	+2'61	14055	$\div 28.5$	Argent. Gen. Cat. 18700 ; Stone, 7538.
57	$133936 \cdot 10$	$+2.53$	$1414738 \cdot 7$	$+28.3$	Argent. Gen. Cat. 18686.
58	133938.30	+2.49	142 ○ 79	+ 28.1	868
59	134528.75	$+2.55$	14218135	$+28.1$	Argent. Gen. Cat. 18814 ; Stone, 7578.
60	$134530 \cdot 62$	+2.5.5	14218195	$+28.1$	Argent. Gen. Cat. 18817 ; Stone, 7579.
61	134031.07	+245	14246	+28	Argent. Gen. Cat. 18706; Stone, 7539.
62	13332547	$+2.32$	14256512	$+27.8$	Melb. Cat. 1870, 683; Argent. Gen. Cat. 18559 ; Stone, 7478 ; Cape Cat. $1885,935$.
63	133757	$+2.37$	14313	+ 27.8	Equatorial. Star $=8 \frac{1}{2}$ mag.
64	133512.82	+2.26	$144 \quad 230 \cdot 8$	+27.5 A	Argent. Gen. Cat. 18587 ; Stone, 749 I.
65	$13 \quad 32 \quad 9.59$	+ 193	1476 II.2	$+26.0 \mathrm{~A}$	Argent. Gen. Cat. 18532 ; Stone, 7468.
. 66	133652.80	+2.01	$147430 \cdot 1$	$+25.2 \mathrm{~A}$	Argent. Gen. Cat. 18622 ; Stone, 7513.
7	I3 334 T 99	$+1.93$	$1472+28.1$	$+26.0 \mathrm{~A}$	Argent. Gen. Cat. 18564.

Dec. 1898 Comet Coddington (c 1898).

Star.	Mean R.A.	Red. to App. R.A.	Mean N.P.D.	$\begin{aligned} & \text { Red. to } \\ & \text { App. } \\ & \text { N.P.D. } \end{aligned}$	Authorities.
68	$\begin{array}{ccc} \mathrm{h} & \mathrm{~m} & \mathrm{~s} \\ \mathrm{I} 3 & 3 \mathrm{I} & 26^{\cdot} \cdot \mathrm{I} 3 \end{array}$	5 +1.87	$\begin{array}{rrrr}147 & 5 & \prime \\ 3 & 36\end{array}$	+25.8	Argent. Gen. Cat. ISj13; Stone, 7457.
69	133852.38	+ I•99	I47 $4347^{\circ} \mathrm{I}$	$+26 \cdot 0$	```Aggent. Cre:. C.it. IS563; Stone, 752%.```
70	$133515 \cdot 16$	$+1.88$	14816139	$+25.6$	Argent. Gen. Cat. iSjeso ; Stone, 7492.
71	133422.95	$+\mathrm{I} \cdot 84$	I48 4236.6	$+254$	Argent. Gen. Cat. 18572.
72	I3 3788 121	+I +88	1484316.4	+25.5	Argent. Gen. Cat. 18626 ; Stone, 7516.
73	134145.02	+ I*93	1485977	$+25.5$	Argent. Gen. Cat. 18727 ; Stone, 7547.
74	134234	+ I 91	14925	$+2$	Equatorial. Star $=8 \frac{1}{4} \mathrm{mag}$.
75	134214.55	$+1 S_{4}$	$1501436 \cdot 6$	$+25^{\circ} \mathrm{I}$	Argeni. Gen. Cat. 18738 ; Stone, 7550 .
75	134214.55	$+1.83$	150 $1436 \cdot 6$	$+24.8$	Argent. Gen. Cat. 18738 ; Stone, 7550.
76	1341860	$+\mathrm{I} \cdot 8 \mathrm{I}$	15017547	$+24$	Argent. Gen. Cat. 18715.
77	133542.06	$+\mathbf{1} 65$	15113189	+24.4	Argent. Gen. Cat. 18596; Stone, 749 S.
78	133615.54	$+\mathrm{I} 66$	$1511138 \cdot 2$	$\div 243$	Argent. Gen. Cat. 186II ; Stone, 7504.
79	$13 \quad 3912.67$	$+1.65$	15156230	$\div 24^{1}$	Argent. Gen. Cat. 18668 ; Stone, 7528.
80	13424940	$+172$	$\begin{array}{lll}\text { IJ } & 46 & 0.5\end{array}$	$\div 24.2$	Argent. Gen. Cat. 18755 ; Stone, 7554.
8 I	1345×160	$+\mathrm{I}$	$\begin{array}{llll}152 & 51\end{array}$	$\div 23$	Argent. Gen. Cat. 18803 ; Stone, 7574.
82	135054.6	$+1.56$	$155 \mathrm{IS} 2 \cdot \mathrm{~S}$	$+22.7$	Argent. Gen. Cat. 18931 ; Stone, 7643 .
83	134657.59	$+140$	1562351.0	$+21.9$	Argent. Gen. Cat. 18845 ; Stone, 7595.
84	$1347 \quad 0.74$	$+1.40$	1562334.7	$+21.9$	Argent. Gen. Cat. 18846.
85	135128.45	+140	15720343	$+2 \mathrm{I} 7$	Argent. Gen. Cat. I8939; Stone, 7647.
86	$135147 \% 8$	+14 4	157210.4	$+21.7$	Argent. Gen. Cat. IS950; Stone, 765 I.
87	135938.93	$+1.52$	$1573928 \cdot 1$	$+2 \mathrm{I} \cdot 8$	Argent. Gen. Cat. 19094.
88	$14 \bigcirc 49 \cdot 97$	$+154$	15739 I 4 I	+2I.8	", " I912I.
89	135418	$+1.30$	1596	+210	Equatorial. Star $=9 \mathrm{mag}$.
90	$14 \quad 2 \quad 3777$	+1.44	159 I4 7•I	$+2 \mathrm{I}^{\prime} \mathrm{I}$	Melb. Cat. 1870, 713 ; Argent. Gen. Cat. 19164; Stone, 7733.
91	$14 \quad 431 \cdot 13$	$+1.26$	$\begin{array}{lllll}161 & 38 & 34.8\end{array}$	+20.1	Gilliss ${ }^{\text {s Cat. }} 1850,9875$.
92	$14 \quad 18 \quad 35.08$	+1.44	$1624328 \cdot 7$	$+19.9$.. ", 10059.
Observatory, Peninsula, Windsor, N.S. Wales: 1898 Oct. 29.					

Cometary Observations at the Liverpool Observatory, r897-8. By W. E. Plummer, M.A.
The following observations form a continuation of the series of measures published in May i896. 'The remarks made in that place concerning the instrument employed and the nature of the micrometers apply equally woll to datons. The general faintness of the Comets that have been recently discovored has oporatod unfavourably in many cases, and, notwithstanding the number of these objects recently discovered, her number of observations is less than in former years.

$$
\text { Comet VII. } 1896 \text { (Perrine, Dleccmber } 8 \text {). }
$$

mber 8).
No. of
Compari-
sons.

