Abstract

Long-duration gamma-ray bursts (LGRBs) are generally considered to originate from the massive collapsars. It is believed that the central engine of gamma-ray bursts (GRBs) is a neutrino-dominated accretion flow (NDAF) around a rotating stellar-mass black hole (BH). The neutrino annihilation above the NDAF is a feasible mechanism to power GRB. In this work, we analyse the distributions of the isotropic gamma-ray-radiated energy and jet kinetic energy of 48 LGRBs. According to the NDAF and fireball models, we estimate the mean accreted masses of LGRBs in our sample to investigate whether the NDAFs can power LGRBs with the reasonable BH parameters and conversion efficiency of neutrino annihilation. The results indicate that most of the values of the accreted masses are less than 5 M for the extreme Kerr BHs and high conversion efficiency. It suggests that the NDAFs may be suitable for most of LGRBs except for some extremely high energy sources.

INTRODUCTION

Gamma-ray bursts (GRBs) are extremely energetic transient events and isotropically distribute over the sky. Depending on a separation at 2 s of their duration T90, they are generally divided into two classes, i.e. long- and short-duration GRBs (LGRBs and SGRBs; see Kouveliotou et al. 1993). The percentage rates for LGRBs and SGRBs in the BATSE sample are about 75 per cent and 25 per cent (Sakamoto et al. 2008, 2011), respectively, and the LGRB fraction is further larger for other space detectors, such as Swift and Fermi (Zhang et al. 2012). The progenitors of LGRBs are usually considered as the collapse of massive stars with rapid spin, low metallicity, and stripped of their helium and hydrogen envelope (e.g. Woosley 1993; Kumar & Zhang 2015). In this circumstance, the stellar-mass Kerr black hole (BH) surrounded by a debris torus or disc forms quickly in the central parts of the stellar core. Moreover, SGRBs are related to the mergers of two neutron stars (NSs) or NS-BH binaries (e.g. Eichler et al. 1989; Narayan, Paczyński & Piran 1992; Nakar 2007). A similar accretion system may form in SGRBs due to the loss of the angular momentum and mass of the remnants.

Neutrino annihilation and Blandford–Znajek (BZ; see Blandford & Znajek 1977) mechanisms are proposed to power GRBs if there is a hyperaccretion disc in the centre of GRBs. A typical cosmological GRB requires the value of the accretion rate ranging from a fraction of solar mass per second to several solar masses per second. If the neutrino annihilation is the dominant cooling mechanism, a geometrically and optically thick disc is formed and a large number of free baryons appear in the inner region of the disc. The temperature and density are so high that photons are trapped and neutrino cooling becomes effective. This disc is named the neutrino-dominated accretion flow, which has been widely studied (NDAF, see, e.g. Popham, Woosley & Fryer 1999; Narayan, Piran & Kumar 2001; Di Matteo, Perna & Narayan 2002; Kohri & Mineshige 2002; Kohri, Narayan & Piran 2005; Gu, Liu & Lu 2006; Chen & Beloborodov 2007; Kawanaka & Mineshige 2007; Liu et al. 2007, 2008, 2012a,b, 2013, 2015d; Janiuk, Mioduszewski & Moscibrodzka 2013; Kawanaka, Piran & Krolik 2013; Li & Liu 2013; Xue et al. 2013; Hou et al. 2014a,b).

Another generally accepted model to power GRBs is the magnetar model (e.g. Usov 1992; Thompson, Chang & Quataert 2004; Metzger, Quataert & Thompson 2008; Mao et al. 2010; Metzger et al. 2011; Lü & Zhang 2014). The released energy via its spinning down can effortlessly provide the requirements of GRBs (e.g. Usov 1992; Wheeler et al. 2000), and this model may offer a plausible explanation for the shallow decay phases in some GRB afterglow light curves (e.g. Dai 2004; Zhang et al. 2006). No matter what kind of models, the puzzled central engines of GRBs are hidden by the electromagnetic radiation (e.g. Liu et al. 2015d), and the BH-NDAF systems may be probed directly by gravitational waves (e.g. Suwa & Murase 2009; Romero, Reynoso & Christiansen 2010; Sun et al. 2012) and MeV neutrino emission (e.g. Liu et al. 2015e).

Fan & Wei (2011) and Liu et al. (2015c) investigated the capabilities of the NDAFs to power SGRBs. As a result, the disc mass of a certain SGRB mainly depends on the output energy of the NDAF, jet opening angle, and characteristics of central BH. Almost all of SGRBs are satisfied with the reasonable disc masses, only a few approach or exceed the limits in simulations, ∼0.5 M (e.g. Kluźniak & Lee 1998; Lee & Kluźniak 1999; Popham et al. 1999; Liu et al. 2012b), even with the extreme BH parameters. Compared with SGRBs, LGRBs need more massive accreted mass and more explosive energy, so we want to figure out whether the NDAFs could power LGRBs.

This paper is organized as follows. In Section 2, we introduce the NDAF and fireball models to connect the observational values and model parameters. Based on the collected LGRB data, we analyse the distributions of the isotropic radiation energy and jet kinetic energy and show the distribution of the accreted masses with different parameters of the BH-NDAF system in Section 3. The last section is devoted to the conclusions and discussion.

MODEL

The NDAF and fireball models for GRBs have been widely discussed for several decades. Fan & Wei (2011) proposed a method to estimate the mass accreted by the central BH of progenitors of SGRBs, where it is assumed that the outflow is driven from the neutrino-antineutrino annihilation steaming from an underlying NDAF model. Liu et al. (2015c) developed this method further and enlarged the number of SGRB events to which the method is applied. Here, we reuse the same methodology as in the former papers but applied to LGRBs. Generally, the mean output power from the central engine |$\dot{E}$| can be expressed as
\begin{eqnarray} \dot{E} \approx \frac{(1+z)(E_{\rm \gamma ,iso}+E_{\rm k,iso})\theta _{\rm j}^{2}}{2 T_{90}}, \end{eqnarray}
(1)
where z is the redshift, T90 can roughly be considered as the duration of the activity of the central engine, Ek,iso is the isotropic kinetic energy estimated by the X-ray luminosity during the afterglow phase with the standard afterglow model, Eγ,iso is the isotropic equivalent energy radiated in gamma-ray band, and θj is the opening angle of the ejecta.
Meanwhile, |$\dot{E}$| is a fraction of the total neutrino annihilation luminosity |$L_{\nu \bar{\nu }}$| averaged in the whole accretion process, i.e.
\begin{eqnarray} \dot{E}=\eta L_{\nu \bar{\nu }}, \end{eqnarray}
(2)
where η is a dimensionless number that represents the conversion efficiency of the neutrino annihilation. (e.g. Eichler et al. 1989; Aloy, Janka & Müller 2005; Liu et al. 2012b, 2015c). In this paper, we take η = 0.2 and 0.5. The approximate analytical formula of neutrino annihilation luminosity we adopt here is proposed by Zalamea & Beloborodov (2011),
\begin{eqnarray} L_{\nu \bar{\nu }}\ ({\rm erg\ s^{-1}})&\approx & 5.7 \times 10^{52} x_{\rm ms}^{-4.8}({M_{_{\rm BH}}/\mathrm{M}_{\odot }})^{-3/2} \nonumber \\ &&\times \Bigg \lbrace \begin{array}{ll}0 & \hbox{$\dot{M} <\dot{M}_{\rm ign}$}\\ (\dot{M}/\mathrm{M}_{\odot }\ \rm s^{-1}) \rm ^{9/4} & \hbox{$\dot{M}_{\rm ign} < \dot{M} < \dot{M}_{\rm trap}$}\\ (\dot{M}_{\rm trap}/\mathrm{M}_{\odot }\ \rm s^{-1}) \rm ^{9/4} & \hbox{$\dot{M} > \dot{M}_{\rm trap}$}\\ \end{array}, \end{eqnarray}
(3)
where |$\dot{M}$| is the mass accretion rate, xms = rms/rg, |$r_{\rm ms}=\frac{1}{2}r_{\rm g} [3+Z_{2}-\sqrt{(3-Z_{1})(3+Z_{1}+2Z_{2})}]$| is radius of the marginally stable orbit, |$Z_{1}=1+(1-a_{\ast }^{2})^{1/3}[(1+a_{\ast })^{1/3}+(1-a_{\ast })^{1/3}]$| and |$Z_{2}=\sqrt{3a_{\ast }^{2}+Z_{1}^{2}}$| for 0 < a* < 1. rg = 2GMBH/c2 is the Schwarzschild radius, and |$\dot{M}_{\rm ign}$| and |$\dot{M}_{\rm trap}$| are the critical ignition accretion rate and the accretion rate when neutrino trapping event occurs in the inner region (e.g. Chen & Beloborodov 2007; Zalamea & Beloborodov 2011).
Hence, the mean accretion rate for the case can be defined as (e.g. Fan & Wei 2011; Liu et al. 2015c)
\begin{eqnarray} \dot{M} &\approx & 0.12\ \left[\frac{(1+z)(E_{\rm \gamma ,iso,51}+E_{\rm k,iso,51})\theta _{\rm j}^{2}}{\eta T_{90,\rm s}}\right]^{4/9} \nonumber \\ &&\times \, x_{\rm ms}^{2.1}\left(\frac{M_{\rm BH}}{\mathrm{M}_{\odot }}\right)^{2/3}\ \mathrm{M}_{\odot }\ \rm s^{-1}, \end{eqnarray}
(4)
where Ek, iso, 51 = Ek, iso/(1051 erg) and Eγ, iso, 51 = Eγ, iso/(1051 erg). Of course, we must ensure that the NDAF can be ignited, i.e. |$\dot{M}>\dot{M}_{\rm ign}$|⁠. Then we can estimate the accreted mass |${\sim } \dot{M} T_{90}/(1+z)$|⁠, i.e. (e.g. Liu et al. 2015c)
\begin{eqnarray} M_{\rm acc} &\approx & 0.12\left[\frac{(E_{\rm \gamma ,iso,51}+E_{\rm k,iso,51})\theta _{\rm j}^{2}}{\eta }\right]^{4/9} \left(\frac{T_{90,\rm s}}{{1+z}}\right)^{5/9}\nonumber \\ &&\times \ \ x_{\rm ms}^{2.1}\ \left(\frac{M_{\rm BH}}{\mathrm{M}_{\odot }}\right)^{2/3}\ {M_{{\odot }}}. \end{eqnarray}
(5)
Although the accreted masses can be estimated with the above equations and the observational data, it is still worth noting that there are some uncertainties. First, The hyperaccretion may result in the violent evolution of the BH's characteristics, which further leads to the evolution of the neutrino annihilation luminosity during the long duration. Fortunately, the extreme Kerr BHs and low mean accretion rates are considered in the central engines of LGRBs (e.g. Popham et al. 1999; Woosley & Heger 2006). Recently, we found that this evolution has little effect on the total energy of the neutrino annihilation for LGRBs (Song et al. 2015). Secondly, we replace the interval of the central engine with T90 in this work. In fact, the duration of a GRB should be longer than the time interval of the activity of central engine if the radial expansion of the fireball is considered, and this effect is potentially more important in SGRBs than in LGRBs (Aloy et al. 2005; Janka et al. 2006). Thirdly, we do not consider the outflow from the disc, which may seriously influences the measurement of the disc mass (Liu et al. 2012b; Janiuk et al. 2013). Therefore, the accreted mass we calculated can be considered as a lower limit of mass of the original accretion matter.

RESULTS

Since no LGRB has a positively identified origin of accretion or magnetar models, in order to test the ability of the NDAF model, all LGRBs with the data of T90, z, Eγ,iso, Ek,iso, and θj should be collected. There are some selection criterions should be stressed. First, in the collapse events, we can consider that all Type Ib/c supernovae (SNe) have an engine-driven BH/NS-NDAF (e.g. Liu et al. 2015e). If the ejections from NDAFs direct to the observers, various kinds of GRB light curves should be detected. So the LGRBs associated with SNe should be included, which are marked in Table 1. Secondly, the ultralong GRBs (ULGRBs) may derive from the blue supergiants (e.g. Nakauchi et al. 2013), which is different from the origin of ‘normal’ LGRBs. For the disc model, they cannot be explained by neutrino annihilation mechanism but BZ mechanism (e.g. Nathanail & Contopoulos 2015). So these sources are not included. Thirdly, GRB 060614 is a typical short-long GRBs, which may originate from an event of compact objects merger (e.g. Gehrels et al. 2006; Yang et al. 2015). It should not be considered.

Table 1.

Collected data of LGRBs. Coloumn (1): LGRB name, Column (2): duration, Column (3): redshift, Column (4): the isotropic radiated energy, Column (5): the isotropic kinetic energy, Column (6): the jet opening angle θj, Column (7): observatory, Column (8): references for Eγ,iso, Ek,iso, and θj.

GRBT90zEγ, isoEk,isoθjObservatoryRef.
(s)(1051erg)(1052erg) (deg)
970508 14.0 ± 3.6 0.8349 5.5 ± 0.6 0.99 ± 0.14 21.63 ± 1.67 BATSE 1, 2 
971214 31.23 ± 1.18 3.418 210.5 ± 25.8 8.48 ± 0.97 >5.54 ± 0.23 BATSE 1, 2 
980613 42.0 ± 22.1 1.0964 5.4 ± 1 1.22 ± 0.38 >12.57 ± 0.58 BeppoSAX 1, 2 
980703 76.0 ± 10.2 0.966 60.1 ± 6.6 2.41 ± 0.63 11.21 ± 0.81 BATSE 1, 2 
990123 63.30 ± 0.26 1.600 1437.9 ± 177.8 20.28 ± 1.85 4.93 ± 0.43 BATSE 1, 2 
990510 67.58 ± 1.86 1.619 176.3 ± 20.0 13.16 ± 1.12 3.36 ± 0.21 BATSE 1, 2 
990705 32.0 ± 1.4 0.84 256.0 ± 20.3 0.34 ± 0.12 5.33 ± 0.41 BATSE 1, 2 
991216 15.17 ± 0.09 1.02 535.4 ± 59.4 36.64 ± 1.79 4.57 ± 0.72 BATSE 1, 2 
000210 9.0 ± 1.4 0.846 169.3 ± 14.1 0.50 ± 0.12 >6.84 ± 0.28 BeppoSAX 1, 2 
000926 1.30 ± 0.59 2.0387 279.7 ± 99 9.97 ± 3.75 6.16 ± 0.31 BeppoSAX 1, 2 
010222 74.0 ± 4.1 1.4769 857.8 ± 21.7 22.79 ± 2.48 3.20 ± 0.13 BeppoSAX 1, 2 
011211 51.0 ± 7.6 2.1418 67.2 ± 8.6 71.32 ± 0.22 6.38 ± 0.40 BeppoSAX 1, 2 
020405 40.0 ± 2.2 0.6899 72.0 ± 9.2 4.6 ± 1.29 7.81 ± 0.93 BeppoSAX 1, 2 
021004 77.1 ± 2.6 2.3304 55.6 ± 7.2 8.35 ± 1.45 12.67 ± 4.51 HETE 1, 2 
030329a 33.1 ± 0.5 0.1685 15.1 ± 0.1 |$12.36_{-0.06}^{+0.05}$| 3.78 ± 0.05 HETE 3, 4, 5 
050315 96 ± 10 1.95 49 ± 15 |$512.40_{-65.58}^{+45.30}$| |$4.35_{-0.52}^{+0.46}$| Swift 4, 5, 6 
050318 32 ± 2 1.4436 16.9 ± 1.7 |$11.26_{-0.69}^{+0.87}$| 2.18 ± 0.40 Swift 4, 5, 7 
050319 139.4 ± 8.2 3.2425 44 ± 18 |$77.90_{-28.70}^{+20.50}$| |$2.18_{-0.40}^{+0.29}$| Swift 4, 7 
050505 63 ± 2 4.27 |$444_{-112}^{+80}$| |$237.83_{-49.20}^{+98.41}$| |$1.66_{-0.17}^{+0.34}$| Swift 4, 5, 8 
050525Ab 8.8 ± 0.5 0.606 23.2 ± 0.6 |$142.78_{-43.31}^{+40.58}$| 2.12 ± 0.47 Swift 4, 5, 9 
050820A 128.0 ± 106.9 2.6147 |$970_{-140}^{+310}$| |$537_{-95}^{+80}$| |$6.6_{-0.3}^{+0.5}$| Swift 10 
050904 183.6 ± 13.2 6.295 |$1325.5_{-400.7}^{+678.2}$| |$88.4_{-44.2}^{+86.3}$| 1.95 ± 0.29 Swift 5, 10 
050922C 4.1 ± 0.7 2.1992 |$99.3_{-12.7}^{+13.0}$| |$27.3_{-2.5}^{+2.8}$| 1.8 ± 0.3 Swift 11 
060124 298 ± 2 2.297 420 ± 50 |$578.87_{-12.66}^{+110.79}$| |$3.04_{-0.23}^{+0.52}$| Swift 4, 5, 12 
060206 5.0 ± 0.7 4.05 47.8 ± 207.9 386.76 ± 93.02 2.01 ± 0.06 Swift 5, 11 
060210 220 ± 70 3.9133 353 ± 19 |$1113.29_{-94.72}^{+105.39}$| |$1.20_{-0.12}^{+0.17}$| Swift 4, 5, 7 
060418 52 ± 1 1.4901 |$100_{-20}^{+70}$| |$0.12_{-0.01}^{+0.03}$| |$22.5_{-2.5}^{+0.9}$| Swift 10 
060526 258.8 ± 5.4 3.21 25.8 ± 2.6 |$15.58_{-0.21}^{+0.24}$| 3.61 ± 0.06 Swift 4, 5, 7 
060605 15.2 ± 2.3 3.773 28.3 ± 4.5 177.15 ± 13.12 1.55 ± 0.06 Swift 4, 5, 13 
060714 108.2 ± 6.4 2.71 182.2 ± 25.3 250.46 ± 248.11 1.15 ± 0.06 Swift 5, 11 
060908 18.0 ± 0.8 1.8836 44.1 ± 1.8 |$2017.68_{-504.42}^{+2522.09}$| |$0.46_{-0.06}^{+0.29}$| Swift 4, 5, 9 
061121 80 ± 21 1.3145 272 ± 18 |$83.32_{-4.88}^{+18.90}$| |$1.83_{-0.17}^{+0.34}$| Swift 4, 5, 9 
070125 63.0 ± 1.7 1.5477 |$957.6_{-87.4}^{+106.4}$| |$6.43_{-0.17}^{+0.9}$| 13.2 ± 0.6 Swift 10 
080319B 45.6 ± 0.4 0.9371 1440 ± 30 |$4.9_{-0.1}^{+3.2}$| |$7.0_{-0.1}^{+0.7}$| Swift 10 
081008 162.2 ± 25.0 1.967 |$99.8_{-23.1}^{+23.4}$| |$134.7_{-17.3}^{+18.3}$| 1.3 ± 0.4 Swift 11 
081203A 96.3 ± 11.8 2.1 |$377.5_{-179.2}^{+174.2}$| |$344.6_{-230.1}^{+224.4}$| 1.0 ± 0.6 Swift 11 
090323 133.1 ± 1.4 3.568 3300 ± 130 |$116_{-9}^{+13}$| |$2.8_{-0.1}^{+0.4}$| Fermi 14 
090328 57 ± 3 0.7354 96 ± 10 |$82_{-18}^{+28}$| |$4.2_{-0.8}^{+1.3}$| Fermi 14 
090423 10.3 ± 1.1 8.23 100 ± 30 |$340_{-140}^{+110}$| |$1.5_{-0.3}^{+0.7}$| Fermi 15 
090618 105.5 ± 1.7 0.54 |$256.6_{-92.2}^{+92.9}$| |$37.1_{-12.3}^{+12.2}$| 3.5 ± 1.3 Swift 11 
090902B 19.328 ± 0.286 1.8829 3200 ± 40 |$56_{-7}^{+3}$| 3.9 ± 0.2 Fermi 14 
090926A 20 ± 2 2.1062 1890 ± 30 6.8 ± 0.2 |$9_{-2}^{+4}$| Fermi 14 
091127a 7.1 ± 0.2 0.49034 |$14.9_{-1.9}^{+1.8}$| |$48.4_{-5.3}^{+5.9}$| 2.7 ± 0.4 Swift 11 
100418A 8 ± 2 0.6235 |$0.99_{-0.34}^{+0.63}$| |$3.6_{-0.7}^{+1}$| 20.9 ± 0.5 Swift 16 
120326A 11.8 ± 1.8 1.798 32 ± 1 14.0 ± 0.07 4.6 ± 0.2 Swift 16 
120404A 38.7 ± 4.1 2.876 90 ± 40 |$13.3_{-2.0}^{+3.5}$| 3.1 ± 0.3 Swift 16 
120521C 26.7 ± 0.4 6.0 190 ± 80 |$22_{-14}^{+37}$| |$3.0_{-1.1}^{+2.3}$| Swift 15 
130427Aa 162.83 ± 1.36 0.338 |$808.9_{-56.5}^{+49.6}$| |$157.7_{-11.0}^{+9.7}$| 3.8 ± 0.3 Swift 11 
GRBT90zEγ, isoEk,isoθjObservatoryRef.
(s)(1051erg)(1052erg) (deg)
970508 14.0 ± 3.6 0.8349 5.5 ± 0.6 0.99 ± 0.14 21.63 ± 1.67 BATSE 1, 2 
971214 31.23 ± 1.18 3.418 210.5 ± 25.8 8.48 ± 0.97 >5.54 ± 0.23 BATSE 1, 2 
980613 42.0 ± 22.1 1.0964 5.4 ± 1 1.22 ± 0.38 >12.57 ± 0.58 BeppoSAX 1, 2 
980703 76.0 ± 10.2 0.966 60.1 ± 6.6 2.41 ± 0.63 11.21 ± 0.81 BATSE 1, 2 
990123 63.30 ± 0.26 1.600 1437.9 ± 177.8 20.28 ± 1.85 4.93 ± 0.43 BATSE 1, 2 
990510 67.58 ± 1.86 1.619 176.3 ± 20.0 13.16 ± 1.12 3.36 ± 0.21 BATSE 1, 2 
990705 32.0 ± 1.4 0.84 256.0 ± 20.3 0.34 ± 0.12 5.33 ± 0.41 BATSE 1, 2 
991216 15.17 ± 0.09 1.02 535.4 ± 59.4 36.64 ± 1.79 4.57 ± 0.72 BATSE 1, 2 
000210 9.0 ± 1.4 0.846 169.3 ± 14.1 0.50 ± 0.12 >6.84 ± 0.28 BeppoSAX 1, 2 
000926 1.30 ± 0.59 2.0387 279.7 ± 99 9.97 ± 3.75 6.16 ± 0.31 BeppoSAX 1, 2 
010222 74.0 ± 4.1 1.4769 857.8 ± 21.7 22.79 ± 2.48 3.20 ± 0.13 BeppoSAX 1, 2 
011211 51.0 ± 7.6 2.1418 67.2 ± 8.6 71.32 ± 0.22 6.38 ± 0.40 BeppoSAX 1, 2 
020405 40.0 ± 2.2 0.6899 72.0 ± 9.2 4.6 ± 1.29 7.81 ± 0.93 BeppoSAX 1, 2 
021004 77.1 ± 2.6 2.3304 55.6 ± 7.2 8.35 ± 1.45 12.67 ± 4.51 HETE 1, 2 
030329a 33.1 ± 0.5 0.1685 15.1 ± 0.1 |$12.36_{-0.06}^{+0.05}$| 3.78 ± 0.05 HETE 3, 4, 5 
050315 96 ± 10 1.95 49 ± 15 |$512.40_{-65.58}^{+45.30}$| |$4.35_{-0.52}^{+0.46}$| Swift 4, 5, 6 
050318 32 ± 2 1.4436 16.9 ± 1.7 |$11.26_{-0.69}^{+0.87}$| 2.18 ± 0.40 Swift 4, 5, 7 
050319 139.4 ± 8.2 3.2425 44 ± 18 |$77.90_{-28.70}^{+20.50}$| |$2.18_{-0.40}^{+0.29}$| Swift 4, 7 
050505 63 ± 2 4.27 |$444_{-112}^{+80}$| |$237.83_{-49.20}^{+98.41}$| |$1.66_{-0.17}^{+0.34}$| Swift 4, 5, 8 
050525Ab 8.8 ± 0.5 0.606 23.2 ± 0.6 |$142.78_{-43.31}^{+40.58}$| 2.12 ± 0.47 Swift 4, 5, 9 
050820A 128.0 ± 106.9 2.6147 |$970_{-140}^{+310}$| |$537_{-95}^{+80}$| |$6.6_{-0.3}^{+0.5}$| Swift 10 
050904 183.6 ± 13.2 6.295 |$1325.5_{-400.7}^{+678.2}$| |$88.4_{-44.2}^{+86.3}$| 1.95 ± 0.29 Swift 5, 10 
050922C 4.1 ± 0.7 2.1992 |$99.3_{-12.7}^{+13.0}$| |$27.3_{-2.5}^{+2.8}$| 1.8 ± 0.3 Swift 11 
060124 298 ± 2 2.297 420 ± 50 |$578.87_{-12.66}^{+110.79}$| |$3.04_{-0.23}^{+0.52}$| Swift 4, 5, 12 
060206 5.0 ± 0.7 4.05 47.8 ± 207.9 386.76 ± 93.02 2.01 ± 0.06 Swift 5, 11 
060210 220 ± 70 3.9133 353 ± 19 |$1113.29_{-94.72}^{+105.39}$| |$1.20_{-0.12}^{+0.17}$| Swift 4, 5, 7 
060418 52 ± 1 1.4901 |$100_{-20}^{+70}$| |$0.12_{-0.01}^{+0.03}$| |$22.5_{-2.5}^{+0.9}$| Swift 10 
060526 258.8 ± 5.4 3.21 25.8 ± 2.6 |$15.58_{-0.21}^{+0.24}$| 3.61 ± 0.06 Swift 4, 5, 7 
060605 15.2 ± 2.3 3.773 28.3 ± 4.5 177.15 ± 13.12 1.55 ± 0.06 Swift 4, 5, 13 
060714 108.2 ± 6.4 2.71 182.2 ± 25.3 250.46 ± 248.11 1.15 ± 0.06 Swift 5, 11 
060908 18.0 ± 0.8 1.8836 44.1 ± 1.8 |$2017.68_{-504.42}^{+2522.09}$| |$0.46_{-0.06}^{+0.29}$| Swift 4, 5, 9 
061121 80 ± 21 1.3145 272 ± 18 |$83.32_{-4.88}^{+18.90}$| |$1.83_{-0.17}^{+0.34}$| Swift 4, 5, 9 
070125 63.0 ± 1.7 1.5477 |$957.6_{-87.4}^{+106.4}$| |$6.43_{-0.17}^{+0.9}$| 13.2 ± 0.6 Swift 10 
080319B 45.6 ± 0.4 0.9371 1440 ± 30 |$4.9_{-0.1}^{+3.2}$| |$7.0_{-0.1}^{+0.7}$| Swift 10 
081008 162.2 ± 25.0 1.967 |$99.8_{-23.1}^{+23.4}$| |$134.7_{-17.3}^{+18.3}$| 1.3 ± 0.4 Swift 11 
081203A 96.3 ± 11.8 2.1 |$377.5_{-179.2}^{+174.2}$| |$344.6_{-230.1}^{+224.4}$| 1.0 ± 0.6 Swift 11 
090323 133.1 ± 1.4 3.568 3300 ± 130 |$116_{-9}^{+13}$| |$2.8_{-0.1}^{+0.4}$| Fermi 14 
090328 57 ± 3 0.7354 96 ± 10 |$82_{-18}^{+28}$| |$4.2_{-0.8}^{+1.3}$| Fermi 14 
090423 10.3 ± 1.1 8.23 100 ± 30 |$340_{-140}^{+110}$| |$1.5_{-0.3}^{+0.7}$| Fermi 15 
090618 105.5 ± 1.7 0.54 |$256.6_{-92.2}^{+92.9}$| |$37.1_{-12.3}^{+12.2}$| 3.5 ± 1.3 Swift 11 
090902B 19.328 ± 0.286 1.8829 3200 ± 40 |$56_{-7}^{+3}$| 3.9 ± 0.2 Fermi 14 
090926A 20 ± 2 2.1062 1890 ± 30 6.8 ± 0.2 |$9_{-2}^{+4}$| Fermi 14 
091127a 7.1 ± 0.2 0.49034 |$14.9_{-1.9}^{+1.8}$| |$48.4_{-5.3}^{+5.9}$| 2.7 ± 0.4 Swift 11 
100418A 8 ± 2 0.6235 |$0.99_{-0.34}^{+0.63}$| |$3.6_{-0.7}^{+1}$| 20.9 ± 0.5 Swift 16 
120326A 11.8 ± 1.8 1.798 32 ± 1 14.0 ± 0.07 4.6 ± 0.2 Swift 16 
120404A 38.7 ± 4.1 2.876 90 ± 40 |$13.3_{-2.0}^{+3.5}$| 3.1 ± 0.3 Swift 16 
120521C 26.7 ± 0.4 6.0 190 ± 80 |$22_{-14}^{+37}$| |$3.0_{-1.1}^{+2.3}$| Swift 15 
130427Aa 162.83 ± 1.36 0.338 |$808.9_{-56.5}^{+49.6}$| |$157.7_{-11.0}^{+9.7}$| 3.8 ± 0.3 Swift 11 

Notes. The evidences for LGRBs associated with observable supernovae (SNe) according to the following scale (Hjorth & Bloom 2012; Melandri et al. 2014):

aStrong spectroscopic evidence.

bA clear light-curve bump as well as some spectroscopic evidence resembling a GRB-SN.

References:

(1) Lloyd-Ronning & Zhang (2004); (2) Bloom, Frail & Kulkarni (2003); (3) Zhang, Zhao & Zhang (2011); (4) Liang et al. (2008); (5) Lu et al. (2012); (6) Amati (2006); (7) Japelj et al. (2014); (8)Hurkett et al. (2006); (9) Nava et al. (2012); (10) Cenko et al. (2010); (11) Wang et al. (2015a); (12) Romano et al. (2006); (13) Ghirlanda et al. (2012); (14) Cenko et al. (2011); (15) Laskar et al. (2014); (16) Laskar et al. (2015).

Table 1.

Collected data of LGRBs. Coloumn (1): LGRB name, Column (2): duration, Column (3): redshift, Column (4): the isotropic radiated energy, Column (5): the isotropic kinetic energy, Column (6): the jet opening angle θj, Column (7): observatory, Column (8): references for Eγ,iso, Ek,iso, and θj.

GRBT90zEγ, isoEk,isoθjObservatoryRef.
(s)(1051erg)(1052erg) (deg)
970508 14.0 ± 3.6 0.8349 5.5 ± 0.6 0.99 ± 0.14 21.63 ± 1.67 BATSE 1, 2 
971214 31.23 ± 1.18 3.418 210.5 ± 25.8 8.48 ± 0.97 >5.54 ± 0.23 BATSE 1, 2 
980613 42.0 ± 22.1 1.0964 5.4 ± 1 1.22 ± 0.38 >12.57 ± 0.58 BeppoSAX 1, 2 
980703 76.0 ± 10.2 0.966 60.1 ± 6.6 2.41 ± 0.63 11.21 ± 0.81 BATSE 1, 2 
990123 63.30 ± 0.26 1.600 1437.9 ± 177.8 20.28 ± 1.85 4.93 ± 0.43 BATSE 1, 2 
990510 67.58 ± 1.86 1.619 176.3 ± 20.0 13.16 ± 1.12 3.36 ± 0.21 BATSE 1, 2 
990705 32.0 ± 1.4 0.84 256.0 ± 20.3 0.34 ± 0.12 5.33 ± 0.41 BATSE 1, 2 
991216 15.17 ± 0.09 1.02 535.4 ± 59.4 36.64 ± 1.79 4.57 ± 0.72 BATSE 1, 2 
000210 9.0 ± 1.4 0.846 169.3 ± 14.1 0.50 ± 0.12 >6.84 ± 0.28 BeppoSAX 1, 2 
000926 1.30 ± 0.59 2.0387 279.7 ± 99 9.97 ± 3.75 6.16 ± 0.31 BeppoSAX 1, 2 
010222 74.0 ± 4.1 1.4769 857.8 ± 21.7 22.79 ± 2.48 3.20 ± 0.13 BeppoSAX 1, 2 
011211 51.0 ± 7.6 2.1418 67.2 ± 8.6 71.32 ± 0.22 6.38 ± 0.40 BeppoSAX 1, 2 
020405 40.0 ± 2.2 0.6899 72.0 ± 9.2 4.6 ± 1.29 7.81 ± 0.93 BeppoSAX 1, 2 
021004 77.1 ± 2.6 2.3304 55.6 ± 7.2 8.35 ± 1.45 12.67 ± 4.51 HETE 1, 2 
030329a 33.1 ± 0.5 0.1685 15.1 ± 0.1 |$12.36_{-0.06}^{+0.05}$| 3.78 ± 0.05 HETE 3, 4, 5 
050315 96 ± 10 1.95 49 ± 15 |$512.40_{-65.58}^{+45.30}$| |$4.35_{-0.52}^{+0.46}$| Swift 4, 5, 6 
050318 32 ± 2 1.4436 16.9 ± 1.7 |$11.26_{-0.69}^{+0.87}$| 2.18 ± 0.40 Swift 4, 5, 7 
050319 139.4 ± 8.2 3.2425 44 ± 18 |$77.90_{-28.70}^{+20.50}$| |$2.18_{-0.40}^{+0.29}$| Swift 4, 7 
050505 63 ± 2 4.27 |$444_{-112}^{+80}$| |$237.83_{-49.20}^{+98.41}$| |$1.66_{-0.17}^{+0.34}$| Swift 4, 5, 8 
050525Ab 8.8 ± 0.5 0.606 23.2 ± 0.6 |$142.78_{-43.31}^{+40.58}$| 2.12 ± 0.47 Swift 4, 5, 9 
050820A 128.0 ± 106.9 2.6147 |$970_{-140}^{+310}$| |$537_{-95}^{+80}$| |$6.6_{-0.3}^{+0.5}$| Swift 10 
050904 183.6 ± 13.2 6.295 |$1325.5_{-400.7}^{+678.2}$| |$88.4_{-44.2}^{+86.3}$| 1.95 ± 0.29 Swift 5, 10 
050922C 4.1 ± 0.7 2.1992 |$99.3_{-12.7}^{+13.0}$| |$27.3_{-2.5}^{+2.8}$| 1.8 ± 0.3 Swift 11 
060124 298 ± 2 2.297 420 ± 50 |$578.87_{-12.66}^{+110.79}$| |$3.04_{-0.23}^{+0.52}$| Swift 4, 5, 12 
060206 5.0 ± 0.7 4.05 47.8 ± 207.9 386.76 ± 93.02 2.01 ± 0.06 Swift 5, 11 
060210 220 ± 70 3.9133 353 ± 19 |$1113.29_{-94.72}^{+105.39}$| |$1.20_{-0.12}^{+0.17}$| Swift 4, 5, 7 
060418 52 ± 1 1.4901 |$100_{-20}^{+70}$| |$0.12_{-0.01}^{+0.03}$| |$22.5_{-2.5}^{+0.9}$| Swift 10 
060526 258.8 ± 5.4 3.21 25.8 ± 2.6 |$15.58_{-0.21}^{+0.24}$| 3.61 ± 0.06 Swift 4, 5, 7 
060605 15.2 ± 2.3 3.773 28.3 ± 4.5 177.15 ± 13.12 1.55 ± 0.06 Swift 4, 5, 13 
060714 108.2 ± 6.4 2.71 182.2 ± 25.3 250.46 ± 248.11 1.15 ± 0.06 Swift 5, 11 
060908 18.0 ± 0.8 1.8836 44.1 ± 1.8 |$2017.68_{-504.42}^{+2522.09}$| |$0.46_{-0.06}^{+0.29}$| Swift 4, 5, 9 
061121 80 ± 21 1.3145 272 ± 18 |$83.32_{-4.88}^{+18.90}$| |$1.83_{-0.17}^{+0.34}$| Swift 4, 5, 9 
070125 63.0 ± 1.7 1.5477 |$957.6_{-87.4}^{+106.4}$| |$6.43_{-0.17}^{+0.9}$| 13.2 ± 0.6 Swift 10 
080319B 45.6 ± 0.4 0.9371 1440 ± 30 |$4.9_{-0.1}^{+3.2}$| |$7.0_{-0.1}^{+0.7}$| Swift 10 
081008 162.2 ± 25.0 1.967 |$99.8_{-23.1}^{+23.4}$| |$134.7_{-17.3}^{+18.3}$| 1.3 ± 0.4 Swift 11 
081203A 96.3 ± 11.8 2.1 |$377.5_{-179.2}^{+174.2}$| |$344.6_{-230.1}^{+224.4}$| 1.0 ± 0.6 Swift 11 
090323 133.1 ± 1.4 3.568 3300 ± 130 |$116_{-9}^{+13}$| |$2.8_{-0.1}^{+0.4}$| Fermi 14 
090328 57 ± 3 0.7354 96 ± 10 |$82_{-18}^{+28}$| |$4.2_{-0.8}^{+1.3}$| Fermi 14 
090423 10.3 ± 1.1 8.23 100 ± 30 |$340_{-140}^{+110}$| |$1.5_{-0.3}^{+0.7}$| Fermi 15 
090618 105.5 ± 1.7 0.54 |$256.6_{-92.2}^{+92.9}$| |$37.1_{-12.3}^{+12.2}$| 3.5 ± 1.3 Swift 11 
090902B 19.328 ± 0.286 1.8829 3200 ± 40 |$56_{-7}^{+3}$| 3.9 ± 0.2 Fermi 14 
090926A 20 ± 2 2.1062 1890 ± 30 6.8 ± 0.2 |$9_{-2}^{+4}$| Fermi 14 
091127a 7.1 ± 0.2 0.49034 |$14.9_{-1.9}^{+1.8}$| |$48.4_{-5.3}^{+5.9}$| 2.7 ± 0.4 Swift 11 
100418A 8 ± 2 0.6235 |$0.99_{-0.34}^{+0.63}$| |$3.6_{-0.7}^{+1}$| 20.9 ± 0.5 Swift 16 
120326A 11.8 ± 1.8 1.798 32 ± 1 14.0 ± 0.07 4.6 ± 0.2 Swift 16 
120404A 38.7 ± 4.1 2.876 90 ± 40 |$13.3_{-2.0}^{+3.5}$| 3.1 ± 0.3 Swift 16 
120521C 26.7 ± 0.4 6.0 190 ± 80 |$22_{-14}^{+37}$| |$3.0_{-1.1}^{+2.3}$| Swift 15 
130427Aa 162.83 ± 1.36 0.338 |$808.9_{-56.5}^{+49.6}$| |$157.7_{-11.0}^{+9.7}$| 3.8 ± 0.3 Swift 11 
GRBT90zEγ, isoEk,isoθjObservatoryRef.
(s)(1051erg)(1052erg) (deg)
970508 14.0 ± 3.6 0.8349 5.5 ± 0.6 0.99 ± 0.14 21.63 ± 1.67 BATSE 1, 2 
971214 31.23 ± 1.18 3.418 210.5 ± 25.8 8.48 ± 0.97 >5.54 ± 0.23 BATSE 1, 2 
980613 42.0 ± 22.1 1.0964 5.4 ± 1 1.22 ± 0.38 >12.57 ± 0.58 BeppoSAX 1, 2 
980703 76.0 ± 10.2 0.966 60.1 ± 6.6 2.41 ± 0.63 11.21 ± 0.81 BATSE 1, 2 
990123 63.30 ± 0.26 1.600 1437.9 ± 177.8 20.28 ± 1.85 4.93 ± 0.43 BATSE 1, 2 
990510 67.58 ± 1.86 1.619 176.3 ± 20.0 13.16 ± 1.12 3.36 ± 0.21 BATSE 1, 2 
990705 32.0 ± 1.4 0.84 256.0 ± 20.3 0.34 ± 0.12 5.33 ± 0.41 BATSE 1, 2 
991216 15.17 ± 0.09 1.02 535.4 ± 59.4 36.64 ± 1.79 4.57 ± 0.72 BATSE 1, 2 
000210 9.0 ± 1.4 0.846 169.3 ± 14.1 0.50 ± 0.12 >6.84 ± 0.28 BeppoSAX 1, 2 
000926 1.30 ± 0.59 2.0387 279.7 ± 99 9.97 ± 3.75 6.16 ± 0.31 BeppoSAX 1, 2 
010222 74.0 ± 4.1 1.4769 857.8 ± 21.7 22.79 ± 2.48 3.20 ± 0.13 BeppoSAX 1, 2 
011211 51.0 ± 7.6 2.1418 67.2 ± 8.6 71.32 ± 0.22 6.38 ± 0.40 BeppoSAX 1, 2 
020405 40.0 ± 2.2 0.6899 72.0 ± 9.2 4.6 ± 1.29 7.81 ± 0.93 BeppoSAX 1, 2 
021004 77.1 ± 2.6 2.3304 55.6 ± 7.2 8.35 ± 1.45 12.67 ± 4.51 HETE 1, 2 
030329a 33.1 ± 0.5 0.1685 15.1 ± 0.1 |$12.36_{-0.06}^{+0.05}$| 3.78 ± 0.05 HETE 3, 4, 5 
050315 96 ± 10 1.95 49 ± 15 |$512.40_{-65.58}^{+45.30}$| |$4.35_{-0.52}^{+0.46}$| Swift 4, 5, 6 
050318 32 ± 2 1.4436 16.9 ± 1.7 |$11.26_{-0.69}^{+0.87}$| 2.18 ± 0.40 Swift 4, 5, 7 
050319 139.4 ± 8.2 3.2425 44 ± 18 |$77.90_{-28.70}^{+20.50}$| |$2.18_{-0.40}^{+0.29}$| Swift 4, 7 
050505 63 ± 2 4.27 |$444_{-112}^{+80}$| |$237.83_{-49.20}^{+98.41}$| |$1.66_{-0.17}^{+0.34}$| Swift 4, 5, 8 
050525Ab 8.8 ± 0.5 0.606 23.2 ± 0.6 |$142.78_{-43.31}^{+40.58}$| 2.12 ± 0.47 Swift 4, 5, 9 
050820A 128.0 ± 106.9 2.6147 |$970_{-140}^{+310}$| |$537_{-95}^{+80}$| |$6.6_{-0.3}^{+0.5}$| Swift 10 
050904 183.6 ± 13.2 6.295 |$1325.5_{-400.7}^{+678.2}$| |$88.4_{-44.2}^{+86.3}$| 1.95 ± 0.29 Swift 5, 10 
050922C 4.1 ± 0.7 2.1992 |$99.3_{-12.7}^{+13.0}$| |$27.3_{-2.5}^{+2.8}$| 1.8 ± 0.3 Swift 11 
060124 298 ± 2 2.297 420 ± 50 |$578.87_{-12.66}^{+110.79}$| |$3.04_{-0.23}^{+0.52}$| Swift 4, 5, 12 
060206 5.0 ± 0.7 4.05 47.8 ± 207.9 386.76 ± 93.02 2.01 ± 0.06 Swift 5, 11 
060210 220 ± 70 3.9133 353 ± 19 |$1113.29_{-94.72}^{+105.39}$| |$1.20_{-0.12}^{+0.17}$| Swift 4, 5, 7 
060418 52 ± 1 1.4901 |$100_{-20}^{+70}$| |$0.12_{-0.01}^{+0.03}$| |$22.5_{-2.5}^{+0.9}$| Swift 10 
060526 258.8 ± 5.4 3.21 25.8 ± 2.6 |$15.58_{-0.21}^{+0.24}$| 3.61 ± 0.06 Swift 4, 5, 7 
060605 15.2 ± 2.3 3.773 28.3 ± 4.5 177.15 ± 13.12 1.55 ± 0.06 Swift 4, 5, 13 
060714 108.2 ± 6.4 2.71 182.2 ± 25.3 250.46 ± 248.11 1.15 ± 0.06 Swift 5, 11 
060908 18.0 ± 0.8 1.8836 44.1 ± 1.8 |$2017.68_{-504.42}^{+2522.09}$| |$0.46_{-0.06}^{+0.29}$| Swift 4, 5, 9 
061121 80 ± 21 1.3145 272 ± 18 |$83.32_{-4.88}^{+18.90}$| |$1.83_{-0.17}^{+0.34}$| Swift 4, 5, 9 
070125 63.0 ± 1.7 1.5477 |$957.6_{-87.4}^{+106.4}$| |$6.43_{-0.17}^{+0.9}$| 13.2 ± 0.6 Swift 10 
080319B 45.6 ± 0.4 0.9371 1440 ± 30 |$4.9_{-0.1}^{+3.2}$| |$7.0_{-0.1}^{+0.7}$| Swift 10 
081008 162.2 ± 25.0 1.967 |$99.8_{-23.1}^{+23.4}$| |$134.7_{-17.3}^{+18.3}$| 1.3 ± 0.4 Swift 11 
081203A 96.3 ± 11.8 2.1 |$377.5_{-179.2}^{+174.2}$| |$344.6_{-230.1}^{+224.4}$| 1.0 ± 0.6 Swift 11 
090323 133.1 ± 1.4 3.568 3300 ± 130 |$116_{-9}^{+13}$| |$2.8_{-0.1}^{+0.4}$| Fermi 14 
090328 57 ± 3 0.7354 96 ± 10 |$82_{-18}^{+28}$| |$4.2_{-0.8}^{+1.3}$| Fermi 14 
090423 10.3 ± 1.1 8.23 100 ± 30 |$340_{-140}^{+110}$| |$1.5_{-0.3}^{+0.7}$| Fermi 15 
090618 105.5 ± 1.7 0.54 |$256.6_{-92.2}^{+92.9}$| |$37.1_{-12.3}^{+12.2}$| 3.5 ± 1.3 Swift 11 
090902B 19.328 ± 0.286 1.8829 3200 ± 40 |$56_{-7}^{+3}$| 3.9 ± 0.2 Fermi 14 
090926A 20 ± 2 2.1062 1890 ± 30 6.8 ± 0.2 |$9_{-2}^{+4}$| Fermi 14 
091127a 7.1 ± 0.2 0.49034 |$14.9_{-1.9}^{+1.8}$| |$48.4_{-5.3}^{+5.9}$| 2.7 ± 0.4 Swift 11 
100418A 8 ± 2 0.6235 |$0.99_{-0.34}^{+0.63}$| |$3.6_{-0.7}^{+1}$| 20.9 ± 0.5 Swift 16 
120326A 11.8 ± 1.8 1.798 32 ± 1 14.0 ± 0.07 4.6 ± 0.2 Swift 16 
120404A 38.7 ± 4.1 2.876 90 ± 40 |$13.3_{-2.0}^{+3.5}$| 3.1 ± 0.3 Swift 16 
120521C 26.7 ± 0.4 6.0 190 ± 80 |$22_{-14}^{+37}$| |$3.0_{-1.1}^{+2.3}$| Swift 15 
130427Aa 162.83 ± 1.36 0.338 |$808.9_{-56.5}^{+49.6}$| |$157.7_{-11.0}^{+9.7}$| 3.8 ± 0.3 Swift 11 

Notes. The evidences for LGRBs associated with observable supernovae (SNe) according to the following scale (Hjorth & Bloom 2012; Melandri et al. 2014):

aStrong spectroscopic evidence.

bA clear light-curve bump as well as some spectroscopic evidence resembling a GRB-SN.

References:

(1) Lloyd-Ronning & Zhang (2004); (2) Bloom, Frail & Kulkarni (2003); (3) Zhang, Zhao & Zhang (2011); (4) Liang et al. (2008); (5) Lu et al. (2012); (6) Amati (2006); (7) Japelj et al. (2014); (8)Hurkett et al. (2006); (9) Nava et al. (2012); (10) Cenko et al. (2010); (11) Wang et al. (2015a); (12) Romano et al. (2006); (13) Ghirlanda et al. (2012); (14) Cenko et al. (2011); (15) Laskar et al. (2014); (16) Laskar et al. (2015).

Our sample contains 48 LGRBs as shown in Table 1. All data are taken from the literatures and Swift data archives. They are discovered and measured by the different telescopes including BeppoSAX, BATSE, HETE, Swift and Fermi. The isotropic radiated energy in the prompt emission phase Eγ,iso, redshift z, and the duration T90 are directly available from measurements. Ek,iso and θj can be estimated by the X-ray afterglow phase with the standard afterglow model. Moreover, due to the restricted observations of LGRB afterglows, it is difficult to obtain the accurate jet opening angles. In Table 1, the lower limits of the jet opening angles in some LGRB data are shown, which cause the calculated accreted masses lower. In this sample, we collect the data of T90, Eγ,iso, Ek,iso, and θj with errors because the results may depend on them.

Fig. 1 shows the distributions of the accreted masses for the different typical mean BH masses and spins and conversion efficiencies, which are respectively set to MBH/M = 3, 5, and 10, a* = 0.9, 0.95, and 0.998, and η = 0.2 and 0.5 corresponding to Figs 1 (a–i). It needs to be emphasized that the BHs in the centre of the collapsars should be rotating very rapidly, thus the spin parameters are set larger than 0.9 (e.g. Popham et al. 1999; Woosley & Heger 2006). It is obvious that larger central BHs will require more accreted mass. Conversely, the accreted mass is negatively correlated with the mean BH spin and conversion efficiency. In these cases, the mean spin parameters are definitely more effective on the values of the accreted masses than the mean BH masses. For the cases with a* = 0.9, 0.95, and 0.998, MBH = 3 M, and η = 0.2, about 67 per cent, 79 per cent, and 96 per cent LGRBs’ accreted masses are less than 8 M, respectively. If we consider a* = 0.998, MBH = 3 M, and η = 0.5, all the values of the accreted masses are less than 7 M. Obviously, if the accreted mass is larger than 7 M, the mean BH mass must be much larger than 3 M.

Figure 1.

Distributions of the accreted masses Macc for different typical mean BH masses MBH and spins a* and conversion efficiencies η.

According to these results, the accreted mass of most LGRBs are less than the simulation results of the disc mass, ∼5 M (e.g. MacFadyen & Woosley 1999; Popham, Woosley & Fryer 1999; Zhang, Woosley & MacFadyen 2003). Of course, there may still exist some LGRBs without the extreme Kerr low-mass BH in the centre or high efficiency, which need invoking alternative energy extraction mechanisms, such as BZ mechanism (e.g. Blandford & Znajek 1977; Lee, Brown & Wijers 2000b; Lee, Wijers & Brown 2000a; Yuan & Zhang 2012; Kawanaka et al. 2013; Hou et al. 2014a; Liu et al. 2015a).

CONCLUSIONS AND DISCUSSION

The goal of this work is to verify whether the NDAFs can account for the total energy of the prompt emission and afterglow phases in LGRBs. We collected data and calculated the distributions of the mean accreted masses for the reasonable states of the BH hyperaccretion system. As a result, most of LGRBs can be satisfied with the NDAFs, except for some extremely high energy cases. Additionally, one should stress that the accretion rate and the BH mass and spin we adopted are the mean quantity throughout the accretion process. Recently, we studied the effects of the evolution of the BH-NDAF system on the neutrino annihilation energy (Song et al. 2015), which has slight influences on the current results.

As mentioned above, increasing the neutrino emission rate or enhancing annihilation efficiency are the effective ways to improve the ability of NDAF model. For example, Liu et al. (2015b) presented that the vertical convection can suppress the radial advection, which effectively increase the neutrino emission rate. Moreover, Liu et al. (2010) investigated the vertical structure of the NDAF model. We noticed that the half-opening angle of the disc is actually very large, ∼80°. As mentioned in Birkl et al. (2007), the BH gravity can affect the traces of the neutrinos, especially for the neutrinos launched from the inner region of the disc, so they considered that the thin disc geometries are more efficient to raise the energy of the neutrino annihilation. But once the disc is extremely geometrically thick, the annihilable efficiency could be greatly enhanced due to the neutrinos trapped in a narrow space, even though some neutrinos falling into the BH.

BZ mechanism is another popular candidate for the energy sources of GRBs (e.g. Blandford & Znajek 1977; Lee et al. 2000b,a). Moreover, Yuan & Zhang (2012) proposed that the episodic magnetic reconnection from the disc, which is very similar to the events at the solar surface, can produce GRBs and subsequent flares. Additionally, the closed magnetic field lines connecting a BH with its surrounding disc can transfer the angular momentum and the energy, which may significantly enhance the neutrino luminosity (e.g. Lei et al. 2009; Luo et al. 2013). It should be emphasized that magnetar model is more dynamic than ever since ULGRBs and super-luminous SNe were observed (e.g. Wang & Dai 2013; Gao et al. 2015; Metzger et al. 2015; Wang et al. 2015b,c).

Furthermore, X-ray flares as the common features in GRB afterglows (e.g. Gehrels et al. 2004; Burrows et al. 2005; Chincarini et al. 2007) are not considered in this framework. They may have the similar origin with GRBs and ask for more extreme dynamic conditions and more massive accreted mass of the systems. Besides, the long ‘plateau’ phases (shallow decay phases) with more than thousands of seconds are generally observed in the X-ray afterglows (e.g. Zhang et al. 2006), which may require the energy injection from the central engine (e.g. Dai & Lu 1998; Zhang et al. 2006). Thus, the NDAF model has to confront more rigorous challenges.

We thank Bing Zhang, Ye Li, Shu-Jin Hou, and Hui-Jun Mu for beneficial discussion, and the anonymous referee for very useful suggestions and comments. This work was supported by the National Basic Research Program of China (973 Program) under grant 2014CB845800, the National Natural Science Foundation of China under grants 11274200, 11333004, 11373002, 11473022, 11573023, and U1331101, the Fundamental Research Funds for the Central Universities under grant 20720160024. TL acknowledges financial support from China Scholarship Council to work at UNLV.

REFERENCES

Aloy
M. A.
Janka
H.-T.
Müller
E.
2005
A&A
436
273

Amati
L.
2006
MNRAS
372
233

Birkl
R.
Aloy
M. A.
Janka
H.-T.
Müller
E.
2007
A&A
463
51

Blandford
R. D.
Znajek
R. L.
1977
MNRAS
179
433

Bloom
J. S.
Frail
D. A.
Kulkarni
S. R.
2003
ApJ
594
674

Burrows
D. N.
et al. 
2005
Science
309
1833

Cenko
S. B.
et al. 
2010
ApJ
711
641

Cenko
S. B.
et al. 
2011
ApJ
732
29

Chen
W. X.
Beloborodov
A. M.
2007
ApJ
657
383

Chincarini
G.
et al. 
2007
ApJ
671
1903

Dai
Z. G.
2004
ApJ
606
1000

Dai
Z. G.
Lu
T.
1998
A&A
333
L87

Di Matteo
T.
Perna
R.
Narayan
R.
2002
ApJ
579
706

Eichler
D.
Livio
M.
Piran
T.
Schramm
D. N.
1989
Nature
340
126

Fan
Y.-Z.
Wei
D.-M.
2011
ApJ
739
47

Gao
H.
Ding
X.
Wu
X.-F.
Dai
Z.-G.
Zhang
B.
2015
ApJ
807
163

Gehrels
N.
et al. 
2004
ApJ
611
1005

Gehrels
N.
et al. 
2006
Nature
444
1044

Ghirlanda
G.
Nava
L.
Ghisellini
G.
Celotti
A.
Burlon
D.
Covino
S.
Melandri
A.
2012
MNRAS
420
483

Gu
W.-M.
Liu
T.
Lu
J.-F.
2006
ApJ
643
L87

Hjorth
J.
Bloom
J. S.
2012
Kouveliotou
C.
Wijers
R. A. M. J.
Woosley
S.
Gamma-Ray Bursts, Cambridge Astrophysics Series 51
Cambridge Univ. Press
Cambridge
169

Hou
S.-J.
et al. 
2014a
MNRAS
441
2375

Hou
S.-J.
et al. 
2014b
ApJ
781
L19

Hurkett
C. P.
et al. 
2006
MNRAS
368
1101

Janiuk
A.
Mioduszewski
P.
Moscibrodzka
M.
2013
ApJ
776
105

Janka
H.-T.
Aloy
M.-A.
Mazzali
P. A.
Pian
E.
2006
ApJ
645
1305

Japelj
J.
et al. 
2014
ApJ
785
84

Kawanaka
N.
Mineshige
S.
2007
ApJ
662
1156

Kawanaka
N.
Piran
T.
Krolik
J. H.
2013
ApJ
766
31

Kluźniak
W.
Lee
W. H.
1998
ApJ
494
L53

Kohri
K.
Mineshige
S.
2002
ApJ
577
311

Kohri
K.
Narayan
R.
Piran
T.
2005
ApJ
629
341

Kouveliotou
C.
Meegan
C. A.
Fishman
G. J. Bhat N. P.
Briggs
M. S.
Koshut
T. M.
Paciesas
W. S.
Pendleton
G. N.
1993
ApJ
413
L101

Kumar
P.
Zhang
B.
2015
Phys. Rep.
561
1

Laskar
T.
et al. 
2014
ApJ
781
1

Laskar
T.
Berger
E.
Margutti
R.
Perley
D.
Zauderer
B. A.
Sari
R.
Fong
W.-f.
et al. 
2015
ApJ
814
1

Lee
W. H.
Kluźniak
W.
1999
ApJ
526
178

Lee
H. K.
Wijers
R. A. M. J.
Brown
G. E.
2000a
Phys. Rep.
325
83

Lee
H. K.
Brown
G. E.
Wijers
R. A. M. J.
2000b
ApJ
536
416

Lei
W.-H.
Wang
D.-X.
Zhang
L.
Gan
Z. M.
Zou
Y. C.
Xie
Y.
2009
ApJ
700
1970

Li
A.
Liu
T.
2013
A&A
555
A129

Liang
E.-W.
Racusin
J. L.
Zhang
B.
Zhang
B.-B.
Burrows
D. N.
2008
ApJ
675
528

Liu
T.
Gu
W.-M.
Xue
L.
Lu
J.-F.
2007
ApJ
661
1025

Liu
T.
Gu
W.-M.
Xue
L.
Weng
S.-S.
Lu
J.-F.
2008
ApJ
676
545

Liu
T.
Gu
W.-M.
Dai
Z.-G.
Lu
J.-F.
2010
ApJ
709
851

Liu
T.
Gu
W.-M.
Xue
L.
Lu
J.-F.
2012a
Ap&SS
337
711

Liu
T.
Liang
E.-W.
Gu
W.-M.
Hou
S.-J.
Lei
W.-H.
Lin
L.
Dai
Z.-G.
Zhang
S.-N.
2012b
ApJ
760
63

Liu
T.
Xue
L.
Gu
W.-M.
Lu
J.-F.
2013
ApJ
762
102

Liu
T.
Hou
S.-J.
Xue
L.
Gu
W.-M.
2015a
ApJS
218
12

Liu
T.
Gu
W.-M.
Kawanaka
N.
Li
A.
2015b
ApJ
805
37

Liu
T.
Lin
Y.-Q.
Hou
S.-J.
Gu
W.-M.
2015c
ApJ
806
58

Liu
T.
Xue
L.
Zhao
X.-H.
Zhang
F.-W.
Zhang
B.
2015d
preprint (arXiv:1511.02800)

Liu
T.
Zhang
B.
Ma
R.-Y.
Xue
L.
2015e
preprint (arXiv:1512.07203)

Lloyd-Ronning
N. M.
Zhang
B.
2004
ApJ
613
477

H.-J.
Zhang
B.
2014
ApJ
785
74

Lu
R.-J.
Wei
J.-J.
Qin
S.-F.
Liang
E.-W.
2012
ApJ
745
168

Luo
Y.
Gu
W.-M.
Liu
T.
Lu
J.-F.
2013
ApJ
773
142

MacFadyen
A. I.
Woosley
S. E.
1999
ApJ
524
262

Mao
Z.
Yu
Y. W.
Dai
Z. G.
Pi
C. M.
Zheng
X. P.
2010
A&A
518
A27

Melandri
A.
et al. 
2014
A&A
567
A29

Metzger
B. D.
Quataert
E.
Thompson
T. A.
2008
MNRAS
385
1455

Metzger
B. D.
Giannios
D.
Thompson
T. A.
Bucciantini
N.
Quataert
E.
2011
MNRAS
413
2031

Metzger
B. D.
Margalit
B.
Kasen
D.
Quataert
E.
2015
MNRAS
454
3311

Nakar
E.
2007
Phys. Rep.
442
166

Nakauchi
D.
Kashiyama
K.
Suwa
Y.
Nakamura
T.
2013
ApJ
778
67

Narayan
R.
Paczyński
B.
Piran
T.
1992
ApJ
395
L83

Narayan
R.
Piran
T.
Kumar
P.
2001
ApJ
557
949

Nathanail
A.
Contopoulos
I.
2015
MNRAS
453
L1

Nava
L.
et al. 
2012
MNRAS
421
1256

Popham
R.
Woosley
S. E.
Fryer
C.
1999
ApJ
518
356

Romano
P.
et al. 
2006
A&A
456
917

Romero
G. E.
Reynoso
M. M.
Christiansen
H. R.
2010
A&A
524
A4

Sakamoto
T.
et al. 
2008
ApJS
175
179

Sakamoto
T.
et al. 
2011
ApJS
195
2

Song
C.-Y.
Liu
T.
Gu
W.-M.
Hou
S.-J.
Tian
J.-X.
Lu
J.-F.
2015
ApJ
815
54

Sun
M.-Y.
Liu
T.
Gu
W.-M.
Lu
J.-F.
2012
ApJ
752
31

Suwa
Y.
Murase
K.
2009
Phys. Rev. D
80
123008

Thompson
T. A.
Chang
P.
Quataert
E.
2004
ApJ
611
380

Usov
V. V.
1992
Nature
357
472

Wang
L.-J.
Dai
Z.-G.
2013
ApJ
774
L33

Wang
X.-G.
et al. 
2015a
ApJS
219
9

Wang
S. Q.
Wang
L. J.
Dai
Z. G.
Wu
X. F.
2015b
ApJ
799
107

Wang
S. Q.
Liu
L. D.
Dai
Z. G.
Wang
L. J.
Wu
X. F.
2015c
preprint (arXiv:1509.05543)

Wheeler
J. C.
Yi
I.
Höflich
P.
Wang
L.
2000
ApJ
537
810

Woosley
S. E.
1993
ApJ
405
273

Woosley
S. E.
Heger
A.
2006
ApJ
637
914

Xue
L.
Liu
T.
Gu
W.-M.
Lu
J.-F.
2013
ApJS
207
23

Yang
B.
et al. 
2015
Nat. Commun.
6
7323

Yuan
F.
Zhang
B.
2012
ApJ
757
56

Zalamea
I.
Beloborodov
A. M.
2011
MNRAS
410
2302

Zhang
W.
Woosley
S. E.
MacFadyen
A. I.
2003
ApJ
586
356

Zhang
B.
Fan
Y. Z.
Dyks
J.
Kobayashi
S.
Mszros
P.
Burrows
D. N.
Nousek
J. A.
Gehrels
N.
2006
ApJ
642
354

Zhang
Z.
Zhao
Y.
Zhang
Y.
2011
Ap&SS
333
89

Zhang
F.-W.
Shao
L.
Yan
J.-Z.
Wei
D.-M.
2012
ApJ
750
88