Abstract

Revised Hipparcos parallaxes for classical Cepheids are analysed together with 10 Hubble Space Telescope (HST)-based parallaxes. In a reddening-free V, I relation we find that the coefficient of log P is the same within the uncertainties in our Galaxy as in the Large Magellanic Cloud (LMC), contrary to some previous suggestions. Cepheids in the inner region of NGC 4258 with near solar metallicities confirm this result. We obtain a zero-point for the reddening-free relation and apply it to the Cepheids in galaxies used by Sandage et al. to calibrate the absolute magnitudes of Type Ia supernova (SNIa) and to derive the Hubble constant. We revise their result for H0 from 62 to 70 ± 5 km s−1 Mpc−1. The Freedman et al. value is revised from 72 to 76 ± 8 km s−1 Mpc−1. These results are insensitive to Cepheid metallicity corrections. The Cepheids in the inner region of NGC 4258 yield a modulus of 29.22 ± 0.03 (int.) compared with a maser-based modulus of 29.29 ± 0.15. Distance moduli for the LMC, uncorrected for any metallicity effects, are 18.52 ± 0.03 from a reddening-free relation in V, I; 18.47 ± 0.03 from a period–luminosity relation at K; 18.45 ± 0.04 from a period–luminosity–colour relation in J, K. Adopting a metallicity correction in V, I from Macri et al. leads to a true LMC modulus of 18.39 ± 0.05.

1 INTRODUCTION

The success of the Hipparcos astrometric satellite in obtaining a large number of absolute stellar parallaxes with much greater accuracy than had previously been possible (ESA 1997), allowed a first estimate to be made of the zero-point of a Cepheid period–luminosity (PL) relation directly from Cepheid parallaxes (Feast & Catchpole 1997). Investigations of the Hipparcos data continued after the publication of the catalogue, and led to the identification of a number of repairable problems associated with the reconstruction of the satellite's attitude (van Leeuwen 2005). This ultimately led to a completely new reduction of the astrometric data (van Leeuwen & Fantino 2005), the results of which are soon to be published (van Leeuwen 2007) and have been incorporated in the current study. The main impact of the reductions is for the brightest stars, where improvements of up to a factor of 4 in parallax accuracy can be reached. For many of the Cepheids improvements by up to a factor of 2 have been achieved.

In the present paper we discuss and analyse the revised Hipparcos parallaxes of (classical) Cepheids. Recently, the parallaxes of 10 Cepheids, measured with the Hubble Space Telescope (HST) and corrected to an absolute reference frame using ground-based observations, have been published and discussed (Benedict et al. 2002, 2007, henceforth FB2007) and we have incorporated these data in our analysis.

Since the discussion of the original Hipparcos data there has been much work on Cepheid photometry, PL relations, metallicity effects etc. and we have been able to take advantage of this in the present work. There has also been a great deal of theoretical work on Cepheids. We do not discuss this since our aim has been to obtain empirically based conclusions. We establish a reddening-free PL relation in V and I[PL(W)] as well as PL and period–luminosity–colour (PLC) relations in J and K. These relations should be of use in a variety of contexts both Galactic and extragalactic and for testing theoretical models. In the present paper we confine ourselves to the implication of our results for Cepheid-based distances of galaxies including the Large Magellanic Cloud (LMC) and the estimation of the Hubble constant.

2 DATA

The basic data used here are tabulated in Appendix A together with notes on individual stars. The table contains only those stars which had all the data required for the analyses and which are considered to be classical Cepheids.

Table A1 contains the following.

  1. Hipparcos number (no).

  2. Hipparcos parallax (π). Here and throughout in milliarcsec (mas)

  3. Hipparcos parallax standard error (σπ) In mas.

  4. Star name.

  5. Logarithm of fundamental period. Where the star is an overtone pulsator the fundamental period, P0, was derived from the observed period, P1, using the relation (Alcock et al. 1995; Feast & Catchpole 1997)  

    1
    formula
    Such stars are denoted by ‘O’ in the notes. Here and throughout the periods are in days.

  6. Intensity mean magnitudes 〈B〉, 〈V〉, 〈I〉. The I magnitudes are on the Cousins system. The BVI photometry used was from Berdnikov (private communication) and is an update of Berdnikov, Dambis & Voziakova (2000). Where values of I were not available in this source they were taken from Groenewegen (1999) who transformed other workers’ data to the Cousins system. These stars are marked ‘G’ in the notes.

  7. Intensity mean magnitudes 〈J〉, 〈H〉, 〈K〉 on the South African Astronomical Observatory (SAAO) system (Carter 1990). Where possible these are from multiple observations. They are mainly from the papers by Laney & Stobie (1992, 1993, 1994) and previously unpublished SAAO data. The individual observations on which these latter intensity means depend will be published separately. In a limited number of cases intensity means are from Groenewegen's (1999) tabulation. All these stars are indicated by ‘L’ in the notes. Where no source is specified the mean magnitude has been estimated from the single Two Micron All Sky Survey (2MASS) measure transformed to the SAAO system (Carpenter 2001) and corrected for phase by the procedure outlined by Soszyński, Gieren & Pierrzyński, (2005). Since in many cases the phases used are old [General Catalogue of Variable Stars (GCVS)] the accuracy of these corrections can be poor and this is taken into account in the later work.

  8. ET is the value of E(BV) given by Tammann, Sandage & Reindl (2003). If this is not available then this column contains EF× 0.951 (see Tammann et al. 2003) and is indicated by ‘F’ in the notes.

  9. Δ is the full V amplitude of the star.

  10. EF is the value of E(BV), as estimated by Fernie et al. (1995) and given in the David Dunlop Observatory (DDO) data base as FE1. If this is not available FE2 is given.

  11. Notes using the following symbols.

  12. O?,

    possible overtone, but considered a fundamental pulsator.

  13. B, B?,

    binary or possible binary.

  14. VB,

    visual binary.

  15. SB,

    spectroscopic binary.

  16. SB2,

    spectroscopic binary with both spectra observed. The data on the binaries are mainly from the Szabados data base (see Szabados 2003). In cases of specific stars, additional references are in the notes. Many of the binaries listed by Szabados are, or possibly are, single line spectroscopic binaries. In the case of the original Hipparcos data the effects of binaries on the zero-point were discussed in Feast (1998) both as regards the photometry and the astrometry. Where the photometry may have been affected by a companion this is mentioned in the notes and if thought appreciable the star was omitted from the analysis.

  17. DM,

    double mode pulsator; the fundamental period is listed.

  18. 16

    The type of astrometric solution using the following codes.

  19. 5:

    standard five-parameter solution for single stars.

  20. 25:

    standard five-parameter solution for a variable double star.

  21. 65:

    standard five-parameter solution for the photocentre of a variable double star.

  22. 105:

    standard five-parameter solution for the secondary in a resolved binary with a variable component (a difficult solution).

  23. 7:

    single star with time-dependent proper motion (accelerated solution, which may indicate long-term orbital motion).

  24. 3:

    variability induced mover, a probably spurious indication of duplicity depending on the phase of the light curve.

  25. 1:

    stochastic solution, too much unexplained noise left in the data, generally unreliable, and an indication of short-term orbital motion.

Initial tests showed that with the Hipparcos parallaxes and listed photometry, the following stars lay 5σ or more from any reasonable PL relation: Y Sgr, V350 Sgr, GQ Ori, SY Nor, HL Pup. The Hipparcos data for all of these stars were omitted from the analysis, although only Y Sgr would have sufficient weight to make a significant contribution to the solutions discussed. In some cases erroneous classification may be the cause of the discrepancy. The reason for the significant discrepancy in the case of Y Sgr is not fully understood since the star has a HST parallax (FB2007) in good accord with other Cepheid data. In the combined solutions discussed below we use only the HST parallax for Y Sgr.

Leaving aside Y Sgr there are nine Cepheids in common with the HST parallax work. These parallaxes are listed with the Hipparcos results in Table 1 and the weighted means are also shown. In the solutions below we use these weighted means unless otherwise indicated.

Table 1

Hipparcos and HST Cepheids in common.

Hipp Name πHipp πHST πmean 
47854 l Car 2.06 ± 0.27 2.01 ± 0.20 2.03 ± 0.16 
34088 ζ Gem 2.71 ± 0.17 2.78 ± 0.18 2.74 ± 0.12 
26069 β Dor 3.64 ± 0.28 3.14 ± 0.16 3.26 ± 0.14 
88567 W Sgr 2.59 ± 0.75 2.28 ± 0.20 2.30 ± 0.19 
87072 X Sgr 3.39 ± 0.21 3.00 ± 0.18 3.17 ± 0.14 
110991 δ Cep 3.81 ± 0.20 3.66 ± 0.15 3.71 ± 0.12 
93124 FF Aql 2.05 ± 0.34 2.81 ± 0.18 2.64 ± 0.16 
102949 T Vul 2.31 ± 0.29 1.90 ± 0.23 2.06 ± 0.22 
30827 RT Aur −0.23 ± 1.01 2.40 ± 0.19 2.31 ± 0.19 
89968 Y Sgr 3.73 ± 0.32 2.13 ± 0.29  
Hipp Name πHipp πHST πmean 
47854 l Car 2.06 ± 0.27 2.01 ± 0.20 2.03 ± 0.16 
34088 ζ Gem 2.71 ± 0.17 2.78 ± 0.18 2.74 ± 0.12 
26069 β Dor 3.64 ± 0.28 3.14 ± 0.16 3.26 ± 0.14 
88567 W Sgr 2.59 ± 0.75 2.28 ± 0.20 2.30 ± 0.19 
87072 X Sgr 3.39 ± 0.21 3.00 ± 0.18 3.17 ± 0.14 
110991 δ Cep 3.81 ± 0.20 3.66 ± 0.15 3.71 ± 0.12 
93124 FF Aql 2.05 ± 0.34 2.81 ± 0.18 2.64 ± 0.16 
102949 T Vul 2.31 ± 0.29 1.90 ± 0.23 2.06 ± 0.22 
30827 RT Aur −0.23 ± 1.01 2.40 ± 0.19 2.31 ± 0.19 
89968 Y Sgr 3.73 ± 0.32 2.13 ± 0.29  

3 METHODS USING VI PHOTOMETRY

The existence of a Cepheid PL relation goes back of course to (Leavitt 1908, 1912). It is known that the PL(V) relation in the LMC has significant width and that this is greatly reduced, probably to within the observational errors, by the use of a PLC relation (e.g. Martin, Warren & Feast 1979). However, the value of the coefficient of the colour term and whether it varies with period has been a matter of uncertainty and debate.

In recent times there has been considerable discussion on the possibility that some PL relations might be non-linear. Thus, it has been suggested that the PL(V) relation in the LMC is non-linear (Sandage, Tammann & Reindl 2004; Ngeow et al. 2005). However, it is not entirely clear whether this effect is real or, for instance, due to systematic errors in the adopted reddenings varying with period. In any case, there seems to be good evidence (Ngeow & Kanbur 2005) that in the LMC a ‘reddening-free’ relation (Madore 1976) such as  

2
formula
is linear. Here the coefficient, β, is an adopted ratio of total to selective extinction [AV/(AVAI)]. We have restricted our discussion at optical wavelengths to a relation of this form because of this and because of its importance in extragalactic work.

In a very detailed analysis of the data available to them, Sandage et al. (2004) have suggested that the slopes of PL relations in the optical, and hence the log P coefficient in equation (2), differ between the LMC and our Galaxy, presumably due to metallicity effects. In the case of the Galaxy the slopes were derived by combining Cepheid distances derived from Baade–Wesselink (pulsation parallax) type analyses with those from Cepheids in clusters with distances from main-sequence fitting. Their results have remained controversial for the following reasons. Gieren et al. (2005) showed that the Baade–Wesselink-type distances of LMC Cepheids were a function of period if a conventional ‘p’ factor was used to convert observed radial velocities to pulsational velocities of the stars. Changing ‘p’ to remove this effect brings the LMC and Galaxy PL slopes into agreement within the uncertainties. As regards the ‘cluster’ distances, these partly depend, especially at longer periods, not on clusters but on stellar associations. The distances of these associations remain somewhat uncertain and their inclusion can affect any derived PL slope (as can be inferred from the early work of Feast & Walker 1987, their table 3). In view of these various uncertainties, one of our aims has been to derive the PL(W) slope in our Galaxy.

Two PL(W) relations are of particular importance for extragalactic applications.

  • The relation adopted by Freedman et al. (2001) in their HST key project on the Cepheid calibration of the Hubble Constant (H0),  

    3
    formula
    The log P coefficient was derived from Optical Gravitational Lensing Experiment (OGLE) LMC data (Udalski et al. 1999) and the colour coefficient from their adopted reddening law. The equation as given is applicable to local Galactic Cepheids. The zero-point is derived from their adopted LMC modulus and metallicity correction.

  • The relations for Galactic Cepheids used by Sandage et al. (2006, henceforth S2006)1 in their work on a Cepheid-based H0 are equivalent to  

    4
    formula
    The basis on which this equation was derived was discussed above.

A third reddening-free relation is of relevance. This was derived (FB2007) from a ‘cleaned’ selection of 581 LMC OGLE Cepheids and adopting the Freedman et al. reddening law:  

5
formula
where Mod is the distance modulus of the LMC and no metallicity correction has been applied.

After making corrections for reddening, Udalski et al. (1999) derived a true PLC relation for LMC Cepheids in the OGLE data base, which can be written as  

6
formula
Comparison of equations (5) and (6) shows that the coefficients of the slopes and colour terms are nearly the same in the two equations. Thus, we are justified (at least in the LMC) in considering a reddening-free relation as also very close to a true PLC relation. This is important for two reasons. First, as discussed above, we expect a PLC relation to be very narrow. Secondly, because Cepheid overtone pulsators are in general bluer than those of the same fundamental period, they lie systematically above fundamental pulsators in a PL(V) plot. However, they lie together with the fundamental pulsators in a PLC plot (see e.g. Beaulieu et al. 1995). This is important if we wish to include overtone pulsators in a Cepheid calibration. We test this result in the case of Galactic Cepheids below.

In analysing the data we have proceeded in two ways.

  • For a limited number of Cepheids the percentage errors in the parallaxes are sufficiently small that individual values of MW can be directly combined to derive PL relations; Cepheids selected in this way require a Lutz–Kelker-type bias correction (Lutz & Kelker 1973). We have scaled these corrections to be on the same system as that adopted by FB2007. We are primarily interested in using this subset of stars to obtain an estimate of α in equation (2).

  • We combine the main body of data using the method of reduced parallaxes (e.g. Feast 2002) and fixed values of α to obtain the zero-point, γ, in equation (2).

4 THE SLOPE α OF THE GALACTIC PL(W) RELATION

Table 2 lists the subset of Cepheids used in this section. The table gives Hipparcos number, name, the parallax and its standard error from the combined Hipparcos and HST data, the absolute magnitude, MW, (without Lutz–Kelker correction) and its standard error (=2.17σπ/π), from this parallax and the adopted photometry together with β= 2.45. Also given are the Lutz–Kelker corrections applicable in this case and the log of the fundamental period. Fig. 1 shows MW with Lutz–Kelker corrections applied plotted against log P and with our finally adopted relation (α=−3.29, β= 2.45 and γ=−2.58) shown. The residuals in this case are also listed in Table 2.

Table 2

Cepheids used in the determination of the PL(W) slope α.

Hipp Name π log P MW LK corr. Res. 
11767 α UMi 7.72 ± 0.12 0.754 −5.08 ± 0.03 0.00 −0.02 
13367 SU Cas 2.57 ± 0.33 0.440 −4.18 ± 0.28 −0.13 −0.15 
26069 β Dor 3.26 ± 0.14 0.993 −5.72 ± 0.09 −0.02 +0.13 
30827 RT Aur 2.31 ± 0.19 0.572 −4.35 ± 0.18 −0.06 +0.11 
34088 ζ Gem 2.74 ± 0.12 1.006 −5.98 ± 0.10 −0.02 −0.09 
47854 l Car 2.03 ± 0.16 1.551 −7.70 ± 0.17 −0.05 −0.01 
61136 BG Cru 2.23 ± 0.30 0.678 −4.63 ± 0.29 −0.15 +0.18 
87072 X Sgr 3.17 ± 0.14 0.846 −5.22 ± 0.10 −0.02 +0.14 
88567 W Sgr 2.30 ± 0.19 0.880 −5.62 ± 0.18 −0.06 −0.15 
89968 Y Sgr 2.13 ± 0.29 0.761 −5.13 ± 0.30 −0.15 −0.05 
93124 FF Aql 2.64 ± 0.16 0.650 −4.66 ± 0.13 −0.03 +0.06 
102949 T Vul 2.06 ± 0.22 0.647 −4.43 ± 0.23 −0.09 +0.28 
104185 DT Cyg 2.19 ± 0.33 0.550 −4.15 ± 0.33 −0.18 +0.24 
110991 δ Cep 3.71 ± 0.12 0.730 −5.05 ± 0.07 −0.01 −0.07 
Hipp Name π log P MW LK corr. Res. 
11767 α UMi 7.72 ± 0.12 0.754 −5.08 ± 0.03 0.00 −0.02 
13367 SU Cas 2.57 ± 0.33 0.440 −4.18 ± 0.28 −0.13 −0.15 
26069 β Dor 3.26 ± 0.14 0.993 −5.72 ± 0.09 −0.02 +0.13 
30827 RT Aur 2.31 ± 0.19 0.572 −4.35 ± 0.18 −0.06 +0.11 
34088 ζ Gem 2.74 ± 0.12 1.006 −5.98 ± 0.10 −0.02 −0.09 
47854 l Car 2.03 ± 0.16 1.551 −7.70 ± 0.17 −0.05 −0.01 
61136 BG Cru 2.23 ± 0.30 0.678 −4.63 ± 0.29 −0.15 +0.18 
87072 X Sgr 3.17 ± 0.14 0.846 −5.22 ± 0.10 −0.02 +0.14 
88567 W Sgr 2.30 ± 0.19 0.880 −5.62 ± 0.18 −0.06 −0.15 
89968 Y Sgr 2.13 ± 0.29 0.761 −5.13 ± 0.30 −0.15 −0.05 
93124 FF Aql 2.64 ± 0.16 0.650 −4.66 ± 0.13 −0.03 +0.06 
102949 T Vul 2.06 ± 0.22 0.647 −4.43 ± 0.23 −0.09 +0.28 
104185 DT Cyg 2.19 ± 0.33 0.550 −4.15 ± 0.33 −0.18 +0.24 
110991 δ Cep 3.71 ± 0.12 0.730 −5.05 ± 0.07 −0.01 −0.07 
Figure 1

MW (with Lutz–Kelker correction) plotted against log P for the 14 stars in Table 2. The line is the relation finally adopted which has α=−3.29, β= 2.45 and γ=−2.58.

Figure 1

MW (with Lutz–Kelker correction) plotted against log P for the 14 stars in Table 2. The line is the relation finally adopted which has α=−3.29, β= 2.45 and γ=−2.58.

Weighted least-squares fit to equation (2) were made to various subsets of the data and the slopes (α) derived are listed in Table 3. This is in two parts: Table 3(a) adopts β= 2.45 (as in Freedman et al. 2001) and Table 3(b) adopts β= 2.523 (as in S2006; see Section 3).

Table 3

Determinations of the slope, α, in equation (2).

No. Sample α β 
  (a)  
10 HST stars +HST phot. −3.335 ± 0.172 2.45 
10 HST stars + New phot. −3.473 ± 0.183 2.45 
10 stars HST+ Hipp −3.328 ± 0.188 2.45 
(3) + Polaris (11 stars) −3.285 ± 0.169 2.45 
Weight >10 (13 stars) −3.273 ± 0.155 2.45 
Weight >8 (14 stars) −3.288 ± 0.151 2.45 
(6) omitting l Car (13 stars) −3.265 ± 0.230 2.45 
LMC (OGLE) −3.29 ± 0.01 2.45 
Freedman (adopted) −3.26 2.45 
  (b)  
10 10 HST stars + New phot. −3.502 ± 0.182 2.523 
11 10 stars HST+ Hipp −3.357 ± 0.186 2.523 
12 (11) + Polaris (11 stars) −3.330 ± 0.165 2.523 
13 Weight >10 (13 stars) −3.315 ± 0.152 2.523 
14 Weight >8 (14 stars −3.330 ± 0.149 2.523 
15 Sandage (adopted) −3.75 2.523 
No. Sample α β 
  (a)  
10 HST stars +HST phot. −3.335 ± 0.172 2.45 
10 HST stars + New phot. −3.473 ± 0.183 2.45 
10 stars HST+ Hipp −3.328 ± 0.188 2.45 
(3) + Polaris (11 stars) −3.285 ± 0.169 2.45 
Weight >10 (13 stars) −3.273 ± 0.155 2.45 
Weight >8 (14 stars) −3.288 ± 0.151 2.45 
(6) omitting l Car (13 stars) −3.265 ± 0.230 2.45 
LMC (OGLE) −3.29 ± 0.01 2.45 
Freedman (adopted) −3.26 2.45 
  (b)  
10 10 HST stars + New phot. −3.502 ± 0.182 2.523 
11 10 stars HST+ Hipp −3.357 ± 0.186 2.523 
12 (11) + Polaris (11 stars) −3.330 ± 0.165 2.523 
13 Weight >10 (13 stars) −3.315 ± 0.152 2.523 
14 Weight >8 (14 stars −3.330 ± 0.149 2.523 
15 Sandage (adopted) −3.75 2.523 

From Table 3(a) we draw the following conclusions.

  • Slight changes in the adopted photometry affect the value of the slope. However, this is not the main source of uncertainty.

  • Adding the overtone Polaris at its fundamental period does not change the slope appreciably (see also the next section).

  • Leaving out l Car does not affect the slope appreciably. This is important since l Car is by far the longest period star in this sample and therefore, when included, has a major effect on the slope determined.

  • Our best determinations (solutions 6 and 7 of Table 3) give values of α close to that determined for LMC stars from the OGLE data (as shown in the table). There is still significant uncertainty in our value of the Galactic slope. However, within the uncertainties it agrees with that determined for the LMC.

From Table 3(b) we draw the following conclusions.

  • Using the ‘Sandage’ colour coefficient (β) we get slopes which are not significantly different from those in Table 3(a).

  • Our slopes, especially the higher weight ones, are distinctly different from that adopted by S2006, and in view of the uncertainties surrounding this latter result (see Section 3) we suggest it should be replaced by our best value. Nevertheless, in the next section we give zero-points derived using a value of α=−3.75.

The main conclusion of this section is that within current uncertainties the value of α is the same in the Galaxy as in the LMC and our final results will be based on this assumption.

5 THE ZERO-POINT γ OF THE PL(W) RELATION

Table 4 gives results of the determinations of the zero-point γ in equation (2) using fixed values of α and β. In Table 4(a) are the values of γ obtained directly from the 14 stars in Table 2 with Lutz–Kelker corrections applied. In Table 4(b) we give the values of γ derived by the method of reduced parallaxes (e.g. Feast 2002) to our bulk sample. Points to note are as follows.

Table 4

The zero-point, γ, of equation (2) with fixed α and β.

No. Stars α β γ Notes 
   (a)   
14 −3.255 2.45 −2.606 ± 0.022  
10 −3.255 2.45 −2.568 ± 0.036 HST result 
14 −3.29 2.24 −2.579 ± 0.022  
14 −2.75 2.523 −2.264 ± 0.028  
   (b)   
240 −3.255 2.45 −2.604 ± 0.030  
240 −3.29 2.45 −2.576 ± 0.030  
239 −3.29 2.45 −2.558 ± 0.044 (6) no Polaris 
213 −3.29 2.45 −2.563 ± 0.046 (6) no overtones 
240 −3.75 2.523 −2.263 ± 0.030  
No. Stars α β γ Notes 
   (a)   
14 −3.255 2.45 −2.606 ± 0.022  
10 −3.255 2.45 −2.568 ± 0.036 HST result 
14 −3.29 2.24 −2.579 ± 0.022  
14 −2.75 2.523 −2.264 ± 0.028  
   (b)   
240 −3.255 2.45 −2.604 ± 0.030  
240 −3.29 2.45 −2.576 ± 0.030  
239 −3.29 2.45 −2.558 ± 0.044 (6) no Polaris 
213 −3.29 2.45 −2.563 ± 0.046 (6) no overtones 
240 −3.75 2.523 −2.263 ± 0.030  

  • Values of γ in Table 4(a) agree closely with the corresponding values in Table 4(b).

  • In Table 4(b), leaving out the high weight overtone pulsator, Polaris, makes no significant difference. Nor does leaving out all the known overtone pulsators. This is consistent with the discussion in Section 3 which noted that the reddening-free relation in the LMC was very closely the same as a true PLC relation.

  • In carrying out the reduced parallax solutions we have assumed that the uncertainties are dominated by the errors in the parallaxes. That is, we have neglected the second term in equation (3) of Feast (2002). However, if we supposed that forumla, which we believe would be a gross overestimate, then the value of γ in Table 4(b) (solution 6) would only change from −2.576 to −2.554.

We adopt −2.58 (solution 6, Table 4) as the value for γ to use with α=−3.29 and β= 2.45 in equation (2).

6 THE HUBBLE CONSTANT

An important use of Cepheids is as a basis for the determination of the distances of galaxies and from that the estimation of a value of H0. This can then be compared with the value derived in other ways (e.g. from the microwave background) which require the adoption of a general cosmological model; thus providing a test of the model. Sandage and his coworkers have recently completed a major programme of re-analysing HST data of Cepheids in galaxies in which supernovae have been observed (see S2006; Saha et al. 2006 and earlier papers in the series). In their summary paper they use the Cepheid data to derive distance moduli to 10 normal Type Ia supernova (SNIa). From these they derive the maximum SNIa brightness (as defined by them). They then use this as a zero-point for a determination of H0. We have redetermined the distance moduli of these galaxies using equation (2) with our adopted coefficients from Section 5 viz. α=−3.29, β=+2.45 and γ=−2.58. We use the same selection of Cepheids as used by S2006 and adopt the corrected apparent supernovae (SN) magnitudes in table 2 of that paper. We derive SNIa absolute magnitudes equivalent to those in table 3 of S2006 and like them derive weighted means. Table 5 gives the weighted mean absolute magnitudes of S2006 and the corresponding values of H0 which this implies in their work.

Table 5

SNIa absolute magnitudes and H0.

 MBH0 (BMVH0 (VMIH0 (IAdopted H0 
S2006 −19.49 ± 0.04 −19.46 ± 0.04 −19.22 ± 0.05  
62.4 ± 1.2 62.5 ± 1.2 62.1 ± 1.4 62.3 ± 1.3 (int.) 
Revised (no metal cor.) −19.26 ± 0.05 −19.22 ± 0.05 −18.98 ± 0.07  
69.4 ± 1.6 69.8 ± 1.6 69.4 ± 2.3 69.5 
Revised (with metal cor.) −19.26 −19.22 −18.97  
69.4 69.8 69.7 69.6 
 MBH0 (BMVH0 (VMIH0 (IAdopted H0 
S2006 −19.49 ± 0.04 −19.46 ± 0.04 −19.22 ± 0.05  
62.4 ± 1.2 62.5 ± 1.2 62.1 ± 1.4 62.3 ± 1.3 (int.) 
Revised (no metal cor.) −19.26 ± 0.05 −19.22 ± 0.05 −18.98 ± 0.07  
69.4 ± 1.6 69.8 ± 1.6 69.4 ± 2.3 69.5 
Revised (with metal cor.) −19.26 −19.22 −18.97  
69.4 69.8 69.7 69.6 

Table 5 also contains the equivalent weighted mean absolute magnitudes derived from our estimates of the moduli. Evidently the difference between our absolute magnitude and theirs implies a change in H0 and this is given in the table (in units of km s−1 Mpc−1). The table contains the results of two estimates we have made for the moduli. In one case we have applied no metallicity correction. In the other we have applied a metallicity correction based on the ‘Sakai’ values of [O/H] in table 1 of S2006. These abundances are in the Te system and Macri et al. (2006) find from their work on NGC 4258 that in this system a PL(W) relation such as we have used requires a correction of −0.49 mag dex−1. There are considerable uncertainties in the size of the required metallicity correction. Fortunately, as Table 5 shows, the result we obtain is quite insensitive to the correction used. This is due to the mean metallicity of the S2006 galaxies being close to that of the local Cepheids. Only a large, non-linear metallicity correction would change this conclusion.

Thus our best value of H0 based on our PL(W) relation but with all other data and assumptions as in S2006 is 69.6. S2006 obtained 62.3 ± 5. Our improved Cepheid results would in principle reduce the uncertainty to ∼ ±2, but to be conservative we keep it the same. Our revised value (70 ± 5) is clearly compatible with the value of 73 ± 3 found from the Wilkinson Microwave Anisotropy Probe (WMAP) data and a Λ cold dark matter (ΛCDM) model (Spergel et al. 2006).

There are a large number of other determinations of H0, some of them depending on a Cepheid scale. The most widely quoted is that of Freedman et al. (2001) who obtained H0= 72 ± 8. Since that paper was published there has been much work on the refinement of the basic HST data, on galaxy metallicities and on the various large-scale distance indicators used by these workers. However, the fact that the values of α and β in the PL(W) relation they use are close to ours, and that the mean metallicity of their sample, weighted according to the contribution of an indicator to H0 is close to solar, means that a satisfactory estimate of the effect of our work on theirs can be made by comparing PL(W) zero-points. In Table 4 solution 5 shows that with their α and β we find γ=−2.604 whereas they used −2.724 at the metallicity of Galactic Cepheids (see equation 3 above). The difference (0.12 mag) implies an increase of their H0 to 76 ± 8, where to be conservative we keep the error the same, though the discussion of Freedman et al. together with our new results would in principle reduce this to ∼±6. Again this revised H0 is quite compatible with the WMAP result.

7 THE DISTANCE MODULUS OF THE LMC USING VI PHOTOMETRY

Combining the LMC PL(W) relation (equation 5) with our derived value of γ (−2.58) gives directly the true modulus of the LMC uncorrected for metallicity effects. We thus find a modulus of 18.52 ± 0.03. Adopting the results of Andrievsky et al. (2002) and Sakai et al. (2004), as discussed by S2006 the LMC Cepheids are metal deficient by Δ[O/H]= 0.26 on the ‘Te’ abundance scale. As already noted Macri et al. (2006) found a Cepheid metallicity effect, applicable to our PL(W) results, of −0.49 (±0.15) mag dex−1. Applying this leads to a metallicity corrected LMC modulus of 18.39 ± 0.05.

The main uncertainty in this result is due to the uncertainty in the metallicity correction to our PL(W) relation (note that corrections at other wavelengths would not necessarily be the same). It has even been recently suggested that the effect may be negligible (Rizzi et al. 2007). This would be somewhat remarkable since it has been long known (Gascoigne & Kron 1965, and much further work) that the intrinsic colours of LMC Cepheids differed from those of Galactic Cepheids of the same period. This was shown by Laney & Stobie (1986) to be due to a combination of changes in atmospheric blanketing together with a real shift of the instability strip in temperature. Fortunately, the metallicity correction problem is not important for the work on H0 discussed in the previous section. The use of the LMC modulus, however determined, will remain an uncertain basis for an extragalactic scale based on Cepheids pending further work on the metallicity effect.

8 THE CEPHEID-BASED DISTANCE OF THE MASER-HOST GALAXY NGC 4258

NGC 4258 is of special interest because a distance has been determined (Herrnstein 1999) based on the motions of H2O masers around the central black hole. Macri et al. (2006) have obtained HST photometry of Cepheids in this galaxy. Here we concentrate on Cepheids in their inner field which has a metallicity close to solar and therefore is immune to the problem of metallicity corrections when combined with our Galactic calibration. Some discussion of the Cepheid-based distance of this galaxy was made in connection with the HST Cepheid parallax work (FB2007).

We first consider the coefficient α of equation (2). Taking the 69 Cepheids which pass the selection criteria of Macri et al.2 We find the following.

  • For our adopted value of β= 2.45 we find α=−3.18 ± 0.13.

  • For the value of β= 2.523 favoured by S2006 we find α=−3.19 ± 0.13.

These values are less than 1σ from our adopted slope of −3.29, and 4.3σ different from that favoured by S2006 for Galactic Cepheids (−3.75). We take this as further evidence that the slope of the PL(W) relation in the LMC applies also to Cepheids of approximately Galactic composition. Macri et al. reach a similar conclusion by a different method.

Adopting α=−3.29, β= 2.45 and γ= 2.58, from Section 5, for equation (2) we find from the data of Macri et al. (2006) for their inner region, a distance modulus of 29.22 ± 0.03 for NGC 4258. The standard error takes into account the internal scatter in the NGC 4258 Cepheid data and the uncertainty in the adopted γ. The currently available maser-based distance modulus is 29.29 ± 0.15 (Herrnstein 1999) and is thus in good agreement with the parallax-based Cepheid modulus. The referee has suggested that the Cepheid modulus may be slightly underestimated due to the possible effects of blending on the NGC 4258 Cepheids and an even closer agreement with the maser distance might be obtained if this could be taken into account. Improvements in the maser-based modulus are expected (Macri et al. 2006; Argon et al. 2007) and these should allow a more stringent comparison with the Cepheids.

9 METHODS USING JK PHOTOMETRY

In the present section our aim is to establish zero-points for PL and PLC relations in the near-infrared. The data used were outlined in Section 2 and listed in Table A1. In the case of the important overtone pulsator, Polaris, the 2MASS observation is heavily saturated and thus has a very large uncertainty and there appears to be no other ground-based near-infrared photometry on a system which can be reliably transformed to the SAAO system. There is, however, extensive Diffuse Infrared Background Experiment (DIRBE) data (Smith, Price & Baker 2004). This has been transformed to the SAAO system as follows. There are 11 SAAO JHKL standard stars in the DIRBE catalogue with J < 1.51 and K < 1.00 and no indication of confusion in the DIRBE flags. Using these as calibrators, together with Procyon which has J=−0.40 and −0.65 on the SAAO system (transformed from Glass 1974 and Bouchet, Manfroid & Schmider 1991) leads to J= 0.98 and K= 0.60 for Polaris.

In view of the VI results of the present paper and those at VI and K in FB2007, we confine ourselves to determining the zero-points of PL and PLC relations of forms established in the LMC. The most extensive data set in J and K for LMC Cepheids, based on multiple observations, is that of Persson et al. (2004). We adopt their PL and PLC relations. Transformed (Carter 1990) on to the SAAO system these are  

7
formula
and  
8
formula
We have carried through the calculations with reddening corrections according to both the reddening law derived by Cardelli, Clayton & Mathis (1989) and that of Laney & Stobie (1993) and taking values of E(BV) from either Fernie et al. (1995) or Tammann et al. (2003) as outlined in Section 2. The differences in the results obtained were all very small and much smaller than the standard errors of the quantities sought, so we list only one of them (Tammann et al. reddenings, Laney & Stobie reddening law).

In the case of a PL relation we expect the overtones, at their fundamental periods, to be brighter than fundamental pulsators of the same period, because of a temperature difference, and this is clear from the PL(K) relations in the LMC by e.g. Groenewegen (2000). We must therefore treat fundamental pulsators and overtones (at their fundamental periods) separately in discussing equation (7). Note that because of the relation between fundamental and first overtone periods (equation 1) the PL relation when transformed from the fundamental to the observed, overtone, periods will have a somewhat different slope, as found by Groenewegen. Using the method of reduced parallaxes as outlined earlier we obtain the results listed in Table 6 where Polaris is treated separately. Using the whole sample or only those with well covered light curves makes no significant difference to the results.

Table 6

PL(K) zero-point, γ1, determinations.

Sample Stars γ1 
Fundamentals 220 −2.40 ± 0.05 
Overtones (not Polaris) 26 −2.33 ± 0.15 
Polaris −2.50 ± 0.03 
Sample Stars γ1 
Fundamentals 220 −2.40 ± 0.05 
Overtones (not Polaris) 26 −2.33 ± 0.15 
Polaris −2.50 ± 0.03 

The difference in γ1 between Polaris (at its fundamental period) and the mean of the fundamental pulsators (−0.07 ± 0.06 mag) is not significant. However, it in fact agrees closely with the difference between overtones (at their fundamental periods) and fundamental pulsators expected (−0.08 mag) at the period of Polaris from the LMC data of Groenewegen (2000).

Results for the PLC zero-point are given in Table 7.

Table 7

Determinations of the PLC(J, K) zero-point, γ2.

Sample Stars γ2 
All except Polaris 246 −3.01 ± 0.05 
Fundamentals 220 −3.02 ± 0.05 
Overtones (not Polaris) 26 −2.85 ± 0.15 
Polaris −3.07 ± 0.03 
Sample Stars γ2 
All except Polaris 246 −3.01 ± 0.05 
Fundamentals 220 −3.02 ± 0.05 
Overtones (not Polaris) 26 −2.85 ± 0.15 
Polaris −3.07 ± 0.03 

We expect for the PLC relation that overtones at their fundamental periods should follow the same relation as fundamental pulsators. The table shows that Polaris is +0.05 ± 0.06 mag fainter than the mean of the fundamental pulsators, not significantly different from zero.

10 THE LMC MODULUS FROM J AND K

The LMC relations of Persson et al. (2004) converted to the SAAO system using the relations of Carter (1990) are  

9
formula
and  
10
formula
Also Groenewegen (2000) obtained for LMC overtone pulsators in the 2MASS system:3 
11
formula
The zero-point, γ1, for fundamental pulsators in Table 6 together with equation (9) gives an LMC modulus of 18.45 ± 0.05. Polaris, at its observed (overtone) period with K= 0.58 (the value from Section 9 converted to the 2MASS system using Carpenter 2001) and equation (11), gives 18.49 ± 0.04 (taking into account the uncertainty in Groenewegen's result). A straight mean of these two values (18.47 ± 0.03) is our best estimated of the PL(K) modulus of the LMC uncorrected for abundance effects. This is in agreement with 18.45 ± 0.04 derived by FB2007.

A weighted mean of the last three entries in Table 7 leads to γ2=−3.05 ± 0.02. Together with equation (10) and an estimate of its uncertainty leads to an infrared PLC modulus of 18.45 ± 0.04 again without any metallicity correction.

These values may be compared with those found from VI in Section 7 which were 18.52 ± 0.03 uncorrected for metallicity effects and 18.39 ± 0.05 with a metallicity correction from Macri et al. (2006). These results suggest that any metallicity corrections to the infrared relations will be small.

11 CONCLUSIONS

Our main conclusions based on the combined revised Hipparcos and HST data are the following.

  • The coefficient of the log P term in a reddening-free V, I relation is found to be the same, within the uncertainties, in our Galaxy and in the LMC.

  • This result is supported by an analysis of the data of Macri et al. (2006) for Cepheids in the inner region of NGC 4258.

  • Our reddening-free V, I relation applied to the Cepheids in the inner region of NGC 4258 leads to a modulus of 29.22 ± 0.03, in agreement (but of higher accuracy than) the maser-based distance (29.29 ± 0.15).

  • Our revised Cepheid V, I calibration leads to a revision of the Cepheid-based distances to the 10 galaxies on which S2006 base their SNIa calibration and Hubble constant. We revise their results from H0= 62 to 70 ± 5 km s−1 Mpc−1. This result is immune to metallicity effects on the Cepheid scale as long as these are linear. The Freedman et al. (2001) result is revised from H0= 72 to 76 ± 8 km s−1 Mpc−1. Both these results are consistent with the recent WMAP value (H0= 73 ± 3 km s−1 Mpc−1).

  • The zero-points of Galactic PL(K) and PLC(J, K) are derived.

  • Applying our various relations to the LMC we find the following distance moduli, uncorrected for metallicity effects: 18.52 ± 0.03 from a reddening-free V, I relation; 18.47 ± 0.03 from a PL(K) relation; 18.45 ± 0.04 from a PLC(J, K) relation.

  • Applying a metallicity correction derived by Macri et al. (2006) to our LMC modulus leads to a true (metallicity corrected) modulus of 18.39 ± 0.05.

1
This is the final paper of a series.
2
Of the 74 Cepheids which pass their stated selection criteria, the following stars were rejected by them as outliers: I-040434, kI-008361, I-144755, I-081614, I-I-009241 (L. Macri, private communication).
3
Groenewegen's relation for LMC fundamental pulsators is in good agreement with that of Persson et al. (2004). This latter is in the Las Campanas Observatory (LCO) system which is very close to that of 2MASS. The PL slopes given by Ita et al. (2004) (LCO system) do not agree well with Groenewegen or Persson et al. This may be connected with the inclusion of LMC Cepheids with log P < 0.4 in the Ita et al. sample (Y. Ita, private communication).

We are very grateful to Dr L. Berdnikov for placing the unpublished revision of his catalogue of Cepheid photometry at our disposal. Dr L. Macri and Dr Y. Ita, very kindly and promptly, answered a number of queries about their work. We thank the referee (Prof. W. Gieren) for his comments.

REFERENCES

Alcock
C.
et al
,
1995
,
AJ
 ,
109
,
1653
Andrievsky
S. M.
et al
,
2002
,
A&A
 ,
381
,
32
Antonello
E.
Poretti
E.
,
1986
,
A&A
 ,
169
,
149
Antonello
E.
Poretti
E.
Reduzzi
L.
,
1990
,
A&A
 ,
236
,
138
Argon
A. L.
Greenhill
L. J.
Reid
M. J.
Moran
J. M.
Humphreys
E. M. L.
,
2007
, preprint (0701396)
Beaulieu
J. P.
et al
,
1995
,
A&A
 ,
303
,
137
Benedict
G. F.
et al
,
2002
,
AJ
 ,
124
,
1695
Benedict
G. F.
et al
,
2007
,
AJ
 ,
133
,
1810
Berdnikov
L. N.
,
1992
,
Sov. Astron. Lett.
 ,
18
,
398
Berdnikov
L. N.
Dambis
A. K.
Voziakova
M. A.
,
2000
,
A&AS
 ,
143
,
211
Bouchet
P.
Manfroid
J.
Schmider
F. X.
,
1991
,
A&AS
 ,
91
,
409
Caldwell
J. A. R.
Coulson
I. M.
,
1987
,
AJ
 ,
93
,
1090
Caldwell
J. A. R.
Coulson
I. M.
,
1989
,
MNRAS
 ,
240
,
285
Cardelli
J. A.
Clayton
G. C.
Mathis
J. S.
,
1989
,
ApJ
 ,
345
,
245
Carpenter
J. M.
,
2001
,
AJ
 ,
121
,
2851
Carter
B. S. C.
,
1990
,
MNRAS
 ,
242
,
1
ESA
,
1997
, The Hipparcos Catalogue, ESA SP-1200. ESA, Noordwijk
Evans
N. R.
,
1992a
,
ApJ
 ,
384
,
220
Evans
N. R.
,
1992b
,
ApJ
 ,
389
,
657
Evans
N. R.
,
1994
,
ApJ
 ,
436
,
273
Evans
N. R.
,
1995
,
ApJ
 ,
445
,
393
Evans
N. R.
Carpenter
K. G.
Robinson
R.
Kienzle
F.
Dekas
A. E.
,
2005
,
AJ
 ,
130
,
789
Feast
M. W.
,
1998
,
Mem. Soc. Astron. Ital.
 ,
69
,
31
Feast
M. W.
,
1999
,
PASP
 ,
111
,
775
Feast
M. W.
,
2002
,
MNRAS
 ,
337
,
1035
Feast
M. W.
Catchpole
R. M.
,
1997
,
MNRAS
 ,
286
,
L1
Feast
M. W.
Walker
A. R.
,
1987
,
ARA&A
 ,
25
,
345
Fernie
J. D.
Beattie
B.
Evans
N. R.
Seager
S.
,
1995
,
Inf. Bull. Var. Stars
 ,
4148
(http://ddo.astro.utoronto.ca/cepheids.html)
Freedman
W. L.
et al
,
2001
,
ApJ
 ,
553
,
47
Gascoigne
S. C. B.
Kron
G. E.
,
1965
,
MNRAS
 ,
130
,
333
Gieren
W.
Storm
J.
Barnes
T. G.
Fouqué
P.
Pietrzyński
G.
Kienzle
F.
,
2005
,
ApJ
 ,
627
,
224
Glass
I. S.
,
1974
,
Mon. Notes Astron. Soc. South. Afr.
 ,
33
,
53
Gorynya
N. A.
Samus
N. N.
Sachkov
M. E.
Antipin
S. V.
Rastorgouev
A. S.
,
2000
, in
Szabados
L.
Kurtz
D. W.
, eds, ASP Conf. Ser. Vol. 203,
The Impact of Large-Scale Surveys on Pulsating Star Research
 .
Astron. Soc. Pac.
, San Francisco, p.
242
Groenewegen
M. A. T.
,
1999
,
A&AS
 ,
139
,
245
Groenewegen
M. A. T.
,
2000
,
A&A
 ,
363
,
901
Groenewegen
M. A. T.
Oudmaijer
R. D.
,
2000
,
A&A
 ,
356
,
849
Herrnstein
J. R.
,
1999
,
Nat
 ,
400
,
539
Ita
Y.
et al
,
2004
,
MNRAS
 ,
347
,
720
Kienzle
F.
Moskalik
P.
Bersier
D.
Pont
F.
,
1999
,
A&A
 ,
341
,
818
Kienzle
F. P. F.
Moskalik
P.
Bersier
D.
,
2000
, in
Szabados
L.
Kurtz
D. W.
, eds, ASP Conf. Ser. Vol. 203,
The Impact of Large-Scale Surveys on Pulsating Star Research.
 
Astron. Soc. Pac.
, San Francisco, p.
239
Kiss
L. L.
Vinkó
J.
,
2000
,
MNRAS
 ,
314
,
420
Laney
C. D.
Stobie
R. S.
,
1986
,
MNRAS
 ,
222
,
449
Laney
C. D.
Stobie
R. S.
,
1992
,
A&AS
 ,
93
,
93
Laney
C. D.
Stobie
R. S.
,
1993
,
MNRAS
 ,
263
,
921
Laney
C. D.
Stobie
R. S.
,
1994
,
MNRAS
 ,
266
,
441
Leavitt
H. S.
,
1908
,
Harv. Ann.
 ,
60
,
87
Leavitt
H. S.
,
1912
,
Harv. Circ.
 ,
173
Luck
R. E.
Kovtyukh
V. V.
Andrievsky
S. M.
,
2001
,
A&A
 ,
373
,
589
Lutz
T. E.
Kelker
D. H.
,
1973
,
PASP
 ,
85
,
573
Macri
L. M.
Stanek
K. Z.
Bersier
D.
Greenhill
L. J.
Reid
M. J.
,
2006
,
ApJ
 ,
652
,
1133
Madore
B. F.
,
1976
,
R. Greenwich Obser. Bull.
 ,
182
,
153
Mantegazza
L.
Poretti
E.
,
1992
,
A&A
 ,
261
,
137
Martin
W. L.
Warren
P. R.
Feast
M. W.
,
1979
,
MNRAS
 ,
188
,
139
Morgan
S. M.
,
1995
,
AJ
 ,
109
,
1263
Ngeow
C.-C.
Kanbur
S. M.
,
2005
,
MNRAS
 ,
360
,
1033
Ngeow
C.-C.
Kanbur
S. M.
Nikolaev
S.
Buonaccorsi
J.
Cook
K. H.
Welch
D. L.
,
2005
,
MNRAS
 ,
363
,
831
Persson
S. E.
Madore
B. F.
Krzemiński
W.
Freedman
W. L.
Roth
M.
Murphy
D. C.
,
2004
,
AJ
 ,
128
,
2239
Rizzi
L.
Tully
R. B.
Makarov
D.
Makarova
L.
Dolphin
A. E.
Sakai
S.
Shaya
E. J.
,
2007
,
ApJ
 , in press (0701518)
Sachkov
M. E.
,
1997
,
Inf. Bull. Var. Stars
 ,
4522
Sachkov
M. E.
,
2002
,
Sov. Astron. Lett.
 ,
28
,
589
Saha
A.
Thim
F.
Tammann
G. A.
Reindl
B.
Sandage
A.
,
2006
,
ApJS
 ,
165
,
108
Sakai
S.
Ferrarese
L.
Kennicutt
R. C.
Saha
A.
,
2004
,
ApJ
 ,
608
,
42
Sandage
A.
Tammann
G. A.
Reindl
B.
,
2004
,
A&A
 ,
424
,
43
Sandage
A.
Tammann
G. A.
Saha
A.
Reindl
B.
Macchetto
F. D.
Panagia
N.
,
2006
,
ApJ
 ,
653
,
843
(S2006)
Smith
B. J.
Price
S. D.
Baker
R. I.
,
2004
,
ApJS
 ,
154
,
673
Soszyński
I.
Gieren
W.
Pierrzyński
G.
,
2005
,
PASP
 ,
117
,
823
Spergel
D. N.
et al
,
2006
, online-only reference (0603449)
Szabados
L.
,
2003
,
Inf. Bull. Var. Stars
 ,
5394
(http://www.konkoly.hu/CEP/intro.html)
Tammann
G. A.
Sandage
A.
Reindl
B.
,
2003
,
A&A
 ,
404
,
423
Turner
D. G.
Berdnikov
L. N.
,
2004
,
A&A
 ,
423
,
335
Udalski
A.
Szymański
M.
Kubiak
M.
Pietrzyński
G.
Soszyński
I.
Woźniak
P.
Zebrun
K.
,
1999
,
Acta Astron.
 ,
49
,
201
Van Leeuwen
F.
,
2005
,
A&A
 ,
439
,
791
Van Leeuwen
F.
,
2007
,
Hipparcos, the New Reduction of the Raw Data.
 
Springer
, Berlin, in press
Van Leeuwen
F.
Fantino
E.
,
2005
,
A&A
 ,
439
,
791
Zakrzewski
B.
Ogłoza
W.
Moskalik
P.
,
2000
,
Acta Astron.
 ,
50
,
387

Appendix

APPENDIX A:

A1

Cepheids with parallaxes and photometry.

No. π σπ Name log P B〉 V〉 I〉 J〉 H〉 K〉 ET Δ EF Notes Sol 
1162 0.78 1.24 FM Cas 0.764 10.118 9.130 8.003 7.210 6.702 6.664 0.290 0.58 0.351 
1213 2.83 1.50 SY Cas 0.610 10.855 9.880 8.757 7.914 7.448 7.243 0.430 0.80 0.464  
2085 0.78 0.84 TU Cas 0.330 8.369 7.753 7.067 6.664 6.331 6.336 0.109 0.62 0.115 DM,F,19,20 
2347 1.89 1.05 DL Cas 0.903 10.121 8.968 7.646 6.641 6.019 5.872 0.479 0.57 0.533 B,21 
3886 2.21 1.69 XY Cas 0.653 11.114 9.971 8.734 7.795 7.267 7.151 0.480 0.56 0.560  
5138 −1.43 1.93 VW Cas 0.777 11.953 10.748 9.390 8.365 7.766 7.670 0.485 0.68 0.475  
5846 −0.10 2.34 BP Cas 0.797 12.450 10.930  7.972 7.298 7.082 0.864 0.78 0.948  
7192 1.65 0.66 V636 Cas 1.083 8.555 7.173 5.663 4.984 4.126 4.068 0.666 0.17 0.700 O,F,1 
7548 0.20 1.66 RW Cas 1.170 10.430 9.229 7.888 6.824 6.329 6.237 0.409 1.16 0.420  
8614 −3.02 2.86 VV Cas 0.793 11.883 10.777 9.434 8.386 7.808 7.727 0.482 0.96 0.553  
9928 1.10 1.62 VX Per 1.037 10.459 9.307 7.995 7.076 6.517 6.292 0.496 0.69 0.515  
11174 1.15 0.55 V440 Per 1.039 7.151 6.277 5.312 5.158 4.546 4.189 0.260 0.09 0.273 O,F,39 
11420 3.41 1.79 SZ Cas 1.134 11.319 9.836 8.110 6.817 6.103 6.002 0.779 0.43 0.819 F,2 
11767 7.72 0.12 α UMi 0.754 2.326 1.978 1.370 0.847 0.436 0.497 −0.007 0.03 −0.007 G,F,O,VB,SB,23 
12817 −1.52 4.03 DF Cas 0.583 12.060 10.881  8.581 8.028 7.973 0.522 0.58 0.599  
13367 2.57 0.33 SU Cas 0.440 6.671 5.970 5.127 4.530 4.196 4.126 0.273 0.41 0.287 O,B,L,24,F 
18260 0.07 1.27 RW Cam 1.215 10.022 8.685 7.096 5.909 5.242 5.018 0.668 0.84 0.649 73 65 
19057 0.95 0.76 RX Cam 0.898 8.879 7.683 6.269 5.314 4.730 4.701 0.536 0.73 0.569  
19978 −2.40 3.16 SX Per 0.632 12.284 11.144 9.816 8.862 8.298 8.131 0.466 0.78 0.490  
20202 0.87 1.59 AS Per 0.696 11.023 9.723 8.144 7.042 6.437 6.285 0.644 0.86 0.713 
21517 2.79 0.71 SZ Tau 0.651 7.377 6.530 5.514 4.831 4.408 4.311 0.280 0.34 0.294 O,L,F 
23210 1.18 2.19 AN Aur 1.012 11.674 10.454 9.057 7.927 7.307 7.208 0.600 0.70 0.593 
23360 0.72 0.62 RX Aur 1.065 8.632 7.674 6.585 5.804 5.316 5.271 0.276 0.65 0.276  
23768 0.39 0.81 CK Cam 0.517 8.521 7.545  5.595 5.178 4.993 0.426 0.61  15 
24105 −0.29 1.43 BK Aur 0.903 10.487 9.428 8.249 7.420 6.866 6.833 0.424 0.68 0.446 
24281 −0.52 1.44 SY Aur 1.006 10.071 9.066 7.854 6.899 6.399 6.391 0.453 0.67 0.454  
24500 3.50 2.35 YZ Aur 1.260 11.709 10.351 8.820 7.598 6.893 6.793 0.601 0.83 0.565 
25642 −0.22 1.61 Y Aur 0.587 10.540 9.626 8.566 7.747 7.241 7.286 0.356 0.81 0.394  
26069 3.64 0.28 β Dor 0.993 4.557 3.757 2.929 2.438 2.029 1.959 0.069 0.63 0.044 
27119 3.16 0.94 ST Tau 0.605 9.070 8.221 7.144 6.386 5.923 5.808 0.339 0.78 0.355 
27183 1.51 1.08 EU Tau 0.472 8.760 8.078 7.270 6.700 6.316 6.259 0.164 0.31 0.172 O,F,27 
28625 0.06 2.09 RZ Gem 0.743 11.052 10.019 8.736 7.708 7.158 7.007 0.503 0.96 0.570 L,3 
28945 4.25 2.67 AA Gem 1.053 10.794 9.722 8.581 7.682 7.185 7.138 0.380 0.66 0.330  
29022 4.00 3.26 CS Ori 0.590 12.291 11.389 10.266 9.480 8.896 8.917 0.351 0.95 0.402  
29386 4.60 0.88 GQ Ori 0.936 9.937 8.962 7.883 7.125 6.636 6.517 0.228 0.68 0.279 
30219 0.32 1.44 SV Mon 1.183 9.308 8.265 7.137 6.374 5.844 5.715 0.250 1.06 0.249 
30286 0.25 1.57 RS Ori 0.879 9.360 8.413 7.282 6.333 5.818 5.820 0.335 0.81 0.389  
30541 1.37 0.77 T Mon 1.432 7.303 6.130 4.981 4.185 3.653 3.525 0.195 1.01 0.209 
30827 −0.23 1.01 RT Aur 0.572 6.039 5.448 4.811 4.259 3.971 3.915 0.049 0.80 0.051 L,12 
31306 −5.19 2.22 DX Gem 0.650 11.681 10.742 9.591 8.769 8.282 8.208 0.429 0.33 0.451 O,F,28 
31404 0.47 0.75 W Gem 0.898 7.868 6.955 5.969 5.242 4.788 4.684 0.266 0.81 0.283 
31624 −1.61 2.59 CV Mon 0.731 11.613 10.308 8.646 7.402 6.791 6.576 0.702 0.72 0.714 
31905 0.34 2.38 BE Mon 0.433 11.718 10.577 9.247 8.311 7.826 7.690 0.565 0.60 0.622  
32180 −1.80 1.46 AD Gem 0.579 10.549 9.855 9.050 8.516 8.142 8.063 0.159 0.62 0.167 L,G 
32516 −2.42 2.03 V508 Mon 0.616 11.380 10.501 9.461 8.708 8.232 8.144 0.320 0.43 0.323  
32854 1.97 2.65 TX Mon 0.940 12.077 10.964 9.634 8.508 7.978 7.946 0.492 0.63 0.511  
33014 −2.02 2.95 EK Mon 0.598 12.260 11.071 9.614 8.621 8.019 7.879 0.551 0.55 0.584  
33520 0.54 2.11 TZ Mon 0.871 11.921 10.793 9.469 8.478 7.920 7.771 0.431 0.73 0.441  
33791 1.04 2.16 AC Mon 0.904 11.279 10.099 8.707 7.696 7.035 6.888 0.507 0.70 0.508  
33874 0.91 0.87 V526 Mon 0.580 9.206 8.619 7.891 7.314 7.024 6.968 0.088 0.29 0.093 O,29,F 
34088 2.71 0.17 ζ Gem 1.006 4.712 3.915 3.070 2.612 2.201 2.130 0.033 0.48 0.018 L,2 
34421 0.39 1.70 V465 Mon 0.585 11.109 10.369 9.474 8.826 8.398 8.292 0.255 0.37 0.256 0,30 
34527 −0.99 1.95 TV CMa 0.669 11.791 10.586 9.180 8.173 7.610 7.486 0.546 0.76 0.583  
34895 4.47 2.41 RW CMa 0.758 12.341 11.116 9.646 8.527 7.913 7.801 0.517 0.65 0.544 74,F 
35212 1.73 0.82 RY CMa 0.670 8.952 8.106 7.129 6.449 6.028 5.918 0.223 0.73 0.248 
35665 −2.67 1.43 RZ CMa 0.628 10.704 9.697 8.496 7.641 7.154 6.952 0.471 0.60 0.464 
35708 1.33 1.37 TW CMa 0.845 10.534 9.563 8.452 7.662 7.174 7.053 0.391 0.63 0.357 
36088 0.35 1.86 SS CMa 1.092 11.136 9.925 8.470 7.434 6.849 6.677 0.533 0.96 0.549 
36617 −2.08 2.86 VW Pup 0.632 12.494 11.382 10.085 9.084 8.488 8.398 0.483 0.74 0.514  
36666 2.87 0.92 VX Pup 0.479 8.961 8.311 7.567 7.214 6.780 6.698 0.129 0.40 0.136 DM,F,31 
36685 1.72 0.91 X Pup 1.414 9.742 8.515 7.157 6.180 5.600 5.430 0.409 1.33 0.443 
37174 1.14 0.19 MY Pup 0.913 6.296 5.648 4.888 4.381 4.036 3.962 0.061 0.19 0.064 L,O,F,32 
37207 1.19 1.36 VZ Pup 1.365 10.833 9.672 8.294 7.370 6.828 6.668 0.452 1.27 0.471 
37506 3.42 2.15 EK Pup 0.572 11.537 10.658 9.625 8.794 8.386 8.291 0.312 0.36 0.328 O,F,33 
37511 1.78 1.84 WW Pup 0.742 11.486 10.596 9.526 8.775 8.325 8.118 0.362 0.94 0.398  
37515 0.62 0.93 WX Pup 0.951 10.033 9.061 7.969 7.190 6.707 6.584 0.324 0.69 0.319 
38063 −2.65 1.60 AD Pup 1.134 10.982 9.919 8.736 7.861 7.359 7.077 0.343 1.14 0.330  
38569 6.66 2.10 LL Pup 0.706 12.245 11.075 9.664 8.540 7.969 7.893 0.551 0.74  60 
38854 −5.21 3.69 LR Pup 0.522  11.911 10.764 9.776 9.322 9.284 0.402 0.89  66 
38907 1.69 0.45 AP Pup 0.706 8.211 7.380 6.458 5.840 5.429 5.334 0.241 0.64 0.208 
38944 −1.78 2.04 WY Pup 0.720 11.422 10.602 9.667 9.002 8.585 8.392 0.292 0.79 0.270  
39010 3.64 2.86 LS Pup 1.151 11.688 10.436 9.050 8.093 7.517 7.354 0.455 0.96 0.478 L,F 
39144 −1.96 1.97 WZ Pup 0.702 11.105 10.323 9.443 8.773 8.320 8.263 0.178 0.79 0.220  
39666 3.82 1.54 BN Pup 1.136 11.084 9.914 8.556 7.624 7.076 6.922 0.417 1.25 0.438 
40078 -14.05 2.70 HL Pup 0.542 11.860 10.869 9.683 8.810 8.338 8.153 0.432 0.57  67 65 
40155 1.40 0.25 AH Vel 0.782 6.264 5.688 5.037 4.613 4.313 4.245 0.070 0.34 0.074 O,34,F,L 
40178 1.60 0.64 AT Pup 0.823 8.769 7.982 7.076 6.452 6.040 5.942 0.167 0.93 0.183 
40233 1.44 0.51 RS Pup 1.617 8.446 7.009 5.490 4.431 3.814 3.633 0.453 1.10 0.446 
41588 0.82 0.43 V Car 0.826 8.243 7.371 6.435 5.805 5.388 5.285 0.157 0.62 0.174 
42257 1.99 0.55 RZ Vel 1.310 8.201 7.080 5.856 4.979 4.460 4.308 0.293 1.20 0.335 
42321 0.20 0.59 T Vel 0.667 8.958 8.030 6.964 6.225 5.768 5.642 0.271 0.62 0.281 
42492 1.17 1.04 AP Vel 0.495 11.109 9.999 8.745 7.871 7.326 7.219 0.490 0.70 0.515 DM,F,31 
42831 0.35 0.78 SW Vel 1.370 9.271 8.120 6.843 5.934 5.393 5.233 0.337 1.27 0.349 
42926 0.53 0.64 SX Vel 0.980 9.173 8.285 7.269 6.554 6.119 6.001 0.250 0.73 0.250 
42929 −0.99 1.05 ST Vel 0.768 10.907 9.697 8.287 7.232 6.654 6.478 0.496 0.71 0.503  
44847 1.59 0.55 BG Vel 0.840 8.850 7.662 6.348 5.469 4.958 4.807 0.439 0.47 0.448 2,L 
45949 0.99 0.55 W Car 0.640 8.368 7.586 6.691 6.072 5.673 5.578 0.199 0.68 0.209 L,F,4 
46746 −1.69 1.06 DR Vel 1.049 11.048 9.522 7.825 6.650 6.021 5.824 0.680 0.72 0.685 L, 
47177 −0.87 1.32 AE Vel 0.853 11.503 10.243 8.725 7.589 7.006 6.904 0.639 0.84 0.667  
47854 2.06 0.27 l Car 1.551 4.960 3.698 2.522 1.766 1.211 1.092 0.160 0.69 0.170 
48122 0.64 1.50 FN Vel 0.726 11.478 10.293 8.832 7.807 7.221 7.122 0.558 0.59  61 
48663 1.39 1.19 GX Car 0.857 10.395 9.336 8.130 7.201 6.672 6.553 0.379 0.84 0.405  
50244 4.72 1.55 CN Car 0.693 11.778 10.693 9.352 8.423 7.829 7.811 0.395 0.69 0.419  
50615 1.51 1.27 GZ Car 0.619 11.289 10.282 9.083 8.170 7.669 7.535 0.398 0.30 0.419 DM,F,5 
50655 −1.04 0.74 RY Vel 1.449 9.752 8.373 6.825 5.702 5.122 4.928 0.554 0.99 0.562 
50722 0.23 0.73 AQ Car 0.990 9.785 8.855 7.870 7.192 6.743 6.630 0.158 0.61 0.161 
51142 0.34 1.02 UW Car 0.728 10.441 9.430 8.206 7.367 6.896 6.681 0.439 0.83 0.457  
51262 1.04 0.71 YZ Car 1.259 9.829 8.709 7.444 6.492 5.971 5.808 0.372 0.80 0.396 
51338 0.57 0.76 UX Car 0.566 8.947 8.302 7.562 7.039 6.714 6.628 0.091 0.78 0.123 
51653 2.39 0.83 Y Car 0.561 8.754 8.139 7.432 6.952 6.631 6.513 0.169 0.58 0.178 DM,B,F,6 
51894 1.52 1.52 XX Vel 0.844 11.884 10.714 9.329 8.213 7.648 7.524 0.531 0.86 0.572  
51909 0.11 1.06 UZ Car 0.716 10.212 9.331 8.369 7.743 7.254 7.117 0.184 0.64 0.187  
52157 −2.37 0.89 HW Car 0.964 10.122 9.125 8.027 7.258 6.704 6.596 0.184 0.35 0.193 
52380 2.53 1.63 EY Car 0.459 11.243 10.376 9.273 8.351 7.880 7.822 0.335 0.45 0.352 36 
52538 1.56 0.91 VY Car 1.277 8.616 7.455 6.279 5.463 4.944 4.804 0.260 1.07 0.243 105 
52570 −0.57 0.95 SV Vel 1.149 9.696 8.588 7.333 6.429 5.930 5.777 0.365 1.18 0.392 
52661 2.03 0.97 SX Car 0.687 10.013 9.086 8.037 7.313 6.858 6.753 0.310 0.77 0.326  
53083 4.18 1.33 WW Car 0.670 10.626 9.749 8.642 7.828 7.340 7.294 0.392 0.78 0.398  
53397 0.76 1.15 WZ Car 1.362 10.420 9.264 7.970 7.008 6.456 6.290 0.362 1.25 0.384 
53536 −1.06 0.81 XX Car 1.196 10.422 9.353 8.124 7.235 6.731 6.574 0.343 1.27 0.349 
53589 0.10 0.37 U Car 1.589 7.435 6.253 5.050 4.193 3.669 3.521 0.287 1.17 0.283 
53593 −1.22 1.37 CY Car 0.630 10.698 9.745 8.708 7.994 7.538 7.387 0.370 0.55 0.389 74 
53867 −3.32 2.34 FN Car 0.662 12.624 11.546 10.159 9.149 8.564 8.461 0.559 0.63 0.581  
53945 −0.75 0.87 XY Car 1.094 10.510 9.294 7.950 6.978 6.405 6.240 0.408 0.85 0.417 
54066 2.38 2.53 HK Car 0.826 11.218 10.197 8.965 8.119 7.601 7.543 0.437 0.47 0.460 2,F,77 25 
54101 −0.56 0.94 XZ Car 1.221 9.861 8.604 7.251 6.313 5.745 5.585 0.341 1.03 0.367 
54543 1.18 0.47 ER Car 0.888 7.670 6.823 5.956 5.412 5.006 4.911 0.099 0.57 0.101 
54621 −0.05 0.93 GH Car 0.916 10.121 9.159 8.057 7.277 6.876 6.686 0.394 0.29 0.414 O,F,37 
54659 −0.29 0.67 V898 Cen 0.701 8.535 7.963 7.267 6.770 6.448 6.379 −0.046 0.28  O,38,62 
54715 −0.47 0.73 IT Car 0.877 9.092 8.109 7.066 6.364 5.910 5.789 0.209 0.34 0.193 2,L 
54862 −0.37 0.83 GI Car 0.802 9.040 8.326 7.475 6.871 6.517 6.416 0.166 0.33 0.175 O,L,F,39 
54891 −0.15 1.09 FR Car 1.030 10.805 9.661 8.427 7.530 6.998 6.846 0.322 0.71 0.351 L,B? 
55726 −0.55 0.90 AY Cen 0.725 9.797 8.811 7.701 6.905 6.437 6.309 0.295 0.53 0.310  
55736 0.20 1.06 AZ Cen 0.660 9.306 8.632 7.839 7.270 6.930 6.839 0.152 0.34 0.160 O,L,F,71 
56176 1.09 0.85 V419 Cen 0.898 8.954 8.189 7.338 6.723 6.387 6.282 0.167 0.32 0.176 O,F,72 
56991 2.01 1.16 UZ Cen 0.523 9.479 8.751 7.862 7.264 6.846 6.751 0.262 0.69 0.275 DM,F,31 
57130 0.03 3.25 KK Cen 1.086 12.773 11.467 9.951    0.572 1.02 0.642  
57260 1.70 0.93 RT Mus 0.490 9.830 8.990 7.961 7.236 6.795 6.669 0.292 0.76 0.328 
57649 −2.08 1.53 BK Cen 0.502 10.965 10.206 9.153 8.339 7.907 7.769 0.314 0.57 0.330 DM,31 
57884 3.04 1.25 UU Mus 1.066 10.927 9.781 8.489 7.530 6.990 6.828 0.400 1.10 0.413 
57978 1.76 1.46 BB Cen 0.757 11.054 10.081 8.928 8.058 7.544 7.398 0.377 0.42 0.396 O,F,40 
59551 2.12 0.35 S Mus 0.985 6.955 6.125 5.190 4.553 4.125 4.016 0.220 0.54 0.147 L,B,35 
59575 5.08 2.55 AD Cru 0.806 12.333 11.061 9.452 8.298 7.638 7.400 0.657 0.78 0.680  
60259 1.12 0.50 T Cru 0.828 7.494 6.564 5.614 4.996 4.527 4.421 0.178 0.49 0.193 2,L 
60455 2.06 0.48 R Cru 0.766 7.553 6.761 5.892 5.311 4.917 4.821 0.150 0.79 0.192 
61136 2.23 0.30 BG Cru 0.678 6.077 5.459 4.770 4.284 3.961 3.889 0.050 0.19 0.053 O,41,F,L 
61981 1.22 0.35 R Mus 0.876 7.057 6.305 5.489 4.954 4.563 4.477 0.134 0.82 0.120 
62986 1.11 0.65 S Cru 0.671 7.360 6.597 5.724 5.137 4.741 4.643 0.162 0.72 0.163 
63693 1.77 1.63 V496 Cen 0.645 11.140 9.947 8.538 7.489 6.949 6.837 0.552 0.60 0.568  
64969 1.06 0.94 V378 Cen 0.969 9.515 8.481 7.260 6.386 5.895 5.753 0.376 0.37 0.395 F,O,42,L 
66189 2.30 1.99 VW Cen 1.177 11.643 10.284 8.770 7.655 7.014 6.819 0.417 1.02 0.448 
66696 −0.18 0.77 XX Cen 1.039 8.814 7.820 6.742 5.992 5.530 5.407 0.258 0.93 0.260 
67566 0.17 0.81 V381 Cen 0.706 8.467 7.673 6.790 6.194 5.808 5.714 0.195 0.70 0.205 F,L 
70203 −0.36 1.00 V339 Cen 0.976 9.908 8.695 7.374 6.416 5.863 5.702 0.412 0.63 0.428 
71116 0.64 0.54 V Cen 0.740 7.702 6.821 5.785 5.074 4.628 4.508 0.264 0.81 0.289 
71492 2.45 0.70 V737 Cen 0.849 7.695 6.727 5.708 5.005 4.559 4.443 0.228 0.38 0.216 2,L 
72583 1.04 0.85 AV Cir 0.640 8.306 7.410 6.353 5.635 5.222 5.100 0.368 0.30 0.397 L,O,34 
74448 4.60 1.61 IQ Nor 0.916 10.902 9.685 8.135 6.864 6.197 6.115 0.728 0.64 0.766 
75018 1.34 0.56 R TrA 0.530 7.370 6.653 5.846 5.307 4.932 4.842 0.134 0.54 0.127 
75430 2.06 0.71 GH Lup 0.968 8.847 7.631 6.355 5.492 4.959 4.813 0.346 0.16 0.364 L,F,2 
75961 0.09 0.77 LR TrA 0.537 8.600 7.805 6.958    0.116 0.15 0.122 O,82,F 
76918 1.49 1.21 U Nor 1.102 10.844 9.227 7.351 5.930 5.237 4.990 0.862 1.00 0.892 
77913 15.31 2.32 SY Nor 1.102 10.919 9.502 7.904 6.705 6.077 5.876 0.696 0.89 0.794 L,B,79 
78476 1.62 0.48 S TrA 0.801 7.124 6.380 5.587 5.071 4.682 4.593 0.082 0.75 0.100 
78771 −0.12 4.93 TW Nor 1.033 13.671 11.670 9.306 7.523 6.698 6.391 1.214 0.89 1.338 
78797 2.42 1.82 RS Nor 0.792 11.279 10.001 8.523 7.417 6.815 6.636 0.546 0.78 0.580  
78978 1.69 0.83 U TrA 0.410 8.524 7.947 7.226 6.588 6.287 6.307 0.084 0.55 0.088 DM,31,F 
79625 4.59 2.24 GU Nor 0.538 11.639 10.353 8.796 7.681 7.141 6.994 0.629 0.54 0.684  
79932 0.67 0.54 S Nor 0.989 7.370 6.422 5.417 4.729 4.274 4.161 0.178 0.68 0.189 
82023 0.81 2.21 V340 Ara 1.318 11.767 10.196 8.569 7.369 6.740 6.547 0.546 1.05 0.574 
82498 2.54 2.84 KQ Sco 1.458 11.822 9.816 7.649 6.024 5.215 4.945 0.839 0.91 0.896 
83059 1.96 0.73 RV Sco 0.782 7.995 7.032 5.900 5.136 4.680 4.553 0.338 0.81 0.342 
83674 0.69 0.80 BF Oph 0.610 8.220 7.340 6.365 5.699 5.284 5.176 0.247 0.64 0.247 
85035 0.16 0.81 V636 Sco 0.833 7.587 6.654 5.657 4.962 4.523 4.409 0.212 0.53 0.217 B,L 
85701 −0.67 0.83 V482 Sco 0.656 8.956 7.964 6.851 6.031 5.577 5.447 0.340 0.65 0.360 
86269 3.47 0.73 V950 Sco 0.683 8.088 7.305 6.398 5.779 5.411 5.302 0.254 0.33 0.267 O,F,44,L 
87072 3.39 0.21 X Sgr 0.846 5.318 4.564 3.635 3.018 2.618 2.521 0.201 0.61 0.197 
87173 1.70 1.22 V500 Sco 0.969 10.007 8.733 7.189 6.105 5.518 5.342 0.568 0.76 0.599 
87495 0.79 0.48 Y Oph 1.234 7.521 6.169 4.537 3.437 2.868 2.682 0.623 0.47 0.655 L,F,2 
88567 2.59 0.75 W Sgr 0.880 5.415 4.670 3.834 3.293 2.909 2.827 0.112 0.79 0.111 
89013 −4.43 2.25 CR Ser 0.724 12.491 10.846 8.893 7.396 6.712 6.529 0.961 0.79 1.011 10 
89276 0.01 0.88 AP Sgr 0.704 7.754 6.950 6.039 5.399 4.998 4.893 0.174 0.83 0.192 
89596 2.46 1.12 WZ Sgr 1.339 9.400 8.017 6.530 5.402 4.763 4.565 0.428 1.14 0.467 
89968 3.73 0.32 Y Sgr 0.761 6.602 5.745 4.779 4.120 3.703 3.586 0.188 0.72 0.205 
90110 −2.09 2.80 AY Sgr 0.818 12.041 10.537 8.717 7.177 6.506 6.220 0.841 0.86 0.919  
90241 1.93 1.16 XX Sgr 0.808 10.020 8.872 7.503 6.496 5.959 5.834 0.516 0.89 0.543 L,F 
90791 3.01 1.47 X Sct 0.623 11.169 10.009 8.622 7.524 6.931 6.858 0.557 0.85 0.619  
90836 0.06 0.61 U Sgr 0.829 7.794 6.694 5.448 4.585 4.091 3.952 0.403 0.73 0.403 
91201 0.61 1.51 BQ Ser 0.631 11.004 9.507 7.734 6.592 5.950 5.832 0.800 0.38 0.841 DM,F,45 
91239 −1.15 1.75 EV Sct 0.643 11.292 10.135 8.668 7.666 7.170 7.028 0.646 0.30 0.679 L,O,F,46 
91342 1.69 1.12 EW Sct 0.765 9.743 7.988 5.780 4.385 3.712 3.476 1.073 0.33 1.128 DM,F,47,L 
91366 −0.94 1.62 Y Sct 1.015 11.171 9.628 7.841 6.542 5.887 5.665 0.767 0.79 0.828 
91613 2.59 2.44 CK Sct 0.870 12.167 10.577 8.778 7.487 6.823 6.579 0.784 0.48 0.795 
91697 1.84 1.61 RU Sct 1.294 11.129 9.473 7.480 6.016 5.311 5.071 0.930 1.09 0.957 
91706 4.22 2.86 TY Sct 1.043 12.524 10.800 8.825 7.286 6.607 6.464 0.937 0.93 1.014  
91738 −5.78 3.11 CM Sct 0.593 12.470 11.105 9.487 8.392 7.788 7.521 0.733 0.59 0.771  
91785 0.27 1.45 Z Sct 1.111 10.914 9.585 8.098 7.042 6.491 6.429 0.491 0.99 0.542  
91867 −0.08 1.19 SS Sct 0.565 9.157 8.203 7.117 6.372 5.935 5.808 0.317 0.51 0.337 
92013 −1.41 0.59 V350 Sgr 0.712 8.372 7.466 6.425 5.695 5.265 5.141 0.295 0.72 0.312 
92067 0.16 1.83 BB Her 0.876 11.158 10.084 8.939 8.063 7.598 7.500 0.392 0.65  63 
92370 0.35 0.79 YZ Sgr 0.980 8.363 7.328 6.211 5.471 4.994 4.898 0.285 0.69 0.292 
92491 −0.65 0.63 BB Sgr 0.822 7.917 6.947 5.827 5.100 4.639 4.510 0.276 0.60 0.284 
93063 −1.35 2.77 V493 Aql 0.476 12.310 11.039 9.552 8.585 8.018 7.820 0.650 0.69 0.684  
93124 2.05 0.34 FF Aql 0.650 6.128 5.373 4.513 3.929 3.575 3.489 0.213 0.32 0.224 L,49,F 
93399 −0.60 1.48 V336 Aql 0.863 11.169 9.847 8.343 7.195 6.630 6.449 0.625 0.72 0.644 76 
93681 −0.20 1.01 SZ Aql 1.234 10.041 8.630 7.063 5.952 5.347 5.160 0.552 1.22 0.641 
93990 −0.01 1.06 TT Aql 1.138 8.424 7.131 5.718 4.747 4.186 4.026 0.462 1.13 0.495 
94004 −1.09 0.79 V496 Aql 0.833 8.903 7.746 6.479 5.622 5.122 4.976 0.393 0.37 0.413 F,L,2 
94094 0.87 0.80 FM Aql 0.786 9.545 8.274 6.793 5.770 5.220 5.051 0.617 0.73 0.646 
95118 2.50 1.65 V600 Aql 0.860 11.560 10.031 8.282 7.015 6.407 6.166 0.819 0.65 0.869  
96458 0.69 0.48 U Vul 0.903 8.404 7.128 5.604 4.630 4.095 3.853 0.593 0.71 0.654 
96596 1.44 1.69 V924 Cyg 0.903 11.551 10.709 9.735 9.060 8.661 8.534 0.245 0.26 0.258 O,F,50 
97150 0.49 0.57 SU Cyg 0.585 7.433 6.862 6.199 5.710 5.387 5.333 0.088 0.76 0.096 L,B,3,78 
97309 −2.40 1.70 BR Vul 0.716 12.156 10.688 9.021 7.835 7.188 7.122 0.866 0.80 0.911  
97439 1.25 0.96 V1154 Cyg 0.693 10.087 9.174 8.181 7.472 7.043 6.930 0.319 0.38 0.335 F,2 
97717 1.15 0.60 SV Vul 1.653 8.675 7.226 5.692 4.668 4.077 3.920 0.518 1.03 0.570 L,9 
97794 0.90 0.83 V1162 Aql 0.731 8.671 7.790 6.858 6.236 5.820 5.722 0.187 0.51 0.205 L,11 
97804 3.40 0.75 eta Aql 0.856 4.690 3.901 3.033 2.439 2.048 1.956 0.133 0.78 0.149 
98085 0.59 0.44 S Sge 0.923 6.416 5.614 4.777 4.233 3.845 3.765 0.112 0.73 0.127 
98212 −1.30 1.03 X Vul 0.801 10.238 8.848 7.199 5.938 5.369 5.180 0.790 0.77 0.848  
98217 0.51 1.74 V733 Aql 0.791 10.893 9.967 9.039 8.416 7.923 7.851 0.275 0.44  10,64 
98376 0.99 1.70 GH Cyg 0.893 11.178 9.897 8.433 7.267 6.708 6.560 0.629 0.77 0.662  
98852 0.62 0.91 CD Cyg 1.232 10.221 8.953 7.503 6.451 5.880 5.712 0.486 1.21 0.514 
99276 0.27 1.21 V402 Cyg 0.639 10.881 9.876 8.654 7.869 7.391 7.236 0.397 0.56 0.417  
99567 −1.26 1.24 MW Cyg 0.775 10.807 9.465 7.914 6.750 6.158 5.964 0.615 0.73 0.680  
99887 −1.03 1.43 V495 Cyg 0.827 12.256 10.631 8.694 7.292 6.565 6.338 0.977 0.44 1.027 
101393 1.77 1.06 SZ Cyg 1.179 10.909 9.430 7.797 6.573 5.886 5.746 0.587 0.89 0.631  
102276 0.69 0.39 X Cyg 1.215 7.530 6.393 5.240 4.475 3.955 3.830 0.261 1.00 0.288 
102949 2.31 0.29 T Vul 0.647 6.389 5.753 5.077 4.605 4.259 4.199 0.067 0.64 0.064 
103241 1.70 1.91 V520 Cyg 0.607 12.205 10.853 9.307 8.237 7.692 7.554 0.763 0.61 0.802  
103433 0.63 1.59 VX Cyg 1.304 11.797 10.073 8.159 6.645 5.938 5.718 0.830 0.96 0.791  
103656 −0.02 1.03 TX Cyg 1.168 11.298 9.512 7.228 5.451 4.596 4.455 1.111 1.21 1.181  
104185 2.19 0.33 DT Cyg 0.550 6.315 5.775 5.187 4.749 4.469 4.430 0.037 0.28 0.039 O,F,53 
104564 0.45 1.50 V459 Cyg 0.860 12.032 10.599 8.880 7.715 7.021 6.930 0.759 0.69 0.798  
104877 1.94 1.24 V386 Cyg 0.721 11.128 9.635 7.818 6.440 5.722 5.523 0.884 0.69 0.895 3, 73 
105369 0.78 0.71 V532 Cyg 0.670 10.121 9.087 7.843 6.862 6.318 6.248 0.508 0.34 0.534 O,F,54 
106754 0.18 1.63 V538 Cyg 0.787 11.767 10.442 8.964 7.918 7.283 7.093 0.642 0.57 0.675  
107899 2.48 0.98 VZ Cyg 0.687 9.836 8.959 7.965 7.294 6.861 6.751 0.274 0.68 0.289 L,56 
108426 1.29 0.35 IR Cep 0.474 8.711 7.795 6.767 5.988 5.585 5.529 0.413 0.37 0.434 O,F,57 
108427 2.38 1.31 CP Cep 1.252 12.213 10.579 8.773 7.357 6.640 6.426 0.702 0.77 0.682  
108630 −0.86 1.05 BG Lac 0.727 9.833 8.884 7.814 7.113 6.650 6.540 0.316 0.61 0.336 
109340 −1.62 1.32 Y Lac 0.635 9.877 9.146 8.299 7.707 7.307 7.222 0.202 0.71 0.217 
110964 −2.41 2.46 AK Cep 0.859 12.538 11.223 9.653 8.426 7.796 7.684 0.635 0.63 0.704  
110968 1.92 0.56 V411 Lac 0.617 8.691 7.950  6.346 5.980 5.944 0.154 0.22  O,50,65,75 
110991 3.81 0.20 δ Cep 0.730 4.614 3.953 3.200 2.748 2.383 2.321 0.068 0.84 0.092 L,G 
111972 1.63 0.74 Z Lac 1.037 9.514 8.417 7.196 6.345 5.820 5.689 0.378 0.97 0.404 
112026 1.11 0.78 RR Lac 0.808 9.731 8.847 7.818 7.069 6.558 6.563 0.296 0.78 0.353  
112430 2.69 1.01 CR Cep 0.794 11.048 9.654 7.976 6.704 6.015 5.855 0.697 0.36 0.758 
112626 0.80 0.79 V Lac 0.697 9.813 8.940 7.886 7.134 6.666 6.538 0.315 0.94 0.356 10 
112675 1.20 0.69 X Lac 0.736 9.306 8.406 7.347 6.608 6.150 6.042 0.339 0.40 0.362 L,2 
114160 2.62 1.54 SW Cas 0.736 10.785 9.705 8.441 7.410 6.892 6.819 0.449 0.67 0.494 10 
115390 −2.08 1.69 CH Cas 1.179 12.652 11.003 9.022 7.355 6.536 6.405 0.955 1.06 0.939  
115925 1.99 2.40 CY Cas 1.158 13.292 11.626 9.628 8.016 7.131 6.765 0.947 1.24 0.986  
116556 2.28 1.17 RS Cas 0.799 11.437 9.941 8.217 6.917 6.200 6.144 0.784 0.80 0.875 10 
116684 0.44 1.90 DW Cas 0.699 12.578 11.120  8.304 7.661 7.413 0.784 0.59 0.884  
117154 2.55 1.64 CD Cas 0.892 12.245 10.783 9.035 7.660 7.020 6.802 0.748 0.82 0.818  
117690 −1.30 1.27 RY Cas 1.084 11.322 9.951 8.396 7.149 6.498 6.470 0.613 0.96 0.649  
118122 0.43 1.10 DD Cas 0.992 11.111 9.880 8.580 7.552 6.952 6.908 0.493 0.61 0.501  
118174 −1.61 2.75 CF Cas 0.688 12.333 11.138 9.758 8.657 8.078 7.959 0.531 0.56 0.566 10 
No. π σπ Name log P B〉 V〉 I〉 J〉 H〉 K〉 ET Δ EF Notes Sol 
1162 0.78 1.24 FM Cas 0.764 10.118 9.130 8.003 7.210 6.702 6.664 0.290 0.58 0.351 
1213 2.83 1.50 SY Cas 0.610 10.855 9.880 8.757 7.914 7.448 7.243 0.430 0.80 0.464  
2085 0.78 0.84 TU Cas 0.330 8.369 7.753 7.067 6.664 6.331 6.336 0.109 0.62 0.115 DM,F,19,20 
2347 1.89 1.05 DL Cas 0.903 10.121 8.968 7.646 6.641 6.019 5.872 0.479 0.57 0.533 B,21 
3886 2.21 1.69 XY Cas 0.653 11.114 9.971 8.734 7.795 7.267 7.151 0.480 0.56 0.560  
5138 −1.43 1.93 VW Cas 0.777 11.953 10.748 9.390 8.365 7.766 7.670 0.485 0.68 0.475  
5846 −0.10 2.34 BP Cas 0.797 12.450 10.930  7.972 7.298 7.082 0.864 0.78 0.948  
7192 1.65 0.66 V636 Cas 1.083 8.555 7.173 5.663 4.984 4.126 4.068 0.666 0.17 0.700 O,F,1 
7548 0.20 1.66 RW Cas 1.170 10.430 9.229 7.888 6.824 6.329 6.237 0.409 1.16 0.420  
8614 −3.02 2.86 VV Cas 0.793 11.883 10.777 9.434 8.386 7.808 7.727 0.482 0.96 0.553  
9928 1.10 1.62 VX Per 1.037 10.459 9.307 7.995 7.076 6.517 6.292 0.496 0.69 0.515  
11174 1.15 0.55 V440 Per 1.039 7.151 6.277 5.312 5.158 4.546 4.189 0.260 0.09 0.273 O,F,39 
11420 3.41 1.79 SZ Cas 1.134 11.319 9.836 8.110 6.817 6.103 6.002 0.779 0.43 0.819 F,2 
11767 7.72 0.12 α UMi 0.754 2.326 1.978 1.370 0.847 0.436 0.497 −0.007 0.03 −0.007 G,F,O,VB,SB,23 
12817 −1.52 4.03 DF Cas 0.583 12.060 10.881  8.581 8.028 7.973 0.522 0.58 0.599  
13367 2.57 0.33 SU Cas 0.440 6.671 5.970 5.127 4.530 4.196 4.126 0.273 0.41 0.287 O,B,L,24,F 
18260 0.07 1.27 RW Cam 1.215 10.022 8.685 7.096 5.909 5.242 5.018 0.668 0.84 0.649 73 65 
19057 0.95 0.76 RX Cam 0.898 8.879 7.683 6.269 5.314 4.730 4.701 0.536 0.73 0.569  
19978 −2.40 3.16 SX Per 0.632 12.284 11.144 9.816 8.862 8.298 8.131 0.466 0.78 0.490  
20202 0.87 1.59 AS Per 0.696 11.023 9.723 8.144 7.042 6.437 6.285 0.644 0.86 0.713 
21517 2.79 0.71 SZ Tau 0.651 7.377 6.530 5.514 4.831 4.408 4.311 0.280 0.34 0.294 O,L,F 
23210 1.18 2.19 AN Aur 1.012 11.674 10.454 9.057 7.927 7.307 7.208 0.600 0.70 0.593 
23360 0.72 0.62 RX Aur 1.065 8.632 7.674 6.585 5.804 5.316 5.271 0.276 0.65 0.276  
23768 0.39 0.81 CK Cam 0.517 8.521 7.545  5.595 5.178 4.993 0.426 0.61  15 
24105 −0.29 1.43 BK Aur 0.903 10.487 9.428 8.249 7.420 6.866 6.833 0.424 0.68 0.446 
24281 −0.52 1.44 SY Aur 1.006 10.071 9.066 7.854 6.899 6.399 6.391 0.453 0.67 0.454  
24500 3.50 2.35 YZ Aur 1.260 11.709 10.351 8.820 7.598 6.893 6.793 0.601 0.83 0.565 
25642 −0.22 1.61 Y Aur 0.587 10.540 9.626 8.566 7.747 7.241 7.286 0.356 0.81 0.394  
26069 3.64 0.28 β Dor 0.993 4.557 3.757 2.929 2.438 2.029 1.959 0.069 0.63 0.044 
27119 3.16 0.94 ST Tau 0.605 9.070 8.221 7.144 6.386 5.923 5.808 0.339 0.78 0.355 
27183 1.51 1.08 EU Tau 0.472 8.760 8.078 7.270 6.700 6.316 6.259 0.164 0.31 0.172 O,F,27 
28625 0.06 2.09 RZ Gem 0.743 11.052 10.019 8.736 7.708 7.158 7.007 0.503 0.96 0.570 L,3 
28945 4.25 2.67 AA Gem 1.053 10.794 9.722 8.581 7.682 7.185 7.138 0.380 0.66 0.330  
29022 4.00 3.26 CS Ori 0.590 12.291 11.389 10.266 9.480 8.896 8.917 0.351 0.95 0.402  
29386 4.60 0.88 GQ Ori 0.936 9.937 8.962 7.883 7.125 6.636 6.517 0.228 0.68 0.279 
30219 0.32 1.44 SV Mon 1.183 9.308 8.265 7.137 6.374 5.844 5.715 0.250 1.06 0.249 
30286 0.25 1.57 RS Ori 0.879 9.360 8.413 7.282 6.333 5.818 5.820 0.335 0.81 0.389  
30541 1.37 0.77 T Mon 1.432 7.303 6.130 4.981 4.185 3.653 3.525 0.195 1.01 0.209 
30827 −0.23 1.01 RT Aur 0.572 6.039 5.448 4.811 4.259 3.971 3.915 0.049 0.80 0.051 L,12 
31306 −5.19 2.22 DX Gem 0.650 11.681 10.742 9.591 8.769 8.282 8.208 0.429 0.33 0.451 O,F,28 
31404 0.47 0.75 W Gem 0.898 7.868 6.955 5.969 5.242 4.788 4.684 0.266 0.81 0.283 
31624 −1.61 2.59 CV Mon 0.731 11.613 10.308 8.646 7.402 6.791 6.576 0.702 0.72 0.714 
31905 0.34 2.38 BE Mon 0.433 11.718 10.577 9.247 8.311 7.826 7.690 0.565 0.60 0.622  
32180 −1.80 1.46 AD Gem 0.579 10.549 9.855 9.050 8.516 8.142 8.063 0.159 0.62 0.167 L,G 
32516 −2.42 2.03 V508 Mon 0.616 11.380 10.501 9.461 8.708 8.232 8.144 0.320 0.43 0.323  
32854 1.97 2.65 TX Mon 0.940 12.077 10.964 9.634 8.508 7.978 7.946 0.492 0.63 0.511  
33014 −2.02 2.95 EK Mon 0.598 12.260 11.071 9.614 8.621 8.019 7.879 0.551 0.55 0.584  
33520 0.54 2.11 TZ Mon 0.871 11.921 10.793 9.469 8.478 7.920 7.771 0.431 0.73 0.441  
33791 1.04 2.16 AC Mon 0.904 11.279 10.099 8.707 7.696 7.035 6.888 0.507 0.70 0.508  
33874 0.91 0.87 V526 Mon 0.580 9.206 8.619 7.891 7.314 7.024 6.968 0.088 0.29 0.093 O,29,F 
34088 2.71 0.17 ζ Gem 1.006 4.712 3.915 3.070 2.612 2.201 2.130 0.033 0.48 0.018 L,2 
34421 0.39 1.70 V465 Mon 0.585 11.109 10.369 9.474 8.826 8.398 8.292 0.255 0.37 0.256 0,30 
34527 −0.99 1.95 TV CMa 0.669 11.791 10.586 9.180 8.173 7.610 7.486 0.546 0.76 0.583  
34895 4.47 2.41 RW CMa 0.758 12.341 11.116 9.646 8.527 7.913 7.801 0.517 0.65 0.544 74,F 
35212 1.73 0.82 RY CMa 0.670 8.952 8.106 7.129 6.449 6.028 5.918 0.223 0.73 0.248 
35665 −2.67 1.43 RZ CMa 0.628 10.704 9.697 8.496 7.641 7.154 6.952 0.471 0.60 0.464 
35708 1.33 1.37 TW CMa 0.845 10.534 9.563 8.452 7.662 7.174 7.053 0.391 0.63 0.357 
36088 0.35 1.86 SS CMa 1.092 11.136 9.925 8.470 7.434 6.849 6.677 0.533 0.96 0.549 
36617 −2.08 2.86 VW Pup 0.632 12.494 11.382 10.085 9.084 8.488 8.398 0.483 0.74 0.514  
36666 2.87 0.92 VX Pup 0.479 8.961 8.311 7.567 7.214 6.780 6.698 0.129 0.40 0.136 DM,F,31 
36685 1.72 0.91 X Pup 1.414 9.742 8.515 7.157 6.180 5.600 5.430 0.409 1.33 0.443 
37174 1.14 0.19 MY Pup 0.913 6.296 5.648 4.888 4.381 4.036 3.962 0.061 0.19 0.064 L,O,F,32 
37207 1.19 1.36 VZ Pup 1.365 10.833 9.672 8.294 7.370 6.828 6.668 0.452 1.27 0.471 
37506 3.42 2.15 EK Pup 0.572 11.537 10.658 9.625 8.794 8.386 8.291 0.312 0.36 0.328 O,F,33 
37511 1.78 1.84 WW Pup 0.742 11.486 10.596 9.526 8.775 8.325 8.118 0.362 0.94 0.398  
37515 0.62 0.93 WX Pup 0.951 10.033 9.061 7.969 7.190 6.707 6.584 0.324 0.69 0.319 
38063 −2.65 1.60 AD Pup 1.134 10.982 9.919 8.736 7.861 7.359 7.077 0.343 1.14 0.330  
38569 6.66 2.10 LL Pup 0.706 12.245 11.075 9.664 8.540 7.969 7.893 0.551 0.74  60 
38854 −5.21 3.69 LR Pup 0.522  11.911 10.764 9.776 9.322 9.284 0.402 0.89  66 
38907 1.69 0.45 AP Pup 0.706 8.211 7.380 6.458 5.840 5.429 5.334 0.241 0.64 0.208 
38944 −1.78 2.04 WY Pup 0.720 11.422 10.602 9.667 9.002 8.585 8.392 0.292 0.79 0.270  
39010 3.64 2.86 LS Pup 1.151 11.688 10.436 9.050 8.093 7.517 7.354 0.455 0.96 0.478 L,F 
39144 −1.96 1.97 WZ Pup 0.702 11.105 10.323 9.443 8.773 8.320 8.263 0.178 0.79 0.220  
39666 3.82 1.54 BN Pup 1.136 11.084 9.914 8.556 7.624 7.076 6.922 0.417 1.25 0.438 
40078 -14.05 2.70 HL Pup 0.542 11.860 10.869 9.683 8.810 8.338 8.153 0.432 0.57  67 65 
40155 1.40 0.25 AH Vel 0.782 6.264 5.688 5.037 4.613 4.313 4.245 0.070 0.34 0.074 O,34,F,L 
40178 1.60 0.64 AT Pup 0.823 8.769 7.982 7.076 6.452 6.040 5.942 0.167 0.93 0.183 
40233 1.44 0.51 RS Pup 1.617 8.446 7.009 5.490 4.431 3.814 3.633 0.453 1.10 0.446 
41588 0.82 0.43 V Car 0.826 8.243 7.371 6.435 5.805 5.388 5.285 0.157 0.62 0.174 
42257 1.99 0.55 RZ Vel 1.310 8.201 7.080 5.856 4.979 4.460 4.308 0.293 1.20 0.335 
42321 0.20 0.59 T Vel 0.667 8.958 8.030 6.964 6.225 5.768 5.642 0.271 0.62 0.281 
42492 1.17 1.04 AP Vel 0.495 11.109 9.999 8.745 7.871 7.326 7.219 0.490 0.70 0.515 DM,F,31 
42831 0.35 0.78 SW Vel 1.370 9.271 8.120 6.843 5.934 5.393 5.233 0.337 1.27 0.349 
42926 0.53 0.64 SX Vel 0.980 9.173 8.285 7.269 6.554 6.119 6.001 0.250 0.73 0.250 
42929 −0.99 1.05 ST Vel 0.768 10.907 9.697 8.287 7.232 6.654 6.478 0.496 0.71 0.503  
44847 1.59 0.55 BG Vel 0.840 8.850 7.662 6.348 5.469 4.958 4.807 0.439 0.47 0.448 2,L 
45949 0.99 0.55 W Car 0.640 8.368 7.586 6.691 6.072 5.673 5.578 0.199 0.68 0.209 L,F,4 
46746 −1.69 1.06 DR Vel 1.049 11.048 9.522 7.825 6.650 6.021 5.824 0.680 0.72 0.685 L, 
47177 −0.87 1.32 AE Vel 0.853 11.503 10.243 8.725 7.589 7.006 6.904 0.639 0.84 0.667  
47854 2.06 0.27 l Car 1.551 4.960 3.698 2.522 1.766 1.211 1.092 0.160 0.69 0.170 
48122 0.64 1.50 FN Vel 0.726 11.478 10.293 8.832 7.807 7.221 7.122 0.558 0.59  61 
48663 1.39 1.19 GX Car 0.857 10.395 9.336 8.130 7.201 6.672 6.553 0.379 0.84 0.405  
50244 4.72 1.55 CN Car 0.693 11.778 10.693 9.352 8.423 7.829 7.811 0.395 0.69 0.419  
50615 1.51 1.27 GZ Car 0.619 11.289 10.282 9.083 8.170 7.669 7.535 0.398 0.30 0.419 DM,F,5 
50655 −1.04 0.74 RY Vel 1.449 9.752 8.373 6.825 5.702 5.122 4.928 0.554 0.99 0.562 
50722 0.23 0.73 AQ Car 0.990 9.785 8.855 7.870 7.192 6.743 6.630 0.158 0.61 0.161 
51142 0.34 1.02 UW Car 0.728 10.441 9.430 8.206 7.367 6.896 6.681 0.439 0.83 0.457  
51262 1.04 0.71 YZ Car 1.259 9.829 8.709 7.444 6.492 5.971 5.808 0.372 0.80 0.396 
51338 0.57 0.76 UX Car 0.566 8.947 8.302 7.562 7.039 6.714 6.628 0.091 0.78 0.123 
51653 2.39 0.83 Y Car 0.561 8.754 8.139 7.432 6.952 6.631 6.513 0.169 0.58 0.178 DM,B,F,6 
51894 1.52 1.52 XX Vel 0.844 11.884 10.714 9.329 8.213 7.648 7.524 0.531 0.86 0.572  
51909 0.11 1.06 UZ Car 0.716 10.212 9.331 8.369 7.743 7.254 7.117 0.184 0.64 0.187  
52157 −2.37 0.89 HW Car 0.964 10.122 9.125 8.027 7.258 6.704 6.596 0.184 0.35 0.193 
52380 2.53 1.63 EY Car 0.459 11.243 10.376 9.273 8.351 7.880 7.822 0.335 0.45 0.352 36 
52538 1.56 0.91 VY Car 1.277 8.616 7.455 6.279 5.463 4.944 4.804 0.260 1.07 0.243 105 
52570 −0.57 0.95 SV Vel 1.149 9.696 8.588 7.333 6.429 5.930 5.777 0.365 1.18 0.392 
52661 2.03 0.97 SX Car 0.687 10.013 9.086 8.037 7.313 6.858 6.753 0.310 0.77 0.326  
53083 4.18 1.33 WW Car 0.670 10.626 9.749 8.642 7.828 7.340 7.294 0.392 0.78 0.398  
53397 0.76 1.15 WZ Car 1.362 10.420 9.264 7.970 7.008 6.456 6.290 0.362 1.25 0.384 
53536 −1.06 0.81 XX Car 1.196 10.422 9.353 8.124 7.235 6.731 6.574 0.343 1.27 0.349 
53589 0.10 0.37 U Car 1.589 7.435 6.253 5.050 4.193 3.669 3.521 0.287 1.17 0.283 
53593 −1.22 1.37 CY Car 0.630 10.698 9.745 8.708 7.994 7.538 7.387 0.370 0.55 0.389 74 
53867 −3.32 2.34 FN Car 0.662 12.624 11.546 10.159 9.149 8.564 8.461 0.559 0.63 0.581  
53945 −0.75 0.87 XY Car 1.094 10.510 9.294 7.950 6.978 6.405 6.240 0.408 0.85 0.417 
54066 2.38 2.53 HK Car 0.826 11.218 10.197 8.965 8.119 7.601 7.543 0.437 0.47 0.460 2,F,77 25 
54101 −0.56 0.94 XZ Car 1.221 9.861 8.604 7.251 6.313 5.745 5.585 0.341 1.03 0.367 
54543 1.18 0.47 ER Car 0.888 7.670 6.823 5.956 5.412 5.006 4.911 0.099 0.57 0.101 
54621 −0.05 0.93 GH Car 0.916 10.121 9.159 8.057 7.277 6.876 6.686 0.394 0.29 0.414 O,F,37 
54659 −0.29 0.67 V898 Cen 0.701 8.535 7.963 7.267 6.770 6.448 6.379 −0.046 0.28  O,38,62 
54715 −0.47 0.73 IT Car 0.877 9.092 8.109 7.066 6.364 5.910 5.789 0.209 0.34 0.193 2,L 
54862 −0.37 0.83 GI Car 0.802 9.040 8.326 7.475 6.871 6.517 6.416 0.166 0.33 0.175 O,L,F,39 
54891 −0.15 1.09 FR Car 1.030 10.805 9.661 8.427 7.530 6.998 6.846 0.322 0.71 0.351 L,B? 
55726 −0.55 0.90 AY Cen 0.725 9.797 8.811 7.701 6.905 6.437 6.309 0.295 0.53 0.310  
55736 0.20 1.06 AZ Cen 0.660 9.306 8.632 7.839 7.270 6.930 6.839 0.152 0.34 0.160 O,L,F,71 
56176 1.09 0.85 V419 Cen 0.898 8.954 8.189 7.338 6.723 6.387 6.282 0.167 0.32 0.176 O,F,72 
56991 2.01 1.16 UZ Cen 0.523 9.479 8.751 7.862 7.264 6.846 6.751 0.262 0.69 0.275 DM,F,31 
57130 0.03 3.25 KK Cen 1.086 12.773 11.467 9.951    0.572 1.02 0.642  
57260 1.70 0.93 RT Mus 0.490 9.830 8.990 7.961 7.236 6.795 6.669 0.292 0.76 0.328 
57649 −2.08 1.53 BK Cen 0.502 10.965 10.206 9.153 8.339 7.907 7.769 0.314 0.57 0.330 DM,31 
57884 3.04 1.25 UU Mus 1.066 10.927 9.781 8.489 7.530 6.990 6.828 0.400 1.10 0.413 
57978 1.76 1.46 BB Cen 0.757 11.054 10.081 8.928 8.058 7.544 7.398 0.377 0.42 0.396 O,F,40 
59551 2.12 0.35 S Mus 0.985 6.955 6.125 5.190 4.553 4.125 4.016 0.220 0.54 0.147 L,B,35 
59575 5.08 2.55 AD Cru 0.806 12.333 11.061 9.452 8.298 7.638 7.400 0.657 0.78 0.680  
60259 1.12 0.50 T Cru 0.828 7.494 6.564 5.614 4.996 4.527 4.421 0.178 0.49 0.193 2,L 
60455 2.06 0.48 R Cru 0.766 7.553 6.761 5.892 5.311 4.917 4.821 0.150 0.79 0.192 
61136 2.23 0.30 BG Cru 0.678 6.077 5.459 4.770 4.284 3.961 3.889 0.050 0.19 0.053 O,41,F,L 
61981 1.22 0.35 R Mus 0.876 7.057 6.305 5.489 4.954 4.563 4.477 0.134 0.82 0.120 
62986 1.11 0.65 S Cru 0.671 7.360 6.597 5.724 5.137 4.741 4.643 0.162 0.72 0.163 
63693 1.77 1.63 V496 Cen 0.645 11.140 9.947 8.538 7.489 6.949 6.837 0.552 0.60 0.568  
64969 1.06 0.94 V378 Cen 0.969 9.515 8.481 7.260 6.386 5.895 5.753 0.376 0.37 0.395 F,O,42,L 
66189 2.30 1.99 VW Cen 1.177 11.643 10.284 8.770 7.655 7.014 6.819 0.417 1.02 0.448 
66696 −0.18 0.77 XX Cen 1.039 8.814 7.820 6.742 5.992 5.530 5.407 0.258 0.93 0.260 
67566 0.17 0.81 V381 Cen 0.706 8.467 7.673 6.790 6.194 5.808 5.714 0.195 0.70 0.205 F,L 
70203 −0.36 1.00 V339 Cen 0.976 9.908 8.695 7.374 6.416 5.863 5.702 0.412 0.63 0.428 
71116 0.64 0.54 V Cen 0.740 7.702 6.821 5.785 5.074 4.628 4.508 0.264 0.81 0.289 
71492 2.45 0.70 V737 Cen 0.849 7.695 6.727 5.708 5.005 4.559 4.443 0.228 0.38 0.216 2,L 
72583 1.04 0.85 AV Cir 0.640 8.306 7.410 6.353 5.635 5.222 5.100 0.368 0.30 0.397 L,O,34 
74448 4.60 1.61 IQ Nor 0.916 10.902 9.685 8.135 6.864 6.197 6.115 0.728 0.64 0.766 
75018 1.34 0.56 R TrA 0.530 7.370 6.653 5.846 5.307 4.932 4.842 0.134 0.54 0.127 
75430 2.06 0.71 GH Lup 0.968 8.847 7.631 6.355 5.492 4.959 4.813 0.346 0.16 0.364 L,F,2 
75961 0.09 0.77 LR TrA 0.537 8.600 7.805 6.958    0.116 0.15 0.122 O,82,F 
76918 1.49 1.21 U Nor 1.102 10.844 9.227 7.351 5.930 5.237 4.990 0.862 1.00 0.892 
77913 15.31 2.32 SY Nor 1.102 10.919 9.502 7.904 6.705 6.077 5.876 0.696 0.89 0.794 L,B,79 
78476 1.62 0.48 S TrA 0.801 7.124 6.380 5.587 5.071 4.682 4.593 0.082 0.75 0.100 
78771 −0.12 4.93 TW Nor 1.033 13.671 11.670 9.306 7.523 6.698 6.391 1.214 0.89 1.338 
78797 2.42 1.82 RS Nor 0.792 11.279 10.001 8.523 7.417 6.815 6.636 0.546 0.78 0.580  
78978 1.69 0.83 U TrA 0.410 8.524 7.947 7.226 6.588 6.287 6.307 0.084 0.55 0.088 DM,31,F 
79625 4.59 2.24 GU Nor 0.538 11.639 10.353 8.796 7.681 7.141 6.994 0.629 0.54 0.684  
79932 0.67 0.54 S Nor 0.989 7.370 6.422 5.417 4.729 4.274 4.161 0.178 0.68 0.189 
82023 0.81 2.21 V340 Ara 1.318 11.767 10.196 8.569 7.369 6.740 6.547 0.546 1.05 0.574 
82498 2.54 2.84 KQ Sco 1.458 11.822 9.816 7.649 6.024 5.215 4.945 0.839 0.91 0.896 
83059 1.96 0.73 RV Sco 0.782 7.995 7.032 5.900 5.136 4.680 4.553 0.338 0.81 0.342 
83674 0.69 0.80 BF Oph 0.610 8.220 7.340 6.365 5.699 5.284 5.176 0.247 0.64 0.247 
85035 0.16 0.81 V636 Sco 0.833 7.587 6.654 5.657 4.962 4.523 4.409 0.212 0.53 0.217 B,L 
85701 −0.67 0.83 V482 Sco 0.656 8.956 7.964 6.851 6.031 5.577 5.447 0.340 0.65 0.360 
86269 3.47 0.73 V950 Sco 0.683 8.088 7.305 6.398 5.779 5.411 5.302 0.254 0.33 0.267 O,F,44,L 
87072 3.39 0.21 X Sgr 0.846 5.318 4.564 3.635 3.018 2.618 2.521 0.201 0.61 0.197 
87173 1.70 1.22 V500 Sco 0.969 10.007 8.733 7.189 6.105 5.518 5.342 0.568 0.76 0.599 
87495 0.79 0.48 Y Oph 1.234 7.521 6.169 4.537 3.437 2.868 2.682 0.623 0.47 0.655 L,F,2 
88567 2.59 0.75 W Sgr 0.880 5.415 4.670 3.834 3.293 2.909 2.827 0.112 0.79 0.111 
89013 −4.43 2.25 CR Ser 0.724 12.491 10.846 8.893 7.396 6.712 6.529 0.961 0.79 1.011 10 
89276 0.01 0.88 AP Sgr 0.704 7.754 6.950 6.039 5.399 4.998 4.893 0.174 0.83 0.192 
89596 2.46 1.12 WZ Sgr 1.339 9.400 8.017 6.530 5.402 4.763 4.565 0.428 1.14 0.467 
89968 3.73 0.32 Y Sgr 0.761 6.602 5.745 4.779 4.120 3.703 3.586 0.188 0.72 0.205 
90110 −2.09 2.80 AY Sgr 0.818 12.041 10.537 8.717 7.177 6.506 6.220 0.841 0.86 0.919  
90241 1.93 1.16 XX Sgr 0.808 10.020 8.872 7.503 6.496 5.959 5.834 0.516 0.89 0.543 L,F 
90791 3.01 1.47 X Sct 0.623 11.169 10.009 8.622 7.524 6.931 6.858 0.557 0.85 0.619  
90836 0.06 0.61 U Sgr 0.829 7.794 6.694 5.448 4.585 4.091 3.952 0.403 0.73 0.403 
91201 0.61 1.51 BQ Ser 0.631 11.004 9.507 7.734 6.592 5.950 5.832 0.800 0.38 0.841 DM,F,45 
91239 −1.15 1.75 EV Sct 0.643 11.292 10.135 8.668 7.666 7.170 7.028 0.646 0.30 0.679 L,O,F,46 
91342 1.69 1.12 EW Sct 0.765 9.743 7.988 5.780 4.385 3.712 3.476 1.073 0.33 1.128 DM,F,47,L 
91366 −0.94 1.62 Y Sct 1.015 11.171 9.628 7.841 6.542 5.887 5.665 0.767 0.79 0.828 
91613 2.59 2.44 CK Sct 0.870 12.167 10.577 8.778 7.487 6.823 6.579 0.784 0.48 0.795 
91697 1.84 1.61 RU Sct 1.294 11.129 9.473 7.480 6.016 5.311 5.071 0.930 1.09 0.957 
91706 4.22 2.86 TY Sct 1.043 12.524 10.800 8.825 7.286 6.607 6.464 0.937 0.93 1.014  
91738 −5.78 3.11 CM Sct 0.593 12.470 11.105 9.487 8.392 7.788 7.521 0.733 0.59 0.771  
91785 0.27 1.45 Z Sct 1.111 10.914 9.585 8.098 7.042 6.491 6.429 0.491 0.99 0.542  
91867 −0.08 1.19 SS Sct 0.565 9.157 8.203 7.117 6.372 5.935 5.808 0.317 0.51 0.337 
92013 −1.41 0.59 V350 Sgr 0.712 8.372 7.466 6.425 5.695 5.265 5.141 0.295 0.72 0.312 
92067 0.16 1.83 BB Her 0.876 11.158 10.084 8.939 8.063 7.598 7.500 0.392 0.65  63 
92370 0.35 0.79 YZ Sgr 0.980 8.363 7.328 6.211 5.471 4.994 4.898 0.285 0.69 0.292 
92491 −0.65 0.63 BB Sgr 0.822 7.917 6.947 5.827 5.100 4.639 4.510 0.276 0.60 0.284 
93063 −1.35 2.77 V493 Aql 0.476 12.310 11.039 9.552 8.585 8.018 7.820 0.650 0.69 0.684  
93124 2.05 0.34 FF Aql 0.650 6.128 5.373 4.513 3.929 3.575 3.489 0.213 0.32 0.224 L,49,F 
93399 −0.60 1.48 V336 Aql 0.863 11.169 9.847 8.343 7.195 6.630 6.449 0.625 0.72 0.644 76 
93681 −0.20 1.01 SZ Aql 1.234 10.041 8.630 7.063 5.952 5.347 5.160 0.552 1.22 0.641 
93990 −0.01 1.06 TT Aql 1.138 8.424 7.131 5.718 4.747 4.186 4.026 0.462 1.13 0.495 
94004 −1.09 0.79 V496 Aql 0.833 8.903 7.746 6.479 5.622 5.122 4.976 0.393 0.37 0.413 F,L,2 
94094 0.87 0.80 FM Aql 0.786 9.545 8.274 6.793 5.770 5.220 5.051 0.617 0.73 0.646 
95118 2.50 1.65 V600 Aql 0.860 11.560 10.031 8.282 7.015 6.407 6.166 0.819 0.65 0.869  
96458 0.69 0.48 U Vul 0.903 8.404 7.128 5.604 4.630 4.095 3.853 0.593 0.71 0.654 
96596 1.44 1.69 V924 Cyg 0.903 11.551 10.709 9.735 9.060 8.661 8.534 0.245 0.26 0.258 O,F,50 
97150 0.49 0.57 SU Cyg 0.585 7.433 6.862 6.199 5.710 5.387 5.333 0.088 0.76 0.096 L,B,3,78 
97309 −2.40 1.70 BR Vul 0.716 12.156 10.688 9.021 7.835 7.188 7.122 0.866 0.80 0.911  
97439 1.25 0.96 V1154 Cyg 0.693 10.087 9.174 8.181 7.472 7.043 6.930 0.319 0.38 0.335 F,2 
97717 1.15 0.60 SV Vul 1.653 8.675 7.226 5.692 4.668 4.077 3.920 0.518 1.03 0.570 L,9 
97794 0.90 0.83 V1162 Aql 0.731 8.671 7.790 6.858 6.236 5.820 5.722 0.187 0.51 0.205 L,11 
97804 3.40 0.75 eta Aql 0.856 4.690 3.901 3.033 2.439 2.048 1.956 0.133 0.78 0.149 
98085 0.59 0.44 S Sge 0.923 6.416 5.614 4.777 4.233 3.845 3.765 0.112 0.73 0.127 
98212 −1.30 1.03 X Vul 0.801 10.238 8.848 7.199 5.938 5.369 5.180 0.790 0.77 0.848  
98217 0.51 1.74 V733 Aql 0.791 10.893 9.967 9.039 8.416 7.923 7.851 0.275 0.44  10,64 
98376 0.99 1.70 GH Cyg 0.893 11.178 9.897 8.433 7.267 6.708 6.560 0.629 0.77 0.662  
98852 0.62 0.91 CD Cyg 1.232 10.221 8.953 7.503 6.451 5.880 5.712 0.486 1.21 0.514 
99276 0.27 1.21 V402 Cyg 0.639 10.881 9.876 8.654 7.869 7.391 7.236 0.397 0.56 0.417  
99567 −1.26 1.24 MW Cyg 0.775 10.807 9.465 7.914 6.750 6.158 5.964 0.615 0.73 0.680  
99887 −1.03 1.43 V495 Cyg 0.827 12.256 10.631 8.694 7.292 6.565 6.338 0.977 0.44 1.027 
101393 1.77 1.06 SZ Cyg 1.179 10.909 9.430 7.797 6.573 5.886 5.746 0.587 0.89 0.631  
102276 0.69 0.39 X Cyg 1.215 7.530 6.393 5.240 4.475 3.955 3.830 0.261 1.00 0.288 
102949 2.31 0.29 T Vul 0.647 6.389 5.753 5.077 4.605 4.259 4.199 0.067 0.64 0.064 
103241 1.70 1.91 V520 Cyg 0.607 12.205 10.853 9.307 8.237 7.692 7.554 0.763 0.61 0.802  
103433 0.63 1.59 VX Cyg 1.304 11.797 10.073 8.159 6.645 5.938 5.718 0.830 0.96 0.791  
103656 −0.02 1.03 TX Cyg 1.168 11.298 9.512 7.228 5.451 4.596 4.455 1.111 1.21 1.181  
104185 2.19 0.33 DT Cyg 0.550 6.315 5.775 5.187 4.749 4.469 4.430 0.037 0.28 0.039 O,F,53 
104564 0.45 1.50 V459 Cyg 0.860 12.032 10.599 8.880 7.715 7.021 6.930 0.759 0.69 0.798  
104877 1.94 1.24 V386 Cyg 0.721 11.128 9.635 7.818 6.440 5.722 5.523 0.884 0.69 0.895 3, 73 
105369 0.78 0.71 V532 Cyg 0.670 10.121 9.087 7.843 6.862 6.318 6.248 0.508 0.34 0.534 O,F,54 
106754 0.18 1.63 V538 Cyg 0.787 11.767 10.442 8.964 7.918 7.283 7.093 0.642 0.57 0.675  
107899 2.48 0.98 VZ Cyg 0.687 9.836 8.959 7.965 7.294 6.861 6.751 0.274 0.68 0.289 L,56 
108426 1.29 0.35 IR Cep 0.474 8.711 7.795 6.767 5.988 5.585 5.529 0.413 0.37 0.434 O,F,57 
108427 2.38 1.31 CP Cep 1.252 12.213 10.579 8.773 7.357 6.640 6.426 0.702 0.77 0.682  
108630 −0.86 1.05 BG Lac 0.727 9.833 8.884 7.814 7.113 6.650 6.540 0.316 0.61 0.336 
109340 −1.62 1.32 Y Lac 0.635 9.877 9.146 8.299 7.707 7.307 7.222 0.202 0.71 0.217 
110964 −2.41 2.46 AK Cep 0.859 12.538 11.223 9.653 8.426 7.796 7.684 0.635 0.63 0.704  
110968 1.92 0.56 V411 Lac 0.617 8.691 7.950  6.346 5.980 5.944 0.154 0.22  O,50,65,75 
110991 3.81 0.20 δ Cep 0.730 4.614 3.953 3.200 2.748 2.383 2.321 0.068 0.84 0.092 L,G 
111972 1.63 0.74 Z Lac 1.037 9.514 8.417 7.196 6.345 5.820 5.689 0.378 0.97 0.404 
112026 1.11 0.78 RR Lac 0.808 9.731 8.847 7.818 7.069 6.558 6.563 0.296 0.78 0.353  
112430 2.69 1.01 CR Cep 0.794 11.048 9.654 7.976 6.704 6.015 5.855 0.697 0.36 0.758 
112626 0.80 0.79 V Lac 0.697 9.813 8.940 7.886 7.134 6.666 6.538 0.315 0.94 0.356 10 
112675 1.20 0.69 X Lac 0.736 9.306 8.406 7.347 6.608 6.150 6.042 0.339 0.40 0.362 L,2 
114160 2.62 1.54 SW Cas 0.736 10.785 9.705 8.441 7.410 6.892 6.819 0.449 0.67 0.494 10 
115390 −2.08 1.69 CH Cas 1.179 12.652 11.003 9.022 7.355 6.536 6.405 0.955 1.06 0.939  
115925 1.99 2.40 CY Cas 1.158 13.292 11.626 9.628 8.016 7.131 6.765 0.947 1.24 0.986  
116556 2.28 1.17 RS Cas 0.799 11.437 9.941 8.217 6.917 6.200 6.144 0.784 0.80 0.875 10 
116684 0.44 1.90 DW Cas 0.699 12.578 11.120  8.304 7.661 7.413 0.784 0.59 0.884  
117154 2.55 1.64 CD Cas 0.892 12.245 10.783 9.035 7.660 7.020 6.802 0.748 0.82 0.818  
117690 −1.30 1.27 RY Cas 1.084 11.322 9.951 8.396 7.149 6.498 6.470 0.613 0.96 0.649  
118122 0.43 1.10 DD Cas 0.992 11.111 9.880 8.580 7.552 6.952 6.908 0.493 0.61 0.501  
118174 −1.61 2.75 CF Cas 0.688 12.333 11.138 9.758 8.657 8.078 7.959 0.531 0.56 0.566 10 

Notes.

The letters in parentheses indicate references listed at the end of the notes.

1 Low amplitude suggests overtone and star treated as such in main analysis. Ref (d) suggests the star might pulsate in the fundamental.

2 Note relatively low amplitude. Treated as a fundamental pulsator.

3 Has generally been considered a fundamental pulsator and is treated as such. Ref (j) suggests it is an overtone pulsator.

4 W Car = V Vel.

5 For E(BV); FE1 = 0.010, FE2 = 0.419. Latter adopted. DM(b).

6 Binary (ah); Triple (l).

7 Possibly first crossing (w) or second crossing (x).

8 Treated as fundamental; ref (j) suggests overtone.

9 Treated as fundamental; ref (d) suggests overtone.

10 JHK observation limited, mean uncertain.

11 E(BV) is from equation (3) of ref (i) with (BV) = 0.976.

12 Note Hipparcos light curve.

13 DM (a,b).

14 B (ai). The effect of the companion on the colours is small.

15 Polaris, see text.

16 O(a,d,e,h,g). B(ai). There is a slight effect of the companion on the photometry.

17 O(e,g).

18 Probable overtone (f), s-Cepheid (g).

19 DM(b).

20 O(h).

21 O(f).

22 O(e,h).

23 B(aj). Magnitudes slightly affected.

24 Fundamental (f).

25 O(m). 26 O(n).

27 O(h).

28 O(e).

29 O(h,g).

30 O?(o).

31 O(f,h).

32 DM(b).

33 O(d,h,g).

34 DM(b).

35 O(e,h). Fundamental (d). Shown to be fundamental pulsator (am).

36 O(n).

37 O(e,h,g).

38 O(h). Fundamental (d). Treated as an overtone.

39 Treated as a fundamental pulsator. Ref (j) suggest overtone. B(c).

40 O(e,h,g,j).

41 E(BV) from ref (i) equation (3) with (BV) = 1.170.

42 E(BV) from ref (i) equation (3) with (BV) = 1.185.

43 E(BV) from ref (i) equation (3) with (BV) = 0.572 because the star is an overtone pulsator. This is an underestimate of the reddening.

44 E(BV) from ref (i) equation (3) with (BV) = 1.074.

45 E(BV) from ref (i) equation (3) with (BV) = 0.926.

46 E(BV) from ref (i) equation (3) with (BV) = 0.741 because the star is an overtone pulsator. This is an underestimate of the reddening.

47 E(BV) derived using V, I together with equations (4) and (5) of ref (i).

48 E(BV) from ref (i) equation (3) with (BV) = 0.991.

49 O(e,g,h).

50 O(m).

51 Ic transformed from IJ using the relation given by Caldwell & Coulson (k).

52 B derived using (BV) from (p).

53 B derived using (BV) from (u).

54 Ic from (VI) in (q) using equation (D1) from (r).

55 Uses Fernie's adopted reddening (p) times 0.951.

56 B(ai). Effect of companion (ai) is ΔV= 0.07 and Δ (BV) = 0.05. The effect will be greater at B and less at I. Data in table have not been corrected and are used as given there (at V and I).

57 O(m), B(al). Effect of companion (al) is ΔV= 0.08 and Δ (BV) = 0.08. The effect will be greater at B and less at I. The data in the table have not been corrected and are used as given there.

58 O(e,j)

General

There are no I values for the following stars: BP Cas, CK Cam, BB Gem, DW Cas, DF Cas, V411 Lac. In these cases instead of the (VI) relation the reddening E(BV)T was adopted.

There are no B values for LR Pup and DP Vel.

References