ABSTRACT

For the first time, the sulphur abundance relative to hydrogen (S/H) in the narrow-line regions of a sample of Seyfert 2 nuclei (Sy 2s) has been derived via direct estimation of the electron temperature. Narrow emission-line intensities from the Sloan Digital Sky Survey (SDSS) Data Release 17 (DR17) [in the wavelength range 3000 < λ(Å) < 9100] and from the literature for a sample of 45 nearby (z < 0.08) Sy 2s were considered. Our direct estimates indicate that Sy 2s have similar temperatures in the gas region where most of the |$\rm S\rm ^{+}$| ions are located in comparison with that of star-forming regions (SFs). However, Sy 2s present higher temperature values (⁠|${\sim} 10\, 000$| K) in the region where most of the |$\rm S\rm ^{2+}$| ions are located relative to that of SFs. We derive the total sulphur abundance in the range of |$6.2 \: \lesssim 12+\log (\rm S/H) \: \lesssim \: 7.5$|⁠, corresponding to 0.1–1.8 times the solar value. These sulphur abundance values are lower by ∼0.4 dex than those derived in SFs with similar metallicity, indicating a distinct chemical enrichment of the interstellar medium (ISM) for these object classes. The sulphur abundance relative to oxygen (S/O) values for our Sy 2 sample present an abrupt (∼0.5 dex) decrease with increasing oxygen abundance relative to hydrogen (O/H) for the high-metallicity regime [|$\rm 12+\log (O/H) \: \gtrsim 8.7)$|], what is not seen for the SFs. However, when our Sy 2 estimates are combined with those from a large sample of SFs, we did not find any dependence between S/O and O/H.

1 INTRODUCTION

Sulphur is mainly produced via α-capture in the inner layers of massive stars (e.g. Woosley & Weaver 1995; Nomoto, Kobayashi & Tominaga 2013) and it is a truly non-refractory element in the interstellar medium (ISM). Because of these features, the sulphur abundance and its abundance relation with the oxygen (S/O) place constraints on stellar nucleosynthesis calculations, variations of the initial mass function (IMF) of stars and in the analysis of the oxygen depletion on to dust grains (e.g. Garnett 1989; Savage & Sembach 1996; Henry, Kwitter & Balick 2004).

Over time, several studies have obtained sulphur (and other α-elements) and oxygen abundances in star-forming regions (H ii regions and H ii galaxies, hereafter SFs; e.g. Pagel 1978; Shields & Searle 1978; Vilchez et al. 1988; Christensen, Petersen & Gammelgaard 1997; Garnett et al. 1997; Vermeij & van der Hulst 2002; Kennicutt, Bresolin & Garnett 2003; Pérez-Montero et al. 2006; Hägele et al. 2008; López-Sánchez & Esteban 2009; Berg et al. 2013, 2020; Dors et al. 2016; Fernández et al. 2019; Arellano-Córdova et al. 2020; Rogers et al. 2021). However, the S/O versus O/H relation is still ill-defined. In fact, some authors (e.g. Vilchez et al. 1988; Díaz et al. 1991; Dors et al. 2016; Díaz & Zamora 2022) have found evidence that S/O decreases as O/H increases. On the other hand, constant S/O abundance over a wide range of O/H (a gas phase metallicity tracer)1 is supported by a growing body of studies (e.g. Garnett 1989; Kennicutt et al. 2003; Izotov et al. 2006; Guseva et al. 2011; Berg et al. 2020; Rogers et al. 2021).

Abundance estimates in stellar atmospheres, derived from absorption features, have confirmed the above contradictory results and several scenarios have been reported: (i) a constant increase of the S/Fe abundance ratio as metallicity2 decreases (e.g. Israelian & Rebolo 2001; Takada-Hidai et al. 2002); (ii) an increase of S/Fe followed by a constant value at the metal-poor regime as metallicity decreases (Nissen et al. 2004, 2007); and (iii) a bimodal behaviour of S/Fe at the metal-poor regime (Caffau et al. 2005). However, recent chemical abundance determinations in stellar atmospheres have found a decrease of S/Fe with increasing Fe/H (Costa Silva, Delgado Mena & Tsantaki 2020; Lucertini et al. 2022). In additional, stellar abundance results from the AMBRE Project (Perdigon et al. 2021), which contain the largest sulfur estimates in Galactic stars, clearly found a decrease of S/Fe with increasing stellar metallicties (see also Recio-Blanco et al. 2022; Gaia Collaboration et al. 2022). Interestingly, abundance estimates based on absorption lines in damped Lyα (DLA) systems (Centurión et al. 2000) showed a decrease of S/Zn with the increase of Zn/H (a metallicity tracer; Pettini et al. 1997), indicating that α-element burning happens at different times for different elements in massive stars (see also Bonifacio et al. 2001; Prochaska & Wolfe 2002; Fathivavsari et al. 2013; Fox, Richter & Fechner 2014). However, gas-phase abundances in DLAs must be corrected for dust depletion effects, producing additional difficulties in the interpretation of abundance ratio trends (e.g. Roman-Duval et al. 2022).

Sulphur and oxygen abundances have also been largely derived for planetary nebulae (PNe; e.g. Barker 1980; Aller & Czyzak 1983; Costa, Uchida & Maciel 2004; Bernard-Salas et al. 2008; Cavichia et al. 2017; Pagomenos, Bernard-Salas & Pottasch 2018; Walsh et al. 2018; Espíritu & Peimbert 2021; García-Rojas et al. 2022). In particular, Fang et al. (2018), who combined S and O abundances, obtained a clear decrease of S/O with O/H for 10 PNe in the Andromeda Galaxy (M31) with estimates relying on data from the literature. Additionally, these authors found that their sample of PNe have abundance estimates ∼0.2–0.4 dex lower than the expected sulphur-to-oxygen abundance solar value assuming |$\rm \log (S/O)_{\odot }={-}1.43$| (Grevesse & Sauval 1998; Allende Prieto, Lambert & Asplund 2001). This discrepancy has previously been attributed to the inadequacy of the ionization correction factors (ICFs) used to correct the presence of unobserved sulphur ions (the so-called ‘sulphur anomaly’) by Henry et al. (2004) and Milingo et al. (2010). However, the PN abundance estimates by Fang et al. (2018) are in agreement with those derived in H ii regions also located at the Andromeda Galaxy by Zurita & Bresolin (2012), confirming their results. Moreover, Delgado-Inglada, Morisset & Stasińska (2014), who computed a large grid of photoionization models that covers a wide range of physical parameters and is representative of most observed PNe, proposed a robust ICF for the sulphur and, by using optical observational data for a large sample, confirmed that S/O decreases with O/H. However, it is worth to mention that, contrary to presently accepted thinking, Jenkins (2009) showed that sulphur can deplete by up to ∼1 dex, which might account for some of the decrease observed.

Contrary to SFs, stars, DLA systems, and PNe, the sulphur abundance is poorly known in active galactic nuclei (AGNs) or only qualitative estimates are available in the literature. The first (qualitative) sulphur estimates for this class of objects seem to have been performed by Storchi-Bergmann & Pastoriza (1990), who compared the intensity of the [N ii](λλ6548, 6584)/Hα and [S ii](λλ6716, 31)/Hα line ratios predicted by photoionization models with observational data from a sample of 177 Seyfert 2 galaxies. These authors found that models assuming sulphur abundances ranging from half to five times the solar abundance reproduce the observational data. These estimates can be somewhat uncertain because the model fittings by Storchi-Bergmann & Pastoriza (1990) do not consider the lines emitted by |$\rm S^{2+}$|⁠, which can be the most abundant sulphur ion and occurs as a result of high ionization degree of the AGNs (e.g. Richardson et al. 2014; Pérez-Díaz et al. 2021).

Recently, Dors et al. (2020b) proposed a new methodology for the Te method – a conventional and reliable method (Pilyugin 2003; Toribio San Cipriano et al. 2017) based on direct estimates of the electron temperature (for a review see Peimbert, Peimbert & Delgado-Inglada 2017; Pérez-Montero 2017) – which makes it possible to estimate the O/H abundance in Seyfert 2 nuclei (hereafter Sy 2s). Further studies based on this methodology, for the first time, permitted direct abundance estimates of the argon (Monteiro & Dors 2021), neon (Armah et al. 2021), and helium (Dors et al. 2022) in the narrow-line regions (NLRs) of a large sample of Sy 2s. Generally, this class of AGN presents solar or oversolar metallicities (⁠|$\rm 12+\log (O/H) \gtrsim 8.7$|⁠; e.g. Shields & Searle 1978; Groves, Heckman & Kauffmann 2006; Dors et al. 2020a) and gas with high ionization. These features make it possible to measure some auroral lines (e.g. [O iii]λ4363, [N ii]λ5755) in the high-metallicity regime, which are difficult to detect in SFs (e.g. van Zee et al. 1998; Díaz et al. 2007; Dors O. L. et al. 2008). However, it is worthwhile to point out some difficulties in applying the Te method to derive abundances in AGNs, for instance: (i) due to the large width of Hγ, in several cases, this Balmer line is blended with the temperature-sensitive auroral line [O iii]λ4363 in AGN spectra; (ii) although AGNs have a high ionization degree, its high metallicity (e.g. Groves et al. 2006) produces measurements of [O iii]λ4363 with low signal-to-noise ratio (S/N), which translates into a large abundance uncertainty (e.g. Dors et al. 2022); and (iii) temperature estimates from distinct gas regions in AGNs are barely found in the literature, making it difficult to carry out any statistical study. In any case, with the current observational data and methodologies available in the literature it is possible to obtain (relatively) precise sulphur and oxygen abundances, producing important constraints to the studies of stellar nucleosynthesis in the high-metallicity regime. In fact, even the recent stellar nucleosynthesis models (e.g. Ritter et al. 2018) do not consider oversolar metallicities despite metallicity has an impact on the stellar product (e.g. Gronow et al. 2021).

Taking advantage of the availability of spectroscopic data of Sy 2s in the literature, data provided by the Sloan Digital Sky Survey (SDSS; York et al. 2000), and motivated by the new methodology proposed by Dors et al. (2020b), in this work, the last in a series of 10 papers, we present direct S and O abundance estimates for the NLRs of a sample of 45 Sy 2s. This study is organized as follows. In Section 2, the observational data are presented. The methodology used to estimate the sulphur and oxygen abundances is presented in Section 3. The results and discussion are given in Section 4. Finally, the key findings are summarized in Section 5.

2 OBSERVATIONAL DATA

In order to obtain a sample of Sy 2s with observational intensities of narrow (full width at half-maximum |${\lt} 1000\, \rm km\, s^{-1}$|⁠) optical emission lines, we used spectroscopic data made available through the SDSS Data Release 17 (DR17; Abdurro’uf et al. 2022).3 In this study, the procedures for selection of Sy 2s, emission-line measurements, reddening correction, and the stellar population continuum subtraction were the same as described by Dors et al. (2022), therefore, we summarized these processes below.

For each spectrum downloaded from the SDSS DR17, we performed the extinction correction using the Cardelli, Clayton & Mathis (1989) law assuming the parametrized extinction coefficient RV = 3.1. Thereafter, the stellar population continuum was subtracted from the spectra to obtain the pure nebular spectra using the stellar population synthesis starlight code (Cid Fernandes et al. 2005; Mateus et al. 2006; Vale Asari et al. 2016). The emission lines were fitted using the publicly available ifscube package (Ruschel-Dutra & Dall’Agnol De Oliveira 2020; Ruschel-Dutra et al. 2021). The fluxes were corrected for extinction following the procedure described by Riffel et al. (2021b), where the observational Hα/Hβ line ratio was compared with the theoretical value (Hα/Hβ) = 2.86 proposed by Hummer & Storey (1987) for a temperature of 10 000 K and an electron density of 100 |$\rm cm^{-3}$|⁠. From the resulting sample, we selected only the objects that present the [O ii]λ3726, λ3729 (hereafter [O ii]λ3727), [O iii]λ4363, Hβ, [O iii]λ5007, Hα, [N ii]λ6584, [S ii]λ6716, λ6731, and [S iii]λ9069 emission lines with an S/N higher than 2.0. Although the presence of the [N ii]λ5755 and [S iii]λ6312 auroral lines was not considered as selection criteria, when detected with (S/N) > 2 in the archival public data, their intensities were compiled.

Additionally, we also compiled from the literature emission-line intensities of Sy 2 nuclei obtained by different authors and applying the same selection criteria used for the SDSS data, with exception of the presence of the [S iii]λ9069 line, which is not measured in most of the available data. In these cases, a cross-correlation was performed between the objects with optical data and those whose [S iii]λ9069 was measured by Riffel, Rodríguez-Ardila & Pastoriza (2006), who presented a near-infrared (0.8–2.4 |$\mu$|m interval) spectral atlas of 47 AGNs. Initially, for each selected object, the [S iii]λ9069 fluxes from Riffel et al. (2006) were divided by the Paβ flux. Thereafter, in order to obtain the [S iii]λ9069 in relation to Hβ, the (Paβ/Hβ) = 0.162 theoretical ratio (Osterbrock 1989) was assumed for a temperature of 10 000 K and an electron density of 100 |$\rm cm^{-3}$|⁠. A similar procedure was performed by Binette et al. (2012).

Finally, for the entire sample, we applied the criterion proposed by Kewley et al. (2001),

$$\begin{eqnarray} \rm log([O\,\small{III}]\lambda 5007/H\beta) \gt \frac{0.61}{log([N\,\small{II}]\lambda 6584/H\alpha)-0.47}+1.19, \\ \end{eqnarray}$$
(1)

to separate SF-like and AGN-like objects and the criterion proposed by Cid Fernandes et al. (2010),

$$\begin{eqnarray} \rm log([O\,\small{III}]\lambda 5007/H\beta) \gt 0.47+log([N\,\small{II}]\lambda 6584/H\alpha)\times 1.10, \\ \end{eqnarray}$$
(2)

to separate AGN-like and low-ionization nuclear emission-line region (LINER) objects. The final sample resulted in 45 Sy 2 nuclei, which is composed of 33 objects from SDSS data set (redshift z < 0.08) and 12 objects from the literature (redshift z < 0.04).

The reduced number of objects (33) resulting from the SDSS data base is mainly due to two selection criteria. First, the requirement for [O iii]λ4363 measured at |$\rm (S/N)\: \gt \: 2$| makes it possible to select only 110 objects from a total of 333 Seyfert 2 nuclei. A similar sample size was obtained by Flury & Moran (2020), where the Te method was applied in only 180 objects (see also Vaona et al. 2012; Dors et al. 2020a) selected from the SDSS Data Release 8 (DR8; Aihara et al. 2011). Second, the requirement for the presence of both [O ii]λ3727 and [S iii]λ9069 reduced our sample from 110 to only 33 objects. Izotov et al. (2006), who considered the SDSS Data Release 3 (DR3; Abazajian et al. 2005) data base to estimate elemental abundances in SFs, also reported the difficulty in measuring both [O ii]λ3727 and [S iii]λ9069 lines, mainly for galaxies at |$z \: \lesssim \: 0.02$|⁠.

In Fig. 1, an example of a pure Sy 2 nebular spectrum (in black) from the SDSS sample and the fitting (in red) produced by the ifscube package are shown. In Table A1, the reddening-corrected emission-line intensities (in relation to Hβ = 1.0) and the literature references from which the data were compiled are listed. In this table, the theoretical relation I(λ9069) = 0.40 × I(λ9532) between the [S iii] emission lines is assumed.

Optical spectrum (black colour) for one of the Seyfert 2 nuclei in our sample (see Section 2) obtained from the SDSS DR17. The fitting to the emission-line profiles using the ifscube code is represented in red colour. The measured emission-lines and their corresponding wavelengths are indicated. Boxes show enlargements of regions around some weak lines, as indicated.
Figure 1.

Optical spectrum (black colour) for one of the Seyfert 2 nuclei in our sample (see Section 2) obtained from the SDSS DR17. The fitting to the emission-line profiles using the ifscube code is represented in red colour. The measured emission-lines and their corresponding wavelengths are indicated. Boxes show enlargements of regions around some weak lines, as indicated.

In Fig. 2, a log([O iii]λ5007/Hβ) versus log([N ii]λ6584/Hβ) diagnostic diagram, the observational data, and the above criteria (equations 1 and 2) are shown. It can be seen that the Sy 2 sample covers a large range of ionization degree and metallicity, since a wide range of [O iii]/Hβ and [N ii]/Hα line ratio intensities is seen (e.g. Groves et al. 2006; Feltre, Charlot & Gutkin 2016; Carvalho et al. 2020).

log([O iii]λ5007/Hβ) versus log([N ii]λ6584/Hα]) diagnostic diagram. Red points represent the Sy 2 nuclei in our sample (see Section 2). The black solid curve represents the criterion (equation 1) proposed by Kewley et al. (2001) to separate AGN-like and SF-like objects. The black solid line represents the criterion (equation 2) proposed by Cid Fernandes et al. (2010) to separate AGN-like objects and LINERs.
Figure 2.

log([O iii]λ5007/Hβ) versus log([N ii]λ6584/Hα]) diagnostic diagram. Red points represent the Sy 2 nuclei in our sample (see Section 2). The black solid curve represents the criterion (equation 1) proposed by Kewley et al. (2001) to separate AGN-like and SF-like objects. The black solid line represents the criterion (equation 2) proposed by Cid Fernandes et al. (2010) to separate AGN-like objects and LINERs.

The observational data sample is heterogeneous, in the sense that the spectra were obtained with distinct instrumentation (e.g. long-slit, fiber spectroscopy), aperture, reddening correction procedures, etc. These features could produce artificial scattering or biases in the derived abundances. Dors et al. (2020a, 2021) and Armah et al. (2021) presented a complete discussion on the use of a heterogeneous sample and its possible implications on abundance estimates. These authors pointed out that the effects of considering such a heterogeneous sample on abundance estimates produce uncertainties of ∼0.1 dex, i.e. in the same order or even lower than those derived by applying the Te method (e.g. Kennicutt et al. 2003; Hägele et al. 2008) and strong-line methods (e.g. Storchi-Bergmann et al. 1998; Denicoló, Terlevich & Terlevich 2002). Moreover, Kewley, Jansen & Geller (2005) presented a detailed analysis of the effect of considering different apertures on the determinations of physical parameters of galaxies. These authors found that for aperture capturing less than 20 per cent of the total galaxy emission, the derived metallicity can differ by a factor of about 0.14 dex from the value obtained when the total galaxy emission is considered. However, only abundances of the nuclear regions are being considered here; therefore, the aperture effect on our estimates is not significant. Additional analysis of uncertainties in abundance estimates derived from distinct instrumentation and/or aperture has been addressed, for instance, by Mannucci et al. (2021), who analysed the diffuse ionized gas (DIG) contribution to the nebular emission of SFs. These authors, specifically, found that the [S ii] line fluxes tend to be more affected in comparison with other optical line fluxes. Mannucci et al. (2021) also found that when spectra of local H ii regions are extracted using large enough apertures while still avoiding the DIG, the observed line ratios are the same as in more distant galaxies. Therefore, there should not be any bias in our sample as a result of the usage of different instruments (see also Arellano-Córdova et al. 2022; Pilyugin et al. 2022). However, the requirement for the presence of the weak [O iii]λ4363 line (about 100 times weaker than Hβ) in the SDSS spectra yields a bias in our analysis, in the sense that objects with very high metallicity, where the gas suffers strong cooling and the electron temperature is low enough not to produce significant emission of this line, are mostly excluded. In fact, for instance, Dors et al. (2020a) selected from the SDSS DR7 data base (Abazajian et al. 2009), 463 confirmed Sy2 spectra with only 150 objects having [O iii]λ4363 measured with |$\rm (S/N)\: \gt \: 2$| and from these, only 36/150 have oversolar metallicity according to the Te method applied by Dors et al. (2020b). Thus, abundance determinations obtained in this study do not extend to objects with the highest expected metallicity (see also van Zee et al. 1998; Izotov et al. 2006; Flury & Moran 2020).

Another issue is the SF emission contribution to our AGN spectra, which can have a greater impact on the observed line fluxes for the most distant objects. Davies et al. (2014) presented a spatially resolved study of the active galaxy NGC 7130 (z = 0.016) and found that SFs are responsible for 30 per cent and 65 per cent of the [O iii] and Hα luminosity, respectively. Moreover, Vidal-García et al. (2022) compared results from the NLR photoionization models (Feltre et al. 2016) incorporated into the beagle (Bayesian spectra energy distribution – SED – fitting; Chevallard & Charlot 2016) code with observational spectroscopic data and showed that the SF Hβ flux contribution to the total nuclear flux of an active galaxy can range from 0 per cent to 50 per cent. However, we emphasize that, in principle, the SF flux contribution has a minimal effect on AGN abundance estimates when a sample of objects is considered. This assertion is supported by Thomas et al. (2019), who demonstrated that the aperture effect (and consequently SF contribution) has a negligible impact on metallicity estimates once comparable mass–metallicity relations for galaxies in four redshift bins were considered.

Since the [S iii] lines of Seyfert galaxies are rarely found in the literature due to the fact that they are located in the near-infrared that there are few instruments operating, it is worthwhile to compare their emission-line flux ratios with those of SFs. In this regard, we consider emission-line intensities of H ii galaxies (44 objects) and giant H ii regions (GHRs, 34 objects) presented by Hägele et al. (2006, 2008, 2011, 2012). Besides, we compare the Sy 2 emission lines considered in this work with those from 378 disc H ii regions located in six local spiral galaxies, which have been made available by the chaos project,4 and presented by Berg et al. (2015, 2020), Croxall et al. (2015, 2016), and Rogers et al. (2021, 2022). This comparison (see also Díaz & Zamora 2022) is shown in Fig. 3. A clear correlation is derived between the two data set since both line ratios are dependent on the ionization degree of the gas. Interestingly, Sy 2 nuclei present similar [S iii]/[S ii] line ratio intensities to those of SFs. The Sy 2 [O iii]/[O ii] line ratio intensities are in consonance with those of H ii galaxies and GHRs and are higher than those from disc H ii regions.

Logarithm of [O iii]λ5007/[O ii]λ3727 versus [S iii]λ9069 + λ9532/[S ii]λ6716 + λ6731. Red points represent the Sy 2 sample (see Section 2) whose emission line intensities are listed in Table A1. Black points represent disc H ii regions whose data were taken from the chaos project and obtained by Berg et al. (2015, 2020), Croxall et al. (2015, 2016), and Rogers et al. (2021, 2022). Blue points represent H ii galaxies taken from Hägele et al. (2006, 2008, 2011, 2012), and pink points represent GHRs taken from Hägele et al. (2006).
Figure 3.

Logarithm of [O iii]λ5007/[O ii]λ3727 versus [S iii]λ9069 + λ9532/[S ii]λ6716 + λ6731. Red points represent the Sy 2 sample (see Section 2) whose emission line intensities are listed in Table A1. Black points represent disc H ii regions whose data were taken from the chaos project and obtained by Berg et al. (2015, 2020), Croxall et al. (2015, 2016), and Rogers et al. (2021, 2022). Blue points represent H ii galaxies taken from Hägele et al. (2006, 2008, 2011, 2012), and pink points represent GHRs taken from Hägele et al. (2006).

3 ABUNDANCE ESTIMATES

For the Sy 2 sample previously described, we determined the sulphur and oxygen abundances relative to hydrogen. To do that, electron temperatures representing the zones where distinct ions are located in the gas phase, electron density, and ionic abundances were calculated using the 1.1.13 version of PyNeb code (Luridiana et al. 2015), which permits an interactive procedure in the derivation of these parameters. The references for the predefined atomic parameters incorporated into the PyNeb code are listed in Table 1.

Table 1.

Atomic data set used for collisionally excited lines of selected element ions.

IonTransition probabilitiesCollisional strengths
S+Froese Fischer, Tachiev & Irimia (2006)Tayal & Zatsarinny (2010)
S2+Froese Fischer et al. (2006)Tayal & Gupta (1999)
O+Wiese, Fuhr & Deters (1996)Kisielius et al. (2009)
O2+Froese Fischer & Tachiev (2004), Storey & Zeippen (2000)Storey, Sochi & Badnell (2014)
IonTransition probabilitiesCollisional strengths
S+Froese Fischer, Tachiev & Irimia (2006)Tayal & Zatsarinny (2010)
S2+Froese Fischer et al. (2006)Tayal & Gupta (1999)
O+Wiese, Fuhr & Deters (1996)Kisielius et al. (2009)
O2+Froese Fischer & Tachiev (2004), Storey & Zeippen (2000)Storey, Sochi & Badnell (2014)
Table 1.

Atomic data set used for collisionally excited lines of selected element ions.

IonTransition probabilitiesCollisional strengths
S+Froese Fischer, Tachiev & Irimia (2006)Tayal & Zatsarinny (2010)
S2+Froese Fischer et al. (2006)Tayal & Gupta (1999)
O+Wiese, Fuhr & Deters (1996)Kisielius et al. (2009)
O2+Froese Fischer & Tachiev (2004), Storey & Zeippen (2000)Storey, Sochi & Badnell (2014)
IonTransition probabilitiesCollisional strengths
S+Froese Fischer, Tachiev & Irimia (2006)Tayal & Zatsarinny (2010)
S2+Froese Fischer et al. (2006)Tayal & Gupta (1999)
O+Wiese, Fuhr & Deters (1996)Kisielius et al. (2009)
O2+Froese Fischer & Tachiev (2004), Storey & Zeippen (2000)Storey, Sochi & Badnell (2014)

As the line measurements for some objects (9/45) of our sample do not present observational errors, the abundance uncertainties were estimated using Monte Carlo simulations. For each diagnostic line, we generate 1000 random values assuming a Gaussian distribution with a standard deviation equal to the associated uncertainty of 10 per cent and 20 per cent for strong (e.g. [O iii]λ5007) and auroral (e.g. [O iii]λ4363) line intensities involved in the diagnostics, respectively. Thereafter, an empirical ICF was considered in the derivation of the total sulphur abundance. For objects that have measured emission-line errors (36/45), the uncertainties in the final abundance values were obtained propagating the errors in the line measurements, electron temperature, and electron density. Subsequently, the description of the employed methodology is presented.

3.1 Temperature estimations

Several studies have been directed to estimate the chemical composition of SFs and, in almost all of these estimates, it has been a common practice to use temperature relations derived from photoionization models to infer the temperatures in the unobserved ionization zones (e.g. Stasińska 1990; Garnett 1992; Pérez-Montero & Díaz 2003; Izotov et al. 2006). However, when temperature relations predicted by photoionization models simulating SFs are compared with direct estimates relying on auroral lines, large deviations are found, reaching up to ∼5000 K (e.g. Hägele et al. 2008; Arellano-Córdova & Rodríguez 2020; Berg et al. 2020). Despite the fact that temperature relations for AGNs are barely found in the literature (see Dors et al. 2020b; Armah et al. 2021; Monteiro & Dors 2021), it seems that similar disagreement is also derived for this class of object. In fact, Riffel et al. (2021a) compared the |$T_{\rm e}(\rm N^{+})$||$T_{\rm e}(\rm O^{2+})$| relation predicted by photoionization models, built using the cloudy code (Ferland et al. 2013), with values derived from observational auroral emission lines for a sample of 12 local Seyfert nuclei. The model predictions reproduce the direct temperature observations for all objects, except for Mrk 348 for which the direct |$T_{\rm e}(\rm N^{+})$| value is ∼10 000 K higher than the predicted one. This object is know to host ionized gas outflows (Freitas et al. 2018) and probably the higher observed temperatures are due to extra heating caused by shocks (see Dors et al. 2021), which is not accounted in the photoionization models considered by Riffel et al. (2021a). Obviously, additional comparison with a larger sample of objects combined with kinematic studies (e.g. Xu et al. 2021; Flury et al., in preparation) of objects, where gas outflow is detected, is necessary to confirm this result.

Since comparisons between observational emission-line intensities and the ones predicted by photoionization models indicate that the main ionization source of most NLR of Sy 2s is the radiation emitted by gas accretion into a supermassive black hole, for objects in the local universe (see e.g. Stasińska 1984; Ferland & Osterbrock 1986; Storchi-Bergmann et al. 1998; Groves et al. 2006; Feltre et al. 2016; Castro et al. 2017; Dors et al. 2017, 2020b; Pérez-Montero et al. 2019; Thomas et al. 2019; Carvalho et al. 2020; Armah et al. 2021) and also at high redshift (see e.g. Nagao, Maiolino & Marconi 2006; Matsuoka et al. 2009, 2018; Dors et al. 2014, 2018, 2019; Nakajima et al. 2018; Mignoli et al. 2019; Guo et al. 2020), we are able to apply the Te method to derive reliable estimates. However, the weak temperature-sensitive auroral emission-line measurements are barely available in the literature for AGNs, therefore we developed our own empirical method based on our sample.

To derive the empirical relations for our abundance estimates, we used auroral line intensities from our sample and those of Sy 2 NLRs available in the literature. First, the observational intensities of the RO3 = [O iii](λ4959 + λ5007)/λ4363 and RN2 = [N ii](λ6548 + λ6584)/λ5755 line ratios were used to calculate |$T_{\rm e}(\rm O^{2+})$| and |$T_{\rm e}(\rm N^{+})$|⁠, respectively, for 18 objects, i.e. seven objects of our sample (see Table A1) and 11 Sy 2 compiled by Dors et al. (2020b). To derive |$T_{\rm e}(\rm S^{2+})$|⁠, we used the RS3 = [S iii](λ9069 + λ9532)/λ6312 line ratios for 14 objects (over 45) in our sample (see Table A1). For each object, the temperature estimates were performed assuming a constant electron density (Ne) value across the nebula, which is derived from the RS2 = [S ii]λ6716/λ6731 intensity ratio. In Table 2, the objects and their corresponding RO3, RN2, RS3, and RS2 line intensities ratios, the electron density, |$T_{\rm e}(\rm O^{2+})$|⁠, |$T_{\rm e}(\rm N^{+})$|⁠, and |$T_{\rm e}(\rm S^{2+})$| temperature derived values are listed. We note that the object 56067−0382 has a |$T_{\rm e}(\rm N^{+})$| higher than those derived for other objects and similar to the value derived for Mrk 348 by Riffel et al. (2021a). Probably 56067−0382 presents gas outflows but its temperatures were still considered. Since in most cases only the [O iii]λ4363 auroral line is measured (e.g. van Zee et al. 1998; Kennicutt et al. 2003), we proposed, as usual, temperature relations with respect to |$T_{\rm e}(\rm O^{2+})$|⁠. In Fig. 4, |$T_{\rm e}(\rm N^{+})$| and |$T_{\rm e}(\rm S^{2+})$| are plotted against |$T_{\rm e}(\rm O^{2+})$|⁠, with the values in units of 104 K. In the upper panel of this figure, the dashed line represents the equality between |$T_{\rm e}(\rm S^{2+})$| and |$T_{\rm e}(\rm O^{2+})$|⁠. As for SFs (e.g. see Hägele et al. 2008; Berg et al. 2020), clear correlations between the Sy 2 temperatures are observed, with a linear regression resulting in

Comparing direct temperature values for different ions. Values are in units of 104 K. Botton panel: $t_{\rm e}(\rm O^{2+})$ and $t_{\rm e}(\rm N^{+})$ are derived through the RO3 = [O iii](λ4959 + λ5007)/λ4363 and RN2 = [N ii](λ6548 + λ6584)/λ5755 line intensities ratios, respectively, and the electron density (from the RS2 = [S ii]λ6716/λ6731) listed in Table 2, and by using version 1.1.13 of PyNeb code (Luridiana et al. 2015). The red line represents the linear regression to the points given by equation (3). Top panel: same as bottom panel but for $t_{\rm e}(\rm S^{2+})$ values derived from RS3 = [S iii](λ9069 + λ9532)/λ6312. Red line represents the linear regression to the points given by equation (4) while the dashed line the equality between the estimates.
Figure 4.

Comparing direct temperature values for different ions. Values are in units of 104 K. Botton panel: |$t_{\rm e}(\rm O^{2+})$| and |$t_{\rm e}(\rm N^{+})$| are derived through the RO3 = [O iii](λ4959 + λ5007)/λ4363 and RN2 = [N ii](λ6548 + λ6584)/λ5755 line intensities ratios, respectively, and the electron density (from the RS2 = [S ii]λ6716/λ6731) listed in Table 2, and by using version 1.1.13 of PyNeb code (Luridiana et al. 2015). The red line represents the linear regression to the points given by equation (3). Top panel: same as bottom panel but for |$t_{\rm e}(\rm S^{2+})$| values derived from RS3 = [S iii](λ9069 + λ9532)/λ6312. Red line represents the linear regression to the points given by equation (4) while the dashed line the equality between the estimates.

Table 2.

Estimates of |$T_{\rm e}(\rm O^{2+})$|⁠, |$T_{\rm e}(\rm N^{+})$|⁠, and |$T_{\rm e}(\rm S^{2+})$| used to obtain the relations given by equations (3) and (4). The line ratios are: |$\mathrm{ RO3}={{\color {blue} (}} [{\rm O}\,{\small{III}}]\lambda 4959+\lambda 5007)/\lambda 4363$|⁠, |$\mathrm{ RN2}={{\color {blue} (}} [{\rm N}\, {{\small{II}}}]\lambda 6548+\lambda 6584)/\lambda 5755, \ \mathrm{ RS3}={{\color {blue} (}} [{\rm S}\, {{\small{III}}}]\lambda 9069+\lambda 9532)/\lambda 6312$|⁠, and |$\mathrm{ RS2}=[{\rm S}\, {{\small{II}}}]\lambda 6716/\lambda 6731$|⁠.

ObjectRO3RN2RS3RS2|$T_{\rm e}(\rm O^{2+}$|⁠) (K)|$T_{\rm e}(\rm N^{+}$|⁠) (K)|$T_{\rm e}(\rm S^{2+}$|⁠) (K)|$N_{\rm e} \ (\rm cm^{-3})$|Ref.
IZw 9242.62 ± 8.5266.50 ± 13.300.92 ± 0.0916 350 ± 16469929 ± 7881176 ± 4271
Mrk 369.41 ± 13.8887.29 ± 17.450.89 ± 0.0813 151 ± 10598969 ± 6381221 ± 3952
Mrk 78112.90 ± 22.5895.31 ± 19.061.11 ± 0.1111 023 ± 7438754 ± 607467 ± 2292
Mrk 34100.90 ± 20.1887.27 ± 17.451.02 ± 0.1011 445 ± 8009012 ± 643691 ± 2802
Mrk 169.09 ± 13.81135.45 ± 27.090.94 ± 0.0913 187 ± 10607773 ± 4811000 ± 3622
Mrk 53395.00 ± 19.00240.00 ± 48.000.86 ± 0.0811 681 ± 8346591 ± 3461319 ± 4293
Mrk 61260.00 ± 12.00112.00 ± 22.401.36 ± 0.1313 993 ± 11998304 ± 55187 :3
ESO 138 G134.23 ± 6.8447.73 ± 9.540.97 ± 0.0918 386 ± 208411 457 ± 10551003 ± 3664
NGC 299240.36 ± 8.0798.20 ± 19.641.12 ± 0.1116 831 ± 17368659 ± 595514 ± 2665
NGC 221024.36 ± 4.87117.77 ± 23.551.06 ± 0.1022 797 ± 30958143 ± 527744 ± 3285
NGC 550673.57 ± 14.70168.50 ± 33.700.92 ± 0.0912 859 ± 10127279 ± 4211074 ± 3865
Mrk 34823.7 ± 2.431.8 ± 11.90.83 ± 0.0328 600 ± 470021 700 ± 61001940 ± 2456
Mrk 60729.7 ± 10.280.6 ± 16.20.87 ± 0.1123 500 ± 270010 200 ± 13001548 ± 7076
56067−038241.43 ± 8.2912.29 ± 2.461.06 ± 0.1616 604 ± 169431 367 ± 8555669 ± 4637
55539−016782.20 ± 16.4424.49 ± 4.901.13 ± 0.1712 334 ± 92816 655 ± 2244442 ± 3497
56001−0293109.00 ± 21.8037.02 ± 7.401.39 ± 0.2111 159 ± 76013 147 ± 139358 :7
55742−038399.80 ± 19.9642.04 ± 8.411.13 ± 0.1711 497 ± 80612 245 ± 1202432 ± 3407
55302−065541.20 ± 8.2447.71 ± 9.541.24 ± 0.1916 672 ± 170811 537 ± 1068266 ± 07
56568−0076105.33 ± 21.0796.13 ± 19.231.03 ± 0.1511 280 ± 7808715 ± 604660 ± 4077
56566−079494.80 ± 18.96127.06 ± 25.414.36 ± 0.871.18 ± 0.1811 713 ± 8387968 ± 50521 665 ± 3991342 :7
55181−0154130.33 ± 26.073.85 ± 0.770.98 ± 0.1510 508 ± 67524 380 ± 5015786 ± 4747
56088−0473128.33 ± 25.6718.00 ± 3.601.09 ± 0.1610 566 ± 6829244 ± 747502 ± 3497
56034−015484.86 ± 16.9712.00 ± 2.401.09 ± 0.1612 184 ± 90911 052 ± 1070527 ± 3707
56626−0636102.00 ± 20.403.49 ± 0.701.08 ± 0.1611 409 ± 79527 079 ± 6116537 ± 3717
55651−0052177.00 ± 35.405.37 ± 1.071.06 ± 0.169576 ± 56018 131 ± 2884549 ± 3687
56206−045474.11 ± 14.826.17 ± 1.231.23 ± 0.1812 842 ± 101016 315 ± 2354267 :7
55860−011271.09 ± 14.223.39 ± 0.681.02 ± 0.1513 038 ± 103827 975 ± 6506724 ± 4487
55710−0116107.71 ± 21.5412.29 ± 2.460.92 ± 0.1411 189 ± 76410 917 ± 10471018 ± 5787
56366−092847.50 ± 9.503.14 ± 0.631.00 ± 0.1515 523 ± 147430 648 ± 7717834 ± 5177
56328−055081.67 ± 16.337.48 ± 1.501.28 ± 0.1912 373 ± 93414 339 ± 1821190 :7
55617−075876.80 ± 15.363.45 ± 0.690.90 ± 0.1312 640 ± 97827 394 ± 62221156 ± 6097
56003−021867.14 ± 13.435.89 ± 1.180.97 ± 0.1413 337 ± 108816 867 ± 2531889 ± 5047
55505−0654198.75 ± 39.7512.00 ± 2.401.12 ± 0.179268 ± 52411 052 ± 1072422 ± 3197
ObjectRO3RN2RS3RS2|$T_{\rm e}(\rm O^{2+}$|⁠) (K)|$T_{\rm e}(\rm N^{+}$|⁠) (K)|$T_{\rm e}(\rm S^{2+}$|⁠) (K)|$N_{\rm e} \ (\rm cm^{-3})$|Ref.
IZw 9242.62 ± 8.5266.50 ± 13.300.92 ± 0.0916 350 ± 16469929 ± 7881176 ± 4271
Mrk 369.41 ± 13.8887.29 ± 17.450.89 ± 0.0813 151 ± 10598969 ± 6381221 ± 3952
Mrk 78112.90 ± 22.5895.31 ± 19.061.11 ± 0.1111 023 ± 7438754 ± 607467 ± 2292
Mrk 34100.90 ± 20.1887.27 ± 17.451.02 ± 0.1011 445 ± 8009012 ± 643691 ± 2802
Mrk 169.09 ± 13.81135.45 ± 27.090.94 ± 0.0913 187 ± 10607773 ± 4811000 ± 3622
Mrk 53395.00 ± 19.00240.00 ± 48.000.86 ± 0.0811 681 ± 8346591 ± 3461319 ± 4293
Mrk 61260.00 ± 12.00112.00 ± 22.401.36 ± 0.1313 993 ± 11998304 ± 55187 :3
ESO 138 G134.23 ± 6.8447.73 ± 9.540.97 ± 0.0918 386 ± 208411 457 ± 10551003 ± 3664
NGC 299240.36 ± 8.0798.20 ± 19.641.12 ± 0.1116 831 ± 17368659 ± 595514 ± 2665
NGC 221024.36 ± 4.87117.77 ± 23.551.06 ± 0.1022 797 ± 30958143 ± 527744 ± 3285
NGC 550673.57 ± 14.70168.50 ± 33.700.92 ± 0.0912 859 ± 10127279 ± 4211074 ± 3865
Mrk 34823.7 ± 2.431.8 ± 11.90.83 ± 0.0328 600 ± 470021 700 ± 61001940 ± 2456
Mrk 60729.7 ± 10.280.6 ± 16.20.87 ± 0.1123 500 ± 270010 200 ± 13001548 ± 7076
56067−038241.43 ± 8.2912.29 ± 2.461.06 ± 0.1616 604 ± 169431 367 ± 8555669 ± 4637
55539−016782.20 ± 16.4424.49 ± 4.901.13 ± 0.1712 334 ± 92816 655 ± 2244442 ± 3497
56001−0293109.00 ± 21.8037.02 ± 7.401.39 ± 0.2111 159 ± 76013 147 ± 139358 :7
55742−038399.80 ± 19.9642.04 ± 8.411.13 ± 0.1711 497 ± 80612 245 ± 1202432 ± 3407
55302−065541.20 ± 8.2447.71 ± 9.541.24 ± 0.1916 672 ± 170811 537 ± 1068266 ± 07
56568−0076105.33 ± 21.0796.13 ± 19.231.03 ± 0.1511 280 ± 7808715 ± 604660 ± 4077
56566−079494.80 ± 18.96127.06 ± 25.414.36 ± 0.871.18 ± 0.1811 713 ± 8387968 ± 50521 665 ± 3991342 :7
55181−0154130.33 ± 26.073.85 ± 0.770.98 ± 0.1510 508 ± 67524 380 ± 5015786 ± 4747
56088−0473128.33 ± 25.6718.00 ± 3.601.09 ± 0.1610 566 ± 6829244 ± 747502 ± 3497
56034−015484.86 ± 16.9712.00 ± 2.401.09 ± 0.1612 184 ± 90911 052 ± 1070527 ± 3707
56626−0636102.00 ± 20.403.49 ± 0.701.08 ± 0.1611 409 ± 79527 079 ± 6116537 ± 3717
55651−0052177.00 ± 35.405.37 ± 1.071.06 ± 0.169576 ± 56018 131 ± 2884549 ± 3687
56206−045474.11 ± 14.826.17 ± 1.231.23 ± 0.1812 842 ± 101016 315 ± 2354267 :7
55860−011271.09 ± 14.223.39 ± 0.681.02 ± 0.1513 038 ± 103827 975 ± 6506724 ± 4487
55710−0116107.71 ± 21.5412.29 ± 2.460.92 ± 0.1411 189 ± 76410 917 ± 10471018 ± 5787
56366−092847.50 ± 9.503.14 ± 0.631.00 ± 0.1515 523 ± 147430 648 ± 7717834 ± 5177
56328−055081.67 ± 16.337.48 ± 1.501.28 ± 0.1912 373 ± 93414 339 ± 1821190 :7
55617−075876.80 ± 15.363.45 ± 0.690.90 ± 0.1312 640 ± 97827 394 ± 62221156 ± 6097
56003−021867.14 ± 13.435.89 ± 1.180.97 ± 0.1413 337 ± 108816 867 ± 2531889 ± 5047
55505−0654198.75 ± 39.7512.00 ± 2.401.12 ± 0.179268 ± 52411 052 ± 1072422 ± 3197

Note. References: 1 – Kraemer et al. (1994); 2 – Koski (1978); 3 – Shuder & Osterbrock (1981); 4 – Alloin et al. (1992); 5 – Shuder (1980); 6 – Riffel et al. (2021a); and 7 – SDSS sample.

Table 2.

Estimates of |$T_{\rm e}(\rm O^{2+})$|⁠, |$T_{\rm e}(\rm N^{+})$|⁠, and |$T_{\rm e}(\rm S^{2+})$| used to obtain the relations given by equations (3) and (4). The line ratios are: |$\mathrm{ RO3}={{\color {blue} (}} [{\rm O}\,{\small{III}}]\lambda 4959+\lambda 5007)/\lambda 4363$|⁠, |$\mathrm{ RN2}={{\color {blue} (}} [{\rm N}\, {{\small{II}}}]\lambda 6548+\lambda 6584)/\lambda 5755, \ \mathrm{ RS3}={{\color {blue} (}} [{\rm S}\, {{\small{III}}}]\lambda 9069+\lambda 9532)/\lambda 6312$|⁠, and |$\mathrm{ RS2}=[{\rm S}\, {{\small{II}}}]\lambda 6716/\lambda 6731$|⁠.

ObjectRO3RN2RS3RS2|$T_{\rm e}(\rm O^{2+}$|⁠) (K)|$T_{\rm e}(\rm N^{+}$|⁠) (K)|$T_{\rm e}(\rm S^{2+}$|⁠) (K)|$N_{\rm e} \ (\rm cm^{-3})$|Ref.
IZw 9242.62 ± 8.5266.50 ± 13.300.92 ± 0.0916 350 ± 16469929 ± 7881176 ± 4271
Mrk 369.41 ± 13.8887.29 ± 17.450.89 ± 0.0813 151 ± 10598969 ± 6381221 ± 3952
Mrk 78112.90 ± 22.5895.31 ± 19.061.11 ± 0.1111 023 ± 7438754 ± 607467 ± 2292
Mrk 34100.90 ± 20.1887.27 ± 17.451.02 ± 0.1011 445 ± 8009012 ± 643691 ± 2802
Mrk 169.09 ± 13.81135.45 ± 27.090.94 ± 0.0913 187 ± 10607773 ± 4811000 ± 3622
Mrk 53395.00 ± 19.00240.00 ± 48.000.86 ± 0.0811 681 ± 8346591 ± 3461319 ± 4293
Mrk 61260.00 ± 12.00112.00 ± 22.401.36 ± 0.1313 993 ± 11998304 ± 55187 :3
ESO 138 G134.23 ± 6.8447.73 ± 9.540.97 ± 0.0918 386 ± 208411 457 ± 10551003 ± 3664
NGC 299240.36 ± 8.0798.20 ± 19.641.12 ± 0.1116 831 ± 17368659 ± 595514 ± 2665
NGC 221024.36 ± 4.87117.77 ± 23.551.06 ± 0.1022 797 ± 30958143 ± 527744 ± 3285
NGC 550673.57 ± 14.70168.50 ± 33.700.92 ± 0.0912 859 ± 10127279 ± 4211074 ± 3865
Mrk 34823.7 ± 2.431.8 ± 11.90.83 ± 0.0328 600 ± 470021 700 ± 61001940 ± 2456
Mrk 60729.7 ± 10.280.6 ± 16.20.87 ± 0.1123 500 ± 270010 200 ± 13001548 ± 7076
56067−038241.43 ± 8.2912.29 ± 2.461.06 ± 0.1616 604 ± 169431 367 ± 8555669 ± 4637
55539−016782.20 ± 16.4424.49 ± 4.901.13 ± 0.1712 334 ± 92816 655 ± 2244442 ± 3497
56001−0293109.00 ± 21.8037.02 ± 7.401.39 ± 0.2111 159 ± 76013 147 ± 139358 :7
55742−038399.80 ± 19.9642.04 ± 8.411.13 ± 0.1711 497 ± 80612 245 ± 1202432 ± 3407
55302−065541.20 ± 8.2447.71 ± 9.541.24 ± 0.1916 672 ± 170811 537 ± 1068266 ± 07
56568−0076105.33 ± 21.0796.13 ± 19.231.03 ± 0.1511 280 ± 7808715 ± 604660 ± 4077
56566−079494.80 ± 18.96127.06 ± 25.414.36 ± 0.871.18 ± 0.1811 713 ± 8387968 ± 50521 665 ± 3991342 :7
55181−0154130.33 ± 26.073.85 ± 0.770.98 ± 0.1510 508 ± 67524 380 ± 5015786 ± 4747
56088−0473128.33 ± 25.6718.00 ± 3.601.09 ± 0.1610 566 ± 6829244 ± 747502 ± 3497
56034−015484.86 ± 16.9712.00 ± 2.401.09 ± 0.1612 184 ± 90911 052 ± 1070527 ± 3707
56626−0636102.00 ± 20.403.49 ± 0.701.08 ± 0.1611 409 ± 79527 079 ± 6116537 ± 3717
55651−0052177.00 ± 35.405.37 ± 1.071.06 ± 0.169576 ± 56018 131 ± 2884549 ± 3687
56206−045474.11 ± 14.826.17 ± 1.231.23 ± 0.1812 842 ± 101016 315 ± 2354267 :7
55860−011271.09 ± 14.223.39 ± 0.681.02 ± 0.1513 038 ± 103827 975 ± 6506724 ± 4487
55710−0116107.71 ± 21.5412.29 ± 2.460.92 ± 0.1411 189 ± 76410 917 ± 10471018 ± 5787
56366−092847.50 ± 9.503.14 ± 0.631.00 ± 0.1515 523 ± 147430 648 ± 7717834 ± 5177
56328−055081.67 ± 16.337.48 ± 1.501.28 ± 0.1912 373 ± 93414 339 ± 1821190 :7
55617−075876.80 ± 15.363.45 ± 0.690.90 ± 0.1312 640 ± 97827 394 ± 62221156 ± 6097
56003−021867.14 ± 13.435.89 ± 1.180.97 ± 0.1413 337 ± 108816 867 ± 2531889 ± 5047
55505−0654198.75 ± 39.7512.00 ± 2.401.12 ± 0.179268 ± 52411 052 ± 1072422 ± 3197
ObjectRO3RN2RS3RS2|$T_{\rm e}(\rm O^{2+}$|⁠) (K)|$T_{\rm e}(\rm N^{+}$|⁠) (K)|$T_{\rm e}(\rm S^{2+}$|⁠) (K)|$N_{\rm e} \ (\rm cm^{-3})$|Ref.
IZw 9242.62 ± 8.5266.50 ± 13.300.92 ± 0.0916 350 ± 16469929 ± 7881176 ± 4271
Mrk 369.41 ± 13.8887.29 ± 17.450.89 ± 0.0813 151 ± 10598969 ± 6381221 ± 3952
Mrk 78112.90 ± 22.5895.31 ± 19.061.11 ± 0.1111 023 ± 7438754 ± 607467 ± 2292
Mrk 34100.90 ± 20.1887.27 ± 17.451.02 ± 0.1011 445 ± 8009012 ± 643691 ± 2802
Mrk 169.09 ± 13.81135.45 ± 27.090.94 ± 0.0913 187 ± 10607773 ± 4811000 ± 3622
Mrk 53395.00 ± 19.00240.00 ± 48.000.86 ± 0.0811 681 ± 8346591 ± 3461319 ± 4293
Mrk 61260.00 ± 12.00112.00 ± 22.401.36 ± 0.1313 993 ± 11998304 ± 55187 :3
ESO 138 G134.23 ± 6.8447.73 ± 9.540.97 ± 0.0918 386 ± 208411 457 ± 10551003 ± 3664
NGC 299240.36 ± 8.0798.20 ± 19.641.12 ± 0.1116 831 ± 17368659 ± 595514 ± 2665
NGC 221024.36 ± 4.87117.77 ± 23.551.06 ± 0.1022 797 ± 30958143 ± 527744 ± 3285
NGC 550673.57 ± 14.70168.50 ± 33.700.92 ± 0.0912 859 ± 10127279 ± 4211074 ± 3865
Mrk 34823.7 ± 2.431.8 ± 11.90.83 ± 0.0328 600 ± 470021 700 ± 61001940 ± 2456
Mrk 60729.7 ± 10.280.6 ± 16.20.87 ± 0.1123 500 ± 270010 200 ± 13001548 ± 7076
56067−038241.43 ± 8.2912.29 ± 2.461.06 ± 0.1616 604 ± 169431 367 ± 8555669 ± 4637
55539−016782.20 ± 16.4424.49 ± 4.901.13 ± 0.1712 334 ± 92816 655 ± 2244442 ± 3497
56001−0293109.00 ± 21.8037.02 ± 7.401.39 ± 0.2111 159 ± 76013 147 ± 139358 :7
55742−038399.80 ± 19.9642.04 ± 8.411.13 ± 0.1711 497 ± 80612 245 ± 1202432 ± 3407
55302−065541.20 ± 8.2447.71 ± 9.541.24 ± 0.1916 672 ± 170811 537 ± 1068266 ± 07
56568−0076105.33 ± 21.0796.13 ± 19.231.03 ± 0.1511 280 ± 7808715 ± 604660 ± 4077
56566−079494.80 ± 18.96127.06 ± 25.414.36 ± 0.871.18 ± 0.1811 713 ± 8387968 ± 50521 665 ± 3991342 :7
55181−0154130.33 ± 26.073.85 ± 0.770.98 ± 0.1510 508 ± 67524 380 ± 5015786 ± 4747
56088−0473128.33 ± 25.6718.00 ± 3.601.09 ± 0.1610 566 ± 6829244 ± 747502 ± 3497
56034−015484.86 ± 16.9712.00 ± 2.401.09 ± 0.1612 184 ± 90911 052 ± 1070527 ± 3707
56626−0636102.00 ± 20.403.49 ± 0.701.08 ± 0.1611 409 ± 79527 079 ± 6116537 ± 3717
55651−0052177.00 ± 35.405.37 ± 1.071.06 ± 0.169576 ± 56018 131 ± 2884549 ± 3687
56206−045474.11 ± 14.826.17 ± 1.231.23 ± 0.1812 842 ± 101016 315 ± 2354267 :7
55860−011271.09 ± 14.223.39 ± 0.681.02 ± 0.1513 038 ± 103827 975 ± 6506724 ± 4487
55710−0116107.71 ± 21.5412.29 ± 2.460.92 ± 0.1411 189 ± 76410 917 ± 10471018 ± 5787
56366−092847.50 ± 9.503.14 ± 0.631.00 ± 0.1515 523 ± 147430 648 ± 7717834 ± 5177
56328−055081.67 ± 16.337.48 ± 1.501.28 ± 0.1912 373 ± 93414 339 ± 1821190 :7
55617−075876.80 ± 15.363.45 ± 0.690.90 ± 0.1312 640 ± 97827 394 ± 62221156 ± 6097
56003−021867.14 ± 13.435.89 ± 1.180.97 ± 0.1413 337 ± 108816 867 ± 2531889 ± 5047
55505−0654198.75 ± 39.7512.00 ± 2.401.12 ± 0.179268 ± 52411 052 ± 1072422 ± 3197

Note. References: 1 – Kraemer et al. (1994); 2 – Koski (1978); 3 – Shuder & Osterbrock (1981); 4 – Alloin et al. (1992); 5 – Shuder (1980); 6 – Riffel et al. (2021a); and 7 – SDSS sample.

$$\begin{eqnarray} t_{\mathrm{e}}(\mathrm{N^{+}})= 0.36(\pm 0.23)\times t_{\mathrm{e}}(\mathrm{O^{2+}}) + {\rm 0.55(\pm 0.39)} \end{eqnarray}$$
(3)

and

$$\begin{eqnarray} t_{\mathrm{e}}(\mathrm{S^{2+}})= 2.23(\pm 1.12)\times t_{\mathrm{e}}(\mathrm{O^{2+}})-{\rm 0.74(\pm 1.34)}, \end{eqnarray}$$
(4)

where |$t_{\rm e}=T_{\rm e}/10^{4} \, \rm K$|⁠.

It can be seen in Fig. 4 that higher temperature values for |$\rm S^{2+}$| are derived in comparison with those for |$\rm O^{2+}$|⁠, probably indicating that the former ion occupy an inner gas region than the latter. Conversely, an opposite result is derived for disc H ii regions, i.e. |$T_{\rm e}(\rm O^{2+})$| is ∼1000 K higher than |$T_{\rm e}(\rm S^{2+})$| (e.g. Rogers et al. 2021). Hägele et al. (2006) analysed the relation between |$T_{\rm e}(\rm O^{2+})$| and |$T_{\rm e}(\rm S^{2+})$| using a sample that comprises H ii galaxies, giant extragalactic H ii regions, Galactic H ii regions, and H ii regions from the Magellanic Clouds (MCs). These authors found that the [S iii] electron temperatures are higher than the corresponding [O iii] estimations for most objects presenting temperatures higher than about 14 000 K, mainly the metal-poor H ii galaxies, and the opposite behaviour for the coolest nebulae, mainly giant extragalactic H ii regions, Galactic H ii regions, and H ii regions from the MCs, which present the highest metallicities. Taking into account the temperatures of the different samples studied by Hägele et al. (2008, H ii galaxies that present the higher temperatures) and Rogers et al. (2021, galactic disc H ii regions with lower temperatures), the |$T_{\rm e}(\rm S^{2+})$||$T_{\rm e}(\rm O^{2+})$| behavior derived in this paper for Sy 2s is the same as found by Hägele et al. (2006).

Spatially resolved observational studies of NLRs have found a profile of electron density along the AGN radius, in the sense that denser gas is located in the inner regions. For instance, Freitas et al. (2018), who obtained emission-line flux of two-dimensional maps from five bright nearby Seyfert nuclei, obtained electron densities ranging from |${\sim} 2500\: \rm cm^{-3}$| in the central parts to |${\sim} 100\: \rm cm^{-3}$| in the outskirts (see also Kakkad et al. 2018; Revalski et al. 2018a,b, 2021, 2022; Mingozzi et al. 2019; Ruschel-Dutra et al. 2021). Moreover, electron density estimations through the [Ar iv]λ4711/λ4740 line ratio, which traces the density in the innermost layers, showed values of up to ∼13 000 |$\rm cm^{-3}$| (e.g. Congiu et al. 2017; Cerqueira-Campos et al. 2021). Thus, density values derived from [S ii] lines may not be representative of the region where |$\rm S^{2+}$| ions are located, which could inherently introduce an error in the |$T_{\rm e}(\rm S^{2+})$| values. In order to explore the influence of the electron density on the sulphur temperature estimations, we show in Fig. 5 the |$t_{\rm e}(\rm S^{2+})$| derived assuming the Ne values from [S ii]λ6716/λ6731 line ratios (listed in Table 2) versus the estimations considering a fixed value of 13 000 |$\rm cm^{-3}$|⁠, as derived by Congiu et al. (2017) for the extended NLR of the Seyfert 2 galaxy IC 5063. We notice a good agreement between the values, with a difference of |${\sim} 2 {{\ \rm per\ cent}}$|⁠, which is lower than the uncertainty produced by the error in the line measurements (⁠|${\sim} 10 {{\ \rm per\ cent}}$|⁠, see Table 2). In Table 3, the critical density (Nc) values for the lines involved in this work, calculated with the PyNeb code (Luridiana et al. 2015) assuming an electron temperature of 15 000 K, are listed. One can see that Nc values are higher than the electron density values (listed in Table A2) derived for our Sy 2 sample. Thus, electron density variations in NLRs have a minimal influence on our temperature estimates. For some objects, the emission-line errors are significant, thus frequently with density error bars larger than the determinations themselves. Therefore we use ‘:’ to indicate that error bars are at least an order of magnitude larger than the expected density (see Table A2).

Comparison between electron temperatures (in units of 104 K) derived from the RS3 = [S iii](λ9069 + λ9532)/λ6312 assuming electron density estimations via the RS2 = [S ii]λ6716/λ6731 (listed in Table 2) with the estimates assuming a value of $13\, 000\, {\rm cm^{-3}}$ as derived by Congiu et al. (2017) from [Ar iv]λ4711/λ4740. Line represents the equality between the two estimates.
Figure 5.

Comparison between electron temperatures (in units of 104 K) derived from the RS3 = [S iii](λ9069 + λ9532)/λ6312 assuming electron density estimations via the RS2 = [S ii]λ6716/λ6731 (listed in Table 2) with the estimates assuming a value of |$13\, 000\, {\rm cm^{-3}}$| as derived by Congiu et al. (2017) from [Ar iv]λ4711/λ4740. Line represents the equality between the two estimates.

Table 3.

Critical densities for collisional deexcitation for the lines involved in this work. Values were calculated with the PyNeb code (Luridiana, Morisset & Shaw 2015) assuming an electron temperature of 15 000 K.

LineNc (⁠|$\rm cm^{-3}$|⁠)
|$[{\rm O}\, {\small \rm{II}}]\lambda 3726$|4.72 × 103
|$[{\rm O}\, {\small \rm{II}}]\lambda 3729$|1.49 × 103
|$[{\rm O}\, {\small \rm {III}}]\lambda 4363$|2.88 × 107
|$[{\rm O}\, {\small \rm {III}}]\lambda 5007$|7.83 × 105
|$[{\rm N}\, {\small \rm{II}}]\lambda 5755$|1.87 × 107
|$[{\rm S}\, {\small \rm {III}}]\lambda 6312$|1.44 × 107
|$[{\rm N}\, {\small \rm{II}}]\lambda 6484$|1.04 × 105
|$[{\rm S}\, {\small \rm{II}}]\lambda 6716$|1.37 × 103
|$[{\rm S}\, {\small \rm{II}}]\lambda 6731$|3.67 × 103
|$[{\rm S}\, {\small \rm {III}}]\lambda 9069$|6.42 × 105
LineNc (⁠|$\rm cm^{-3}$|⁠)
|$[{\rm O}\, {\small \rm{II}}]\lambda 3726$|4.72 × 103
|$[{\rm O}\, {\small \rm{II}}]\lambda 3729$|1.49 × 103
|$[{\rm O}\, {\small \rm {III}}]\lambda 4363$|2.88 × 107
|$[{\rm O}\, {\small \rm {III}}]\lambda 5007$|7.83 × 105
|$[{\rm N}\, {\small \rm{II}}]\lambda 5755$|1.87 × 107
|$[{\rm S}\, {\small \rm {III}}]\lambda 6312$|1.44 × 107
|$[{\rm N}\, {\small \rm{II}}]\lambda 6484$|1.04 × 105
|$[{\rm S}\, {\small \rm{II}}]\lambda 6716$|1.37 × 103
|$[{\rm S}\, {\small \rm{II}}]\lambda 6731$|3.67 × 103
|$[{\rm S}\, {\small \rm {III}}]\lambda 9069$|6.42 × 105
Table 3.

Critical densities for collisional deexcitation for the lines involved in this work. Values were calculated with the PyNeb code (Luridiana, Morisset & Shaw 2015) assuming an electron temperature of 15 000 K.

LineNc (⁠|$\rm cm^{-3}$|⁠)
|$[{\rm O}\, {\small \rm{II}}]\lambda 3726$|4.72 × 103
|$[{\rm O}\, {\small \rm{II}}]\lambda 3729$|1.49 × 103
|$[{\rm O}\, {\small \rm {III}}]\lambda 4363$|2.88 × 107
|$[{\rm O}\, {\small \rm {III}}]\lambda 5007$|7.83 × 105
|$[{\rm N}\, {\small \rm{II}}]\lambda 5755$|1.87 × 107
|$[{\rm S}\, {\small \rm {III}}]\lambda 6312$|1.44 × 107
|$[{\rm N}\, {\small \rm{II}}]\lambda 6484$|1.04 × 105
|$[{\rm S}\, {\small \rm{II}}]\lambda 6716$|1.37 × 103
|$[{\rm S}\, {\small \rm{II}}]\lambda 6731$|3.67 × 103
|$[{\rm S}\, {\small \rm {III}}]\lambda 9069$|6.42 × 105
LineNc (⁠|$\rm cm^{-3}$|⁠)
|$[{\rm O}\, {\small \rm{II}}]\lambda 3726$|4.72 × 103
|$[{\rm O}\, {\small \rm{II}}]\lambda 3729$|1.49 × 103
|$[{\rm O}\, {\small \rm {III}}]\lambda 4363$|2.88 × 107
|$[{\rm O}\, {\small \rm {III}}]\lambda 5007$|7.83 × 105
|$[{\rm N}\, {\small \rm{II}}]\lambda 5755$|1.87 × 107
|$[{\rm S}\, {\small \rm {III}}]\lambda 6312$|1.44 × 107
|$[{\rm N}\, {\small \rm{II}}]\lambda 6484$|1.04 × 105
|$[{\rm S}\, {\small \rm{II}}]\lambda 6716$|1.37 × 103
|$[{\rm S}\, {\small \rm{II}}]\lambda 6731$|3.67 × 103
|$[{\rm S}\, {\small \rm {III}}]\lambda 9069$|6.42 × 105

Because of the similarity among the |$\rm S^{+}$|⁠, |$\rm N^{+}$|⁠, and |$\rm O^{+}$| ionization potentials (23.33, 29.60, and 35.12 eV, respectively) and because the [S ii]λλ4068, 4076 and [O ii]λλ7320, 7330 auroral lines are not measured in our sample of spectra, as in Rogers et al. (2021), we adopted |$T_{\rm e}(\rm S^{+})$| = |$T_{\rm e}(\rm O^{+})$| = |$T_{\rm e}(\rm N^{+})$|⁠. In objects for which it is possible to estimate directly |$T_{\rm e}(\rm N^{+})$| (7/45) and |$T_{\rm e}(\rm S^{2+})$| (14/45), these temperatures were assumed as representative of the low- and high-ionization zones, respectively. Otherwise, when the [N ii]λ5755 and [S iii]λ6312 auroral emission-line measurements are not available, |$T_{\rm e}(\rm N^{+})$| and |$T_{\rm e}(\rm S^{2+})$| were derived from the equations (3) and (4), respectively. In Table A2, electron density and temperature values for the objects in our sample are presented.

3.2 Abundance derivation

For each object of our sample, using the emission-line intensity ratios listed in Table A1, the electron temperature and electron density values (listed in Table A2), as well as the PyNeb code (Luridiana et al. 2015), we derived the sulphur (⁠|$\rm S^{+}$|⁠, |$\rm S^{2+}$|⁠) and oxygen (⁠|$\rm O^{+}$|⁠, |$\rm O^{2+}$|⁠) ionic abundances. Afterwards, applying an empirical ICF for the sulphur and a typical value for the oxygen ICF, the total abundances for the S/H and O/H were estimated. In what follows, we describe the methodology employed in the derivation of the abundance of each considered element.

3.2.1 Oxygen abundance

The total oxygen abundance in relation to the hydrogen one was derived assuming

$$\begin{eqnarray} {\rm \frac{O}{H}=ICF(O^{+}+O^{2+})\: \times \: \left[\frac{O^{+}}{H^{+}}+\frac{O^{2+}}{H^{+}}\right],} \end{eqnarray}$$
(5)

where ICF(⁠|$\rm O^{+}+O^{2+}$|⁠) represents the ionization correction factor for oxygen that takes into account the contribution of unobservable oxygen ions, whose emission lines are observed in other spectral bands such as X-rays (e.g. Cardaci et al. 2009, 2011; Bianchi et al. 2010; Bogdán et al. 2017; Maksym et al. 2019; Kraemer et al. 2020) and infrared (e.g. Diamond-Stanic & Rieke 2012; Fernández-Ontiveros et al. 2016). The |$\rm O^{2+}/H^{+}$| ionic abundance was calculated by using the [O iii]|$\lambda 5007/\rm H\beta$| line ratio and assuming the direct |$T_{\rm e}(\rm O^{2+})$| and Ne values derived from RO3 and RS2, respectively. The |$\rm O^{+}/H^{+}$| abundance was calculated from the [O ii]|$\lambda 3727/\rm H\beta$| emission line ratio and assuming |$T_{\rm e}(\rm O^{+})$| = |$T_{\rm e}(\rm N^{+})$| with |$T_{\rm e}(\rm N^{+})$| estimated from the empirical relation given by equation (3) when the [N ii]λ5755 auroral emission-line measurement is not available.

To derive ICF(⁠|$\rm O^{+}+O^{2+}$|⁠) it is necessary to calculate the |$\rm He^{+}/H^{+}$| and |$\rm He^{2+}/H^{+}$| ionic abundances (e.g. Torres-Peimbert & Peimbert 1977; Izotov et al. 2006; Flury & Moran 2020), which is not possible because in most of the AGN spectra from our sample, the helium recombination line λ4686 Å is not measured. Therefore, for consistency, the ICF(⁠|$\rm O^{+}+O^{2+}$|⁠) is assumed to have a value of 1.50 for all objects, which is an average value derived by Dors et al. (2022), who found ICF values ranging from 1.30 to 1.70 for a sample of 65 local (⁠|$z\: \lesssim \: 0.2$|⁠) Sy 2s. This ICF value translates into an abundance correction of ∼0.2 dex, i.e. somewhat higher than the uncertainty (∼0.1 dex) of abundances usually relied on for the Te method (e.g. Kennicutt et al. 2003; Hägele et al. 2008).

3.2.2 Sulphur abundance

The |$\rm S^{+}/H^{+}$| ionic abundance for each object of our sample was derived by using the [S ii]|$(\lambda 6716+\lambda 6731)/\rm H\beta$| line intensities ratio and assuming |$T_{\rm e}(\rm S^{+}$|⁠) = |$T_{\rm e}(\rm N^{+}$|⁠), where |$T_{\rm e}(\rm N^{+}$|⁠) was calculated from equation (3) when the [N ii]λ5755 auroral emission-line measurement is not available. Because of the similarity between the ionization potentials of |$\rm S^{+}$| and |$\rm N^{+}$| (23.33 and 29.60 eV, respectively), these ions are approximately located in the same gas region and the use of a common temperature for both is a good approach as largely used in SF chemical abundance studies (e.g. Kennicutt et al. 2003). However, Rogers et al. (2021), who compared SF direct estimates of |$T_{\rm e} (\rm S^{+})$| [derived from RAS2 = [S ii](λ6716 + λ6731)/(λ4068 + λ4074)] with |$T_{\rm e} (\rm N^{+})$| [derived from RN2 = [N ii](λ6548 + λ6584)/(λ5755)], found somewhat higher |$T_{\rm e} (\rm S^{+})$| values than |$T_{\rm e} (\rm N^{+})$|⁠, with an intrinsic dispersion of ∼950 K between these temperatures. Unfortunately, RAS2 values for Sy 2 are rarely found in the literature thus far, which makes it impossible to verify whether any of these conclusions also apply to AGNs.

Similarly, the |$\rm S^{2+}/H^{+}$| was derived by using the [S iii]|$\lambda 9069/\rm H\beta$| line intensities ratio listed in Table A1 and the |$T_{\rm e} (\rm S^{2+})$| values from equation (4) when the RS3 line ratio is not available. The uncertainties associated with the sulphur ionic estimates is mainly due to the error in the measurements of the emission-line fluxes and the uncertainties in the temperature values. In Table A3, the sulphur ionic abundance values for each object of the sample are listed.

The total sulphur abundance in relation to the hydrogen one was considered to be

$$\begin{eqnarray} {\rm \frac{S}{H}=ICF(S^{+}+S^{2+})\: \times \: \left[\frac{S^{+}}{H^{+}}+\frac{S^{2+}}{H^{+}}\right]}, \end{eqnarray}$$
(6)

where ICF(⁠|$\rm S^{+}+S^{2+}$|⁠) is the ionization correction factor for sulphur. Since AGNs have harder ionizing sources than typical SFs (e.g. Feltre et al. 2016), it is expected that the gas phase of these objects contains the presence of ions with higher ionization level than |$\rm S^{2+}$|⁠. In fact, [S viii]λ9910 and [S ix]λ12520 emission lines were observed in large number of AGNs in the sample presented by Riffel et al. (2006). However, measurements of |$\rm S^{3+}$| lines (e.g. [S iv]|$10.51\,\rm{\mu m}$|⁠) are not available in the literature, which makes it impossible for the derivation of an empirical ICF(S) for AGNs, such as derived for SFs by Dors et al. (2016).

The first ICF for sulphur (likewise for other elements) was proposed for SFs by Peimbert & Costero (1969) and it is given by

$$\begin{eqnarray} \rm ICF(S^{+}+S^{2+})=\frac{\rm S^{+}+S^{2+}}{\rm S^{+}}=\frac{\rm O^{+}+O^{2+}}{\rm O^{+}}. \end{eqnarray}$$
(7)

Rogers et al. (2021) tested the application of this ICF for SFs (see also Díaz & Zamora 2022) and pointed out that it is particularly reliable for low ionization degree, i.e. when |$\rm O^{+}$| zone is more dominant than the |$\rm O^{2+}$| zone [|$(\rm O^{+}/O) \: \gt \: 0.6$|]. Hitherto, there has not been sulphur ICFs for AGNs in the literature and it is unknown if the above relation is completely valid for this object class. Therefore, in order to ascertain whether the sulphur ICF can be applied to Sy 2s, we performed a simple test to verify the equality indicated in equation (7). The ionic ratios for our sample are plotted in Fig. 6, where the black solid line represents the equality between the estimates, while the dashed lines represent the deviations of |$20 {{\ \rm per\ cent}}$| from the one–one relation. It can be seen that, despite the scattering, most of the ionic abundance ratio estimates are located around of the one–one relation. Thus, we assumed as valid the equation (7) for NLR sulphur abundance estimates.

Sulphur versus oxygen ionic abundance ratios for our sample of objects (see Section 2) calculated via the Te method (see Section 3). Solid line represents the equality between the estimates. Dashed lines correspond to the deviation of $20 {{\ \rm per\ cent}}$ from the one–one relation representing the mean error in the ionic abundance estimations.
Figure 6.

Sulphur versus oxygen ionic abundance ratios for our sample of objects (see Section 2) calculated via the Te method (see Section 3). Solid line represents the equality between the estimates. Dashed lines correspond to the deviation of |$20 {{\ \rm per\ cent}}$| from the one–one relation representing the mean error in the ionic abundance estimations.

Ionic and total oxygen and sulphur abundance estimates derived through the Te method together with the sulphur ICFs for each object in our sample are listed in Table A3.

4 RESULTS AND DISCUSSION

4.1 Temperature estimates

Recent studies of spatially resolved central parts of galaxies have uncovered the temperature structure of a few AGNs. For instance, Revalski et al. (2021), using Hubble Space Telescope and Apache Point Observatory spectroscopy, obtained direct estimates of |$T_{\rm e}(\rm O^{2+})$| along the radius of the Sy 2 nucleus of Mrk 78 and found temperatures in the range 10 000–15 000 K, with no systematic variation (see also Revalski et al. 2018a,b). Riffel et al. (2021c) used Gemini Multiobject Spectrograph (GMOS)-Integral Field Unit (IFU) observations of three luminous nearby Seyfert galaxies (Mrk 79, Mrk 348, and Mrk 607) and estimated |$T_{\rm e}(\rm O^{2+}$|⁠) fluctuations in the inner 0.4–1.1 kpc region of these galaxies. These authors found temperature fluctuations similar to those derived in SFs and PNe. Despite the revelations provided by these recent studies, an advance in the understanding of the temperature structure of AGNs, additional point-to-point or integrated Te estimates through distinct emission lines [e.g. [S iii](λ9069 + λ9532)/λ6312 and [N ii](λ6548 + λ6584)/λ5755] are rare in the literature, prompting further investigation of the AGN temperature structure. Thus, our temperature estimates provide valuable knowledge to the nature of NLRs.

A large number of AGNs present gas outflows (e.g. Riffel et al. 2020; Armus et al. 2023), shocks (e.g. Aldrovandi & Contini 1984; Dopita & Sutherland 1995; Dors et al. 2021), and neutral gas reservoirs that can coexist with the ionized gas (e.g. García-Burillo et al. 2014) and, in combination with the hard ionization source (e.g. Feltre et al. 2016), tend to produce a more complex gas structure than that of SFs (e.g. Hägele et al. 2006; García-Benito et al. 2010; Pérez-Montero et al. 2011; Monreal-Ibero, Walsh & Vílchez 2012; Durré & Mould 2018). However, complex temperature structures can also be observed in SFs (e.g. Dopita et al. 2005; Jin, Kewley & Sutherland 2022) produced, for instance, by starburst-driven outflows cooling (e.g. Danehkar, Oey & Gray 2022). On the scenario where distinct physical processes drive the gas structure, it is expected that temperature relations of AGNs tend to differ from the ones derived for SFs. In order to test this hypothesis, in Fig. 7, we compare our Sy 2 temperature estimates and empirical relations (equations 3 and 4) with those derived for SFs by the following authors.

  • Hägele et al. (2006): these authors used their own high-quality spectra of H ii galaxies and a large literature compilation of H ii galaxies, giant extragalactic H ii regions, Galactic H ii regions, and H ii regions from the MCs performed by Pérez-Montero et al. (2006) to analyse the relation between |$T_{\rm e}(\rm O^{2+})$| and |$T_{\rm e}(\rm S^{2+})$| values derived using the Te method (see fig. 7 of Hägele et al. 2006). Their linear fitting to the complete sample gave the relation
    $$\begin{eqnarray} t_{\mathrm{e}}(\mathrm{S^{2+}})= 1.19(\pm 0.08)\times t_{\mathrm{e}}(\mathrm{O^{2+}})-{\rm 0.32(\pm 0.10)}, \end{eqnarray}$$
    (8)
    which has a validity range of 0.70 ⪅ te(O2+) ⪅ 2.0.
  • Rogers et al. (2021): the estimates by these authors include temperature values obtained for a large number of disc H ii regions in the spiral galaxy NGC 2403 using the Te method. These estimates combined with those of H ii regions in four spiral galaxies (see fig. 3 by Rogers et al. 2021) resulted in the relations
    $$\begin{eqnarray} t_{\mathrm{e}}(\mathrm{N^{+}})= 0.79(\pm 0.14)\times t_{\mathrm{e}}(\mathrm{O^{2+}}) + {\rm 0.16(\pm 0.13)} \end{eqnarray}$$
    (9)
    and
    $$\begin{eqnarray} t_{\mathrm{e}}(\mathrm{S^{2+}})= 1.58(\pm 0.17)\times t_{\mathrm{e}}(\mathrm{O^{2+}})-{\rm 0.57(\pm 0.16)}, \end{eqnarray}$$
    (10)
    which are valid for 0.70 ⪅ te(O2+) ⪅ 1.5.
  • Arellano-Córdova & Rodríguez (2020): these authors compiled emission-line intensities of H ii regions from the literature to explore the behaviour of the |$T_{\rm e}(\rm N^{+})$||$T_{\rm e}(\rm O^{2+})$| temperature relation. These authors found that this relation has a dependence on the gas ionization degree, which is traced by the line ratio |$P=([{\rm 1}\, {\small \rm {III}}]\lambda 4959+\lambda 5007)/[{\rm 1}\, {\small {II}}]\lambda 3727+[{\rm 1}\, {\small \rm {III}}]\lambda 4959+\lambda 5007$|⁠. The following relations, which hold for 0.60 ⪅ te(O2+) ⪅ 1.7, were derived.

    For P < 0.5,
    $$\begin{eqnarray} \frac{1}{t_{\mathrm{e}}(\mathrm{N^{+}})}=\frac{0.54(\pm 0.05)}{t_{\mathrm{e}}(\mathrm{O^{2+}})}+0.52(\pm 0.08), \end{eqnarray}$$
    (11)
    and for P > 0.5,
    $$\begin{eqnarray} \frac{1}{t_{\mathrm{e}}(\mathrm{N^{+}})}=\frac{0.61(\pm 0.04)}{t_{\mathrm{e}}(\mathrm{O^{2+}})}+0.36(\pm 0.04). \end{eqnarray}$$
    (12)
  • Garnett (1992): this author, by using the photoionization model results derived by Stasińska (1982), proposed the relation
    $$\begin{eqnarray} t_{\mathrm{e}}(\mathrm{S^{2+}})= 0.83\times t_{\mathrm{e}}(\mathrm{O^{2+}})-{\rm 0.17}, \end{eqnarray}$$
    (13)
    valid for 0.4 ⪅ te(O2+) ⪅ 1.8.
  • Pérez-Montero & Contini (2009): using photoionization model results built through the cloudy code these authors deduce a relation between Te(O2+) and Te(N+) given by
    $$\begin{eqnarray} t_{\mathrm{e}}(\mathrm{N^{+}})=\frac{1.85}{t_{\mathrm{e}}(\mathrm{O^{2+}})^{-1}+0.72}, \end{eqnarray}$$
    (14)
    with a valid range 0.60 ⪅ te(O2+) ⪅ 1.8.
Same as Fig. 5 but comparing our temperature estimates (red points) and temperature relations (red lines represented by equations 3 and 4) with relations obtained from SFs. Orange solid line plots the empirical relation (equation 8) obtained by Hägele et al. (2006) using direct temperature estimates for a large sample of H ii galaxies, giant extragalactic H ii regions, Galactic H ii regions, and H ii regions from the MCs. Black solid lines represent the empirical relations (equations 9 and 10) based on direct estimates of disc H ii regions by Rogers et al. (2021). Blue dashed and solid lines, shown only in bottom panel, represent empirical relations for P < 0.5 and for P > 0.5, respectively, based on data compiled from literature by Arellano-Córdova & Rodríguez (2020). P is defined as $([{\rm 1}\, {\small \rm {III}}]\lambda 4959+\lambda 5007)/[{\rm 1}\, {\small {II}}]\lambda 3727+[{\rm 1}\, {\small \rm {III}}]\lambda 4959+\lambda 5007$. Green and pink lines represent the theoretical relations derived by Garnett (1992, equation 13) and Pérez-Montero & Contini (2009, equation 14), respectively.
Figure 7.

Same as Fig. 5 but comparing our temperature estimates (red points) and temperature relations (red lines represented by equations 3 and 4) with relations obtained from SFs. Orange solid line plots the empirical relation (equation 8) obtained by Hägele et al. (2006) using direct temperature estimates for a large sample of H ii galaxies, giant extragalactic H ii regions, Galactic H ii regions, and H ii regions from the MCs. Black solid lines represent the empirical relations (equations 9 and 10) based on direct estimates of disc H ii regions by Rogers et al. (2021). Blue dashed and solid lines, shown only in bottom panel, represent empirical relations for P < 0.5 and for P > 0.5, respectively, based on data compiled from literature by Arellano-Córdova & Rodríguez (2020). P is defined as |$([{\rm 1}\, {\small \rm {III}}]\lambda 4959+\lambda 5007)/[{\rm 1}\, {\small {II}}]\lambda 3727+[{\rm 1}\, {\small \rm {III}}]\lambda 4959+\lambda 5007$|⁠. Green and pink lines represent the theoretical relations derived by Garnett (1992, equation 13) and Pérez-Montero & Contini (2009, equation 14), respectively.

In Fig. 7, the above relations are compared with our estimates and our own temperature relations. It can be seen in the bottom panel of Fig. 7 that Sy 2 nuclei present similar |$T_{\rm e}(\rm N^{+})$| values for a given |$T_{\rm e}(\rm O^{2+})$| to those from SFs. Otherwise, in Fig. 7, upper panel, |$T_{\rm e}(\rm S^{2+})$| NLR estimates are higher than those in SFs. This result indicates that NLRs have a hotter high-ionization zone than the one in SFs. This is probably due to the known fact that SEDs of AGNs are harder than the ones of SFs. Moreover, gas shocks present in AGNs can produce a very distinct temperature structure than that in SFs, where shocks have a little influence. In fact, Dors et al. (2021) built detailed composite models of photoionization and shock ionization based on the suma code (Viegas-Aldrovandi & Contini 1989) to reproduce optical emission lines emitted by NLRs of 244 Sy 2 nuclei. Their models predicted an abrupt increase in temperature near the shock front, reaching values of ∼105 K, mainly in shock-dominated objects (see fig. 14 of Dors et al. 2021). In summary, our temperature estimates support the scenario where AGNs have complex spatial distributions of gas temperature and a variety of mechanisms can drive the temperature and ionization (e.g. see Bedregal et al. 2009; Busch et al. 2016; Durré & Mould 2018; Fazeli et al. 2019).

4.2 Sulphur abundances

According to the inside-out scheme, galaxies begin to form stars in their inner regions before the outer ones (e.g. Samland, Hensler & Theis 1997; Portinari & Chiosi 1999; Boissier & Prantzos 2000; Sommer-Larsen, Götz & Portinari 2003; Mollá & Díaz 2005; Nelson et al. 2012, 2016; Vincenzo & Kobayashi 2018) producing radial metallicity gradients with negative slopes (i.e. the metalicity decreases with the increase of the galactocentric distance; e.g. Pilyugin, Vílchez & Contini 2004). Thus, due to the location of AGNs in galactic discs, they are expected to have high abundance of heavy elements; in other words, AGNs with low abundances are barely found in the local universe (e.g. Groves et al. 2006; Izotov & Thuan 2008; Izotov et al. 2010; Kawasaki et al. 2017; Dors et al. 2020a). However, AGNs seem to have a more complex cosmic chemical evolution than SFs. For instance, Matteucci & Padovani (1993), by means of self-consistent models of galaxy evolution, showed that AGNs in galaxies around the lifetime of 109 yr (z ∼ 5) reach an abundance of elements divided into two classes: (i) elements with 2–3 times the solar abundance (C, Ne, O, and Mg) and (ii) the ones with abundances ranging from 5 to 10 times the solar abundance (N, Ni, and Fe). Conversely, low abundance or metallicity have been derived at high redshift from SFs (see Curti et al. 2023 and references therein). Despite the fact that Matteucci & Padovani (1993) did not consider sulphur (an α-element), its abundance would increase similarly to the oxygen abundance, i.e. the expectation will be a constant S/O abundance ratio.

Optical surveys, such as SDSS, have made plenty of AGNs spectroscopic data available, which make the determinations of quantitative sulphur abundance possible in this class of objects. In this sense, we present a detailed analysis of sulphur abundance from our Sy 2 sample and a comparison with some previous results obtained from SFs. In view of that, we consider the following SF estimates that relied on the Te method.

  • Hägele et al. (2006): these authors presented calculations for several heavy elements from a sample of H ii galaxies (33 objects) and GHRs (34 objects) by using the Te method. In particular, for the sulphur abundance, they assumed the ICF approach proposed by Barker (1980) with the α exponent equal to 2.5. Following the same procedure, Hägele et al. (2008, 2011, 2012) studied another 11 H ii galaxies and knots belonging to this kind of objects that we include in our control sample.

  • chaos project: the Chemical Abundances Of Spirals (chaos;5 Berg et al. 2015) combines the power of the Large Binocular Telescope (LBT) with the broad spectral range and sensitivity of the Multi-Object Double Spectrograph (MODS) to derive abundances, which relied on the Te method, for a large sample of H ii regions in spiral galaxies. Taking these valuable data into account, we consider abundance estimates for 135 disc H ii regions located in NGC 5457, NGC 3184, and NGC 2403 by Croxall et al. (2016), Berg et al. (2020), and Rogers et al. (2021), respectively. These authors adopted the sulphur ICF given by equation (7) for |$\rm (O^{+}/O) \: \gtrsim \:0.6$| and the theoretical ICF from Thuan, Izotov & Lipovetsky (1995) when |$\rm (O^{+}/O) \: \lesssim \:0.6$|⁠.

Along this section, we have used the SF abundance estimates from the above authors as benchmark. We emphasize that any selection effect, such as that which may arise as a result of the existence of auroral lines in spectra, will be present in both our AGN sample and the SF sample taken from the literature.

Our sulphur ICFs for the Seyfert galaxies (listed in Table A3) indicate values between ∼1.1 and ∼3.0, with an averaged value of 1.44, i.e. about 45 per cent of the sulphur is in higher ionization stages than |$\rm S^{2+}$|⁠. We found an ICF value higher than 2.0 for only two objects: 2.02 and 2.94 for Mrk 573 and NGC 7674, respectively. Interestingly, for the most extreme ICF value, i.e. for NGC 7674, Kharb, Lal & Merritt (2017), by using radio long baseline interferometry, hinted that this object hosts a binary supermassive black hole (for a different conclusion see Breiding et al. 2022). Moreover, additional evidence that this object has a hard ionizing spectra is the presence of emission lines of high-ionization ions [Ne v]λ3346, λ3426, as observed by Kraemer et al. (1994). In any case, even if this object is ruled out from the average ICF calculations, a similar value (1.40) is obtained. In order to compare our sulphur ICF values with those from SFs, we consider the ICFs derived by Hägele et al. (2006) and from the chaos project. In the left-hand panel of Fig. 8, the distribution of sulphur ICFs for Sy 2s and SFs is shown, where it can be seen that a good agreement exist among them, even though the GHRs present a distribution peak at lower values. It is worth to be noted that most of the objects (⁠|${\sim} 90 {{\ \rm per\ cent}}$|⁠) belonging to the distinct object classes present sulphur ICFs lower than ∼2. The range and average of the ICFs for our sample of Sy 2, H ii galaxies, GHRs, and disc H ii regions are presented in Table 4 showing that the different samples have similar ICF values. Therefore, despite the fact that Sy 2s have a harder ionizing source than SFs, these two distinct object classes have similar sulphur ionic fractions.

Left-hand panel: distributions for the sulphur ICF (see Section 3.2.2). Red distribution is derived from our Sy 2 sample by using equation (7) (values listed in Table A3). Black distribution is derived by using values from disc H ii region estimates (i.e. results from chaos project) assuming equation (7) for $\rm (O^{+}/O) \: \gtrsim \:0.6$ and the theoretical ICF from Thuan et al. (1995) when $\rm (O^{+}/O) \: \lesssim \:0.6$. Blue distribution corresponds to H ii galaxies values from Hägele et al. (2006, 2008, 2011, 2012) and pink distribution corresponds to GHRs from Hägele et al. (2006), and for both kind of objects the approach proposed by Barker (1980) was used. Right-hand panel: distributions for the sulphur abundance. Dashed line represents the sulphur solar abundance $\rm 12+\log (S/H)_{\odot }=7.27$ derived by Grevesse & Sauval (1998). The color code is the same as in left-hand panel.
Figure 8.

Left-hand panel: distributions for the sulphur ICF (see Section 3.2.2). Red distribution is derived from our Sy 2 sample by using equation (7) (values listed in Table A3). Black distribution is derived by using values from disc H ii region estimates (i.e. results from chaos project) assuming equation (7) for |$\rm (O^{+}/O) \: \gtrsim \:0.6$| and the theoretical ICF from Thuan et al. (1995) when |$\rm (O^{+}/O) \: \lesssim \:0.6$|⁠. Blue distribution corresponds to H ii galaxies values from Hägele et al. (2006, 2008, 2011, 2012) and pink distribution corresponds to GHRs from Hägele et al. (2006), and for both kind of objects the approach proposed by Barker (1980) was used. Right-hand panel: distributions for the sulphur abundance. Dashed line represents the sulphur solar abundance |$\rm 12+\log (S/H)_{\odot }=7.27$| derived by Grevesse & Sauval (1998). The color code is the same as in left-hand panel.

Table 4.

Range and average sulphur ICF, S/H, O/H, and S/O abundance values for our sample of Sy 2s, disc H ii regions, H ii galaxies, and giant H ii regions (GHRs).

ICF(⁠|$\rm S^{+}+S^{2+}$|⁠)12 + log(S/H)12 + log(O/H)log(S/O)Ref.
Object typeRangeAverageRangeAverageRangeAverageRangeAverage
Sy 21.1–3.01.446.2–7.56.98 ± 0.258.0–9.18.71 ± 0.24−2.4 to −1.3−1.64 ± 0.201
H ii region1.1–2.51.436.2–7.97.11 ± 0.287.8–8.98.47 ± 0.19−1.7 to −0.9−1.35 ± 0.152
H ii galaxy1.0–2.81.665.5–6.66.10 ± 0.277.0–8.27.79 ± 0.30−2.0 to −1.4−1.67 ± 0.153, 4
GHR1.0–2.51.266.2–7.26.73 ± 0.247.6–8.68.12 ± 0.23−1.9 to −0.7−1.38 ± 0.304
ICF(⁠|$\rm S^{+}+S^{2+}$|⁠)12 + log(S/H)12 + log(O/H)log(S/O)Ref.
Object typeRangeAverageRangeAverageRangeAverageRangeAverage
Sy 21.1–3.01.446.2–7.56.98 ± 0.258.0–9.18.71 ± 0.24−2.4 to −1.3−1.64 ± 0.201
H ii region1.1–2.51.436.2–7.97.11 ± 0.287.8–8.98.47 ± 0.19−1.7 to −0.9−1.35 ± 0.152
H ii galaxy1.0–2.81.665.5–6.66.10 ± 0.277.0–8.27.79 ± 0.30−2.0 to −1.4−1.67 ± 0.153, 4
GHR1.0–2.51.266.2–7.26.73 ± 0.247.6–8.68.12 ± 0.23−1.9 to −0.7−1.38 ± 0.304

Note. References: 1 – this work; 2 – Croxall et al. (2016), Berg et al. (2020), and Rogers et al. (2021); 3 – Hägele et al. (2008, 2011, 2012); and 4 – Hägele et al. (2006).

Table 4.

Range and average sulphur ICF, S/H, O/H, and S/O abundance values for our sample of Sy 2s, disc H ii regions, H ii galaxies, and giant H ii regions (GHRs).

ICF(⁠|$\rm S^{+}+S^{2+}$|⁠)12 + log(S/H)12 + log(O/H)log(S/O)Ref.
Object typeRangeAverageRangeAverageRangeAverageRangeAverage
Sy 21.1–3.01.446.2–7.56.98 ± 0.258.0–9.18.71 ± 0.24−2.4 to −1.3−1.64 ± 0.201
H ii region1.1–2.51.436.2–7.97.11 ± 0.287.8–8.98.47 ± 0.19−1.7 to −0.9−1.35 ± 0.152
H ii galaxy1.0–2.81.665.5–6.66.10 ± 0.277.0–8.27.79 ± 0.30−2.0 to −1.4−1.67 ± 0.153, 4
GHR1.0–2.51.266.2–7.26.73 ± 0.247.6–8.68.12 ± 0.23−1.9 to −0.7−1.38 ± 0.304
ICF(⁠|$\rm S^{+}+S^{2+}$|⁠)12 + log(S/H)12 + log(O/H)log(S/O)Ref.
Object typeRangeAverageRangeAverageRangeAverageRangeAverage
Sy 21.1–3.01.446.2–7.56.98 ± 0.258.0–9.18.71 ± 0.24−2.4 to −1.3−1.64 ± 0.201
H ii region1.1–2.51.436.2–7.97.11 ± 0.287.8–8.98.47 ± 0.19−1.7 to −0.9−1.35 ± 0.152
H ii galaxy1.0–2.81.665.5–6.66.10 ± 0.277.0–8.27.79 ± 0.30−2.0 to −1.4−1.67 ± 0.153, 4
GHR1.0–2.51.266.2–7.26.73 ± 0.247.6–8.68.12 ± 0.23−1.9 to −0.7−1.38 ± 0.304

Note. References: 1 – this work; 2 – Croxall et al. (2016), Berg et al. (2020), and Rogers et al. (2021); 3 – Hägele et al. (2008, 2011, 2012); and 4 – Hägele et al. (2006).

Concerning the total sulphur abundance, in the right-hand panel of Fig. 8, we present the S/H abundance distribution for our sample of Sy 2 nuclei, H ii galaxies, and GHRs from Hägele et al. (2006, 2008, 2011, 2012) and for disc H ii regions from the chaos project. Also in this plot, the sulphur solar abundance |$\rm 12+\log (S/H)_{\odot }=7.27$| derived by Grevesse & Sauval (1998) is represented by the dashed line. We note that the Sy 2s present an intermediate S/H distribution between that of GHRs and the disc H ii regions, while H ii galaxies tend to present lower sulphur abundances. In Table 4, the range and S/H average values for our AGN sample and for the SF benchmark sample are listed. The Sy 2s present S/H values in the range of |$6.2 \: \lt \: 12+\log (\rm S/H) \: \lt \: 7.5$| and considering the sulphur solar value as 12 + |$\log (\rm S/H)_{\odot }=7.26$| (Grevesse & Sauval 1998), represents |$0.1 \: \lt \: (\rm S/S_{\odot }) \: \lt \: 1.8$|⁠, where most of the objects (40/45) have subsolar sulphur abundance. This result can be biased due to the fact that we selected only objects that have the [S iii]λ9069 and auroral line [O iii]λ4363 measured, resulting (see Table 4) only in Sy 2s with O/H values in the range |$8.0 \: \lesssim \: 12+\log (\rm O/H) \: \lesssim \: 9.1$| or |$0.2 \: \lesssim \: (Z/\rm Z_{\odot }) \: \lesssim \: 2.6$|⁠, adopting the solar oxygen value of |$12+\log (\rm O/H)_{\odot }=8.69$| (Allende Prieto et al. 2001). Dors et al. (2020a), who considered a sample of 463 confirmed Seyfert 2 AGNs (⁠|$z \: \lesssim \: 0.4$|⁠) and used distinct methods that did not necessarily required auroral lines, found values in the range |$7.1 \: \lesssim \: 12+\log (\rm O/H) \: \lesssim \: 9.2$| or |$0.02 \: \lesssim \: (Z/\rm Z_{\odot }) \: \lesssim \: 3.2$|⁠. Therefore, lower and higher S/H abundances would be probably derived in the sample if the data by Dors et al. (2020a) could be taken into account. In any case, the abundance estimates from the chaos project comprise inner disc H ii regions, therefore, it is expected that these objects and Sy 2 nuclei would have similar S/H abundances, when a large sample of objects is considered. Interestingly, the maximum S/H value (∼7.9 dex) is derived for disc H ii regions while sulphur abundances in Sy 2s reach up to ∼7.5 dex. This result points to a distinct chemical enrichment of the ISM near the AGNs in comparison to that of the innermost disc H ii regions. We emphasize that a more detailed comparison taking into account SFs and AGNs located in galaxies with similar mass (see do Nascimento et al. 2022) is need to confirm this result.

In Fig. 9, we show a plot of the S/H versus O/H abundances for our Sy 2 sample and for the SF benchmark. Also in this figure, the range of the S/H values derived from the photoionization models by Storchi-Bergmann & Pastoriza (1990) and considering a larger sample of AGNs than our data is indicated. Berg et al. (2020) summarized the radial sulphur gradients (and the gradients for other elements) in four spiral galaxies from the chaos project, which are represented by

$$\begin{eqnarray} 12+\log (\mathrm{S/H})= \mathrm{ grad}(\mathrm{S}) \times R + Y_{0}(\mathrm{S}), \end{eqnarray}$$
(15)

where |$\mathrm{ grad}(\rm S)$| is the value of the slope of the sulphur gradient, R is the radial galactic distance, and |$Y_{0}(\rm S)$| is the extrapolated value of S/H gradient to the galactic center R = 0. The range of |$Y_{0}(\rm S)$| derived by Berg et al. (2020) is also represented in Fig. 9. We note that, for a given O/H value, in general Sy 2s present lower S/H values than the majority of disc H ii regions and than those from extrapolated gradients. Again, this discrepancy can be due to the distinct chemical evolution of AGNs and SFs or even due to the small AGN sample (the sample contains only 45 objects). H ii galaxies and GHRs present lower S/H and O/H abundances in comparison with the Sy 2s, which indicate that the former objects are less chemically evolved than the latter. Finally, the model results by Storchi-Bergmann & Pastoriza (1990) predicted, on average, higher (∼0.3 dex) S/H values than those derived by using the Te method for Sy 2s. This discrepancy can be partly due to the known problem of photoionization models overestimating abundances in comparison to the Te method. In fact, Dors et al. (2020b) showed that direct temperature estimates of |$T_{\rm e}(\rm O^{2+})$| are higher (up to 11 000 K) than those predicted by photoionization models, which translates into an overestimate of the O/H abundance of up to ∼1 dex (with an average value of ∼0.2 dex) by the photoionization models. In order to ascertain if the temperature problem also exists in the sulphur temperatures, in Fig. 10, we compare our direct temperature estimates (shown in Fig. 4) with temperature predictions by the photoionization models built with the cloudy code by Carvalho et al. (2020) taking into account a wide range of NLR nebular parameters.

  • Metallicity: (⁠|$Z/\rm Z_{\odot })=3.0,\ 2.0,\ 1.0,\ 0.75, \ 0.5$|⁠, and 0.2.

  • Electron density: |$N_{\rm e}\, \rm (cm^{-3})=3000, \ 1500, \ 500, \ \mathrm{ and} \ 100$|⁠.

  • Ionization parameter (U): log U ranging from −1.5 to −3.5, with step of 0.5 dex.

  • Spectra energy distribution (SED): the SED is parametrized by the continuum between 2 keV and 2500 Å (Tananbaum et al. 1979) and it is described by a power law with a spectral index αox = −0.8, −1.1, and −1.4.

Relation between the total sulphur and oxygen abundances [12+log(S/H) versus 12 + log(O/H)]. Red points represent our Sy 2 nuclei direct estimates. Black points represent estimates from disc H ii regions also obtained through the Te method from the chaos project. Pink points represent GHRs estimated from Hägele et al. (2006) and blue ones those estimates for H ii galaxies from Hägele et al. (2006, 2008, 2011, 2012). The orange hatched area represents the range of S/H values inferred through photoionization models for a sample of 177 Seyfert galaxies by Storchi-Bergmann & Pastoriza (1990). The magenta hatched area represents the range of S/H values obtained from the extrapolation of radial abundance gradients to central parts of four (NGC 0628, NGC 5194, NGC 5457, and NGC 3184) spiral galaxies by Berg et al. (2020).
Figure 9.

Relation between the total sulphur and oxygen abundances [12+log(S/H) versus 12 + log(O/H)]. Red points represent our Sy 2 nuclei direct estimates. Black points represent estimates from disc H ii regions also obtained through the Te method from the chaos project. Pink points represent GHRs estimated from Hägele et al. (2006) and blue ones those estimates for H ii galaxies from Hägele et al. (2006, 2008, 2011, 2012). The orange hatched area represents the range of S/H values inferred through photoionization models for a sample of 177 Seyfert galaxies by Storchi-Bergmann & Pastoriza (1990). The magenta hatched area represents the range of S/H values obtained from the extrapolation of radial abundance gradients to central parts of four (NGC 0628, NGC 5194, NGC 5457, and NGC 3184) spiral galaxies by Berg et al. (2020).

Temperatures (in units of 104 K) for the $\rm S^{+}$ (bottom panel) and $\rm S^{2+}$ (upper panel) versus the temperature for $\rm O^{2+}$. Black points are Sy 2 direct estimations that relied on auroral lines (see Section 4.1). Red points are temperature predictions by AGN photoionization models built with the cloudy code by Carvalho et al. (2020).
Figure 10.

Temperatures (in units of 104 K) for the |$\rm S^{+}$| (bottom panel) and |$\rm S^{2+}$| (upper panel) versus the temperature for |$\rm O^{2+}$|⁠. Black points are Sy 2 direct estimations that relied on auroral lines (see Section 4.1). Red points are temperature predictions by AGN photoionization models built with the cloudy code by Carvalho et al. (2020).

In Fig. 10, it can be seen that similar to oxygen temperatures (see Dors et al. 2020b) direct temperature estimates for |$\rm S^{+}$| and |$\rm S^{2+}$| are higher than those predicted by AGN photoioinization models.6 Thus, this result explains the discrepancy between the sulphur abundance inferred by the photoionization models built by Storchi-Bergmann & Pastoriza (1990) and those calculated from our sample by using the Te method.

Finally, in Fig. 11, we show a plot of log(S/O) versus 12 + log(O/H), which compares our direct abundance estimates with the SF benchmark. Considering the estimates of all objects (AGN + SF), we provide the following relation:

$$\begin{eqnarray} \rm \log (S/O)=+0.06(\pm 0.03) \times [12+\log (O/H)] - 1.94 (\pm 0.33), \end{eqnarray}$$
(16)

with the Pearson coefficient parameters (R = 0.09 ± 0.07 and p-value = 0.24), i.e. there is no correlation between the estimations. Thus, our estimates combined with those from a large sample of SFs suggest that S/O is constant over a wide range of O/H, as found by recent results from the chaos project (see Rogers et al. 2021 and references therein). However, in Fig. 11, it can be seen that there is a clear trend of S/O values of Sy 2 decreasing with O/H in the high-metallicity regime. The same behaviour was found from H ii regions, for instance, by Dors et al. (2016) and Díaz & Zamora (2022).

Relation between log(S/O) and 12 + log(O/H). Red points represent our Sy 2 nuclei direct estimates. Pink points represent direct estimates for GHRs from Hägele et al. (2006). Black points represent estimates from disc H ii regions obtained also through Te method by Berg et al. (2020). Blue points represent direct estimates for H ii galaxies by Hägele et al. (2006, 2008, 2011, 2012). Dashed line represents the solar value of $\rm \log (S/O)_{\odot }=-1.43$ (Grevesse & Sauval 1998; Allende Prieto et al. 2001). Solid line represents the linear regression considering all the estimates given by equation (16).
Figure 11.

Relation between log(S/O) and 12 + log(O/H). Red points represent our Sy 2 nuclei direct estimates. Pink points represent direct estimates for GHRs from Hägele et al. (2006). Black points represent estimates from disc H ii regions obtained also through Te method by Berg et al. (2020). Blue points represent direct estimates for H ii galaxies by Hägele et al. (2006, 2008, 2011, 2012). Dashed line represents the solar value of |$\rm \log (S/O)_{\odot }=-1.43$| (Grevesse & Sauval 1998; Allende Prieto et al. 2001). Solid line represents the linear regression considering all the estimates given by equation (16).

It is worth to mention that emission lines of AGNs, such as [S iii]λ9069, λ9532 and auroral lines (mainly [N ii]λ5755 and [S iii]λ6312), are either measured with low S/N (∼2) or unavailable in the literature (e.g. see Koski 1978; Dopita et al. 2015). This implies that chemical abundance studies of AGNs are difficult to be carried out and, even when it is possible to determine the abundance directly, higher (a factor of ∼2, see Fig. 9) abundance errors in comparison with those of SFs are derived. The next generation of telescopes, such as the Giant Magellan Telescope, European Extremely Large Telescope, and Thirty Meter Telescope, will provide higher S/N measurements of weak AGN emission lines and will allow a breakthrough in our understanding of the chemical abundance in AGNs and objects with very high metallicity.

5 CONCLUSIONS

We have used observations of the intensities of narrow emission lines in the spectral interval 3000 < λ(Å) < 9100 of sample of 45 nearby (⁠|$z\: \lesssim \: 0.08$|⁠) Seyfert 2 nuclei taken from SDSS DR17 and other compilations from the literature to perform direct estimations of electron temperatures through the Te method and estimates of sulphur and oxygen abundances relative to hydrogen. These estimates were compared with those from local SFs, i.e. disc H ii regions, H ii galaxies, and GHRs, whose abundance estimates were compiled from the literature. Regarding the electron temperatures, we found that Seyfert 2 and SFs have similar temperature in the gas regions where most |$\rm S\rm ^{+}$| is located. However, this result is not derived for the zones where most |$\rm S\rm ^{2+}$| is located: |$\rm S^{2+}$| electron temperatures are higher (∼10 000 K) from Seyfert 2 than from SFs. We interpret this result as, probably, due to the known feature of SEDs of AGNs are harder than that of SFs, producing a hotter gas in the innermost narrow line region of AGNs. For our sample of Seyfert 2, we derived total sulphur abundances in the range of |$6.2 \: \lesssim 12+\log (\rm S/H) \: \lesssim \: 7.5$| or |$0.1\: \lesssim \: (\rm S/S_{\odot }) \: \lesssim \: 1.8$|⁠. The Seyfert 2 sulphur abundances are lower by a factor of ∼0.4 dex than those derived for SFs with similar metallicities. This discrepancy can be interpreted as due to a distinct chemical enrichment of the ISM near the AGNs in comparison to that of the SFs. The relation between S/O and O/H abundance ratios derived from our Seyfert 2 nuclei sample presents an abrupt (∼0.5 dex) decrease with the increase of O/H for the high-metallicity regime [|$\rm 12+\log (O/H) \: \gtrsim 8.7)$|], which is not derived from SFs. However, when our Sy 2 estimates are combined with those from a large sample of SFs, we did not find any dependence between S/O and O/H, supporting the idea that sulphur and oxygen are produced by stars with similar mass range and that the IMF is universal.

Acknowledgement

OLD is grateful to Fundação de Amparo á Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). ACK thanks FAPESP for the support grant 2020/16416-5 and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). RAR acknowledges financial support from CNPq and Fundação de Amparo à pesquisa do Estado do Rio Grande do Sul (FAPERGS). MA gratefully acknowledges support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS web site is www.sdss.org. SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut fur Astrophysik Potsdam (AIP), Max-Planck-Institut fur Astronomie (MPIA Heidelberg), Max-Planck-Institut fur Astrophysik (MPA Garching), Max-Planck-Institut fur Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatorio Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autonoma de Mexico, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University. MV acknowledges support from the CONACYT grant from the program ‘Estancias Posdoctorales por México 2022’.

DATA AVAILABILITY

The data underlying this paper will be shared on reasonable request to the corresponding author.

Footnotes

1

For a review see Maiolino & Mannucci (2019) and Kewley, Nicholls & Sutherland (2019).

2

The metallicity in stars is usually traced by Fe/H abundance ratio (e.g. Allende Prieto et al. 2004).

3

SDSS DR17 spectroscopic data are available at https://dr17.sdss.org/optical/plate/search.

6

Model temperatures values in Fig. 10 correspond to the mean temperature for |$\rm S^{\rm +}$| and |$\rm S^{2+}$| over the nebular AGN radius times the electron density.

References

Abazajian
K.
et al. ,
2005
,
AJ
,
129
,
1755

Abazajian
K. N.
et al. ,
2009
,
ApJS
,
182
,
543

Abdurro’uf
et al. ,
2022
,
ApJS
,
259
,
35

Aihara
H.
et al. ,
2011
,
ApJS
,
193
,
29

Aldrovandi
S. M. V.
,
Contini
M.
,
1984
,
A&A
,
140
,
368

Allende Prieto
C.
,
Barklem
P. S.
,
Lambert
D. L.
,
Cunha
K.
,
2004
,
A&A
,
420
,
183

Allende Prieto
C.
,
Lambert
D. L.
,
Asplund
M.
,
2001
,
ApJ
,
556
,
L63

Aller
L. H.
,
Czyzak
S. J.
,
1983
,
ApJS
,
51
,
211

Alloin
D.
,
Bica
E.
,
Bonatto
C.
,
Prugniel
P.
,
1992
,
A&A
,
266
,
117

Arellano-Córdova
K. Z.
et al. ,
2022
,
ApJ
,
935
,
74

Arellano-Córdova
K. Z.
,
Esteban
C.
,
García-Rojas
J.
,
Méndez-Delgado
J. E.
,
2020
,
MNRAS
,
496
,
1051

Arellano-Córdova
K. Z.
,
Rodríguez
M.
,
2020
,
MNRAS
,
497
,
672

Armah
M.
et al. ,
2021
,
MNRAS
,
508
,
371

Armus
L.
et al. ,
2023
,
ApJ
,
942
,
L37

Barker
T.
,
1980
,
ApJ
,
240
,
99

Bedregal
A. G.
,
Colina
L.
,
Alonso-Herrero
A.
,
Arribas
S.
,
2009
,
ApJ
,
698
,
1852

Berg
D. A.
,
Pogge
R. W.
,
Skillman
E. D.
,
Croxall
K. V.
,
Moustakas
J.
,
Rogers
N. S. J.
,
Sun
J.
,
2020
,
ApJ
,
893
,
96

Berg
D. A.
,
Skillman
E. D.
,
Croxall
K. V.
,
Pogge
R. W.
,
Moustakas
J.
,
Johnson-Groh
M.
,
2015
,
ApJ
,
806
,
16

Berg
D. A.
,
Skillman
E. D.
,
Garnett
D. R.
,
Croxall
K. V.
,
Marble
A. R.
,
Smith
J. D.
,
Gordon
K.
,
Kennicutt Robert
C. J.
,
2013
,
ApJ
,
775
,
128

Bergvall
N.
,
Johansson
L.
,
Olofsson
K.
,
1986
,
A&A
,
166
,
92

Bernard-Salas
J.
,
Pottasch
S. R.
,
Gutenkunst
S.
,
Morris
P. W.
,
Houck
J. R.
,
2008
,
ApJ
,
672
,
274

Bianchi
S.
,
Chiaberge
M.
,
Evans
D. A.
,
Guainazzi
M.
,
Baldi
R. D.
,
Matt
G.
,
Piconcelli
E.
,
2010
,
MNRAS
,
405
,
553

Binette
L.
,
Matadamas
R.
,
Hägele
G. F.
,
Nicholls
D. C.
,
Magris C.
G.
,
Peña-Guerrero
M. Á.
,
Morisset
C.
,
Rodríguez-González
A.
,
2012
,
A&A
,
547
,
A29

Bogdán
Á.
,
Kraft
R. P.
,
Evans
D. A.
,
Andrade-Santos
F.
,
Forman
W. R.
,
2017
,
ApJ
,
848
,
61

Boissier
S.
,
Prantzos
N.
,
2000
,
MNRAS
,
312
,
398

Bonifacio
P.
,
Caffau
E.
,
Centurión
M.
,
Molaro
P.
,
Vladilo
G.
,
2001
,
MNRAS
,
325
,
767

Breiding
P.
,
Burke-Spolaor
S.
,
An
T.
,
Bansal
K.
,
Mohan
P.
,
Taylor
G. B.
,
Zhang
Y.
,
2022
,
ApJ
,
933
,
143

Busch
G.
et al. ,
2016
,
A&A
,
587
,
A138

Caffau
E.
,
Bonifacio
P.
,
Faraggiana
R.
,
François
P.
,
Gratton
R. G.
,
Barbieri
M.
,
2005
,
A&A
,
441
,
533

Cardaci
M. V.
,
Santos-Lleó
M.
,
Hägele
G. F.
,
Krongold
Y.
,
Díaz
A. I.
,
Rodríguez-Pascual
P.
,
2011
,
A&A
,
530
,
A125

Cardaci
M. V.
,
Santos-Lleó
M.
,
Krongold
Y.
,
Hägele
G. F.
,
Díaz
A. I.
,
Rodríguez-Pascual
P.
,
2009
,
A&A
,
505
,
541

Cardelli
J. A.
,
Clayton
G. C.
,
Mathis
J. S.
,
1989
,
ApJ
,
345
,
245

Carvalho
S. P.
et al. ,
2020
,
MNRAS
,
492
,
5675

Castro
C. S.
,
Dors
O. L.
,
Cardaci
M. V.
,
Hägele
G. F.
,
2017
,
MNRAS
,
467
,
1507

Cavichia
O.
,
Costa
R. D. D.
,
Maciel
W. J.
,
Mollá
M.
,
2017
,
MNRAS
,
468
,
272

Centurión
M.
,
Bonifacio
P.
,
Molaro
P.
,
Vladilo
G.
,
2000
,
ApJ
,
536
,
540

Cerqueira-Campos
F. C.
,
Rodríguez-Ardila
A.
,
Riffel
R.
,
Marinello
M.
,
Prieto
A.
,
Dahmer-Hahn
L. G.
,
2021
,
MNRAS
,
500
,
2666

Chevallard
J.
,
Charlot
S.
,
2016
,
MNRAS
,
462
,
1415

Christensen
T.
,
Petersen
L.
,
Gammelgaard
P.
,
1997
,
A&A
,
322
,
41

Cid Fernandes
R.
,
Mateus
A.
,
Sodré
L.
,
Stasińska
G.
,
Gomes
J. M.
,
2005
,
MNRAS
,
358
,
363

Cid Fernandes
R.
,
Stasińska
G.
,
Schlickmann
M. S.
,
Mateus
A.
,
Vale Asari
N.
,
Schoenell
W.
,
Sodré
L.
,
2010
,
MNRAS
,
403
,
1036

Cohen
R. D.
,
1983
,
ApJ
,
273
,
489

Congiu
E.
et al. ,
2017
,
MNRAS
,
471
,
562

Costa
R. D. D.
,
Uchida
M. M. M.
,
Maciel
W. J.
,
2004
,
A&A
,
423
,
199

Costa Silva
A. R.
,
Delgado Mena
E.
,
Tsantaki
M.
,
2020
,
A&A
,
634
,
A136

Croxall
K. V.
,
Pogge
R. W.
,
Berg
D. A.
,
Skillman
E. D.
,
Moustakas
J.
,
2015
,
ApJ
,
808
,
42

Croxall
K. V.
,
Pogge
R. W.
,
Berg
D. A.
,
Skillman
E. D.
,
Moustakas
J.
,
2016
,
ApJ
,
830
,
4

Curti
M.
et al. ,
2023
,
MNRAS
,
518
,
425

Danehkar
A.
,
Oey
M. S.
,
Gray
W. J.
,
2022
,
ApJ
,
937
,
68

Davies
R. L.
,
Rich
J. A.
,
Kewley
L. J.
,
Dopita
M. A.
,
2014
,
MNRAS
,
439
,
3835

Delgado-Inglada
G.
,
Morisset
C.
,
Stasińska
G.
,
2014
,
MNRAS
,
440
,
536

Denicoló
G.
,
Terlevich
R.
,
Terlevich
E.
,
2002
,
MNRAS
,
330
,
69

Diamond-Stanic
A. M.
,
Rieke
G. H.
,
2012
,
ApJ
,
746
,
168

Díaz
Á. I.
,
Terlevich
E.
,
Castellanos
M.
,
Hägele
G. F.
,
2007
,
MNRAS
,
382
,
251

Díaz
A. I.
,
Terlevich
E.
,
Vilchez
J. M.
,
Pagel
B. E. J.
,
Edmunds
M. G.
,
1991
,
MNRAS
,
253
,
245

Díaz
Á. I.
,
Zamora
S.
,
2022
,
MNRAS
,
511
,
4377

do Nascimento
J. C.
et al. ,
2022
,
MNRAS
,
513
,
807

Dopita
M. A.
et al. ,
2005
,
ApJ
,
619
,
755

Dopita
M. A.
et al. ,
2015
,
ApJS
,
217
,
12

Dopita
M. A.
,
Sutherland
R. S.
,
1995
,
ApJ
,
455
,
468

Dors
O. L.
et al. ,
2020a
,
MNRAS
,
492
,
468

Dors
O. L.
et al. ,
2022
,
MNRAS
,
514
,
5506

Dors
O. L. J.
,
Arellano-Córdova
K. Z.
,
Cardaci
M. V.
,
Hägele
G. F.
,
2017
,
MNRAS
,
468
,
L113

Dors
O. L. J.
,
Storchi-Bergmann
T.
,
Riffel
R. A.
,
Schimdt
A. A.
,
2008
,
A&A
,
482
,
59

Dors
O. L.
,
Agarwal
B.
,
Hägele
G. F.
,
Cardaci
M. V.
,
Rydberg
C.-E.
,
Riffel
R. A.
,
Oliveira
A. S.
,
Krabbe
A. C.
,
2018
,
MNRAS
,
479
,
2294

Dors
O. L.
,
Cardaci
M. V.
,
Hägele
G. F.
,
Krabbe
Â. C.
,
2014
,
MNRAS
,
443
,
1291

Dors
O. L.
,
Contini
M.
,
Riffel
R. A.
,
Pérez-Montero
E.
,
Krabbe
A. C.
,
Cardaci
M. V.
,
Hägele
G. F.
,
2021
,
MNRAS
,
501
,
1370

Dors
O. L.
,
Maiolino
R.
,
Cardaci
M. V.
,
Hägele
G. F.
,
Krabbe
A. C.
,
Pérez-Montero
E.
,
Armah
M.
,
2020b
,
MNRAS
,
496
,
3209

Dors
O. L.
,
Monteiro
A. F.
,
Cardaci
M. V.
,
Hägele
G. F.
,
Krabbe
A. C.
,
2019
,
MNRAS
,
486
,
5853

Dors
O. L.
,
Pérez-Montero
E.
,
Hägele
G. F.
,
Cardaci
M. V.
,
Krabbe
A. C.
,
2016
,
MNRAS
,
456
,
4407

Durré
M.
,
Mould
J.
,
2018
,
ApJ
,
867
,
149

Espíritu
J. N.
,
Peimbert
A.
,
2021
,
MNRAS
,
508
,
2668

Fang
X.
et al. ,
2018
,
ApJ
,
853
,
50

Fathivavsari
H.
,
Petitjean
P.
,
Ledoux
C.
,
Noterdaeme
P.
,
Srianand
R.
,
Rahmani
H.
,
Ajabshirizadeh
A.
,
2013
,
MNRAS
,
435
,
1727

Fazeli
N.
,
Busch
G.
,
Valencia-S.
M.
,
Eckart
A.
,
Zajaček
M.
,
Combes
F.
,
García-Burillo
S.
,
2019
,
A&A
,
622
,
A128

Feltre
A.
,
Charlot
S.
,
Gutkin
J.
,
2016
,
MNRAS
,
456
,
3354

Ferland
G. J.
et al. ,
2013
,
Rev. Mex. Astron. Astrofis.
,
49
,
137

Ferland
G. J.
,
Osterbrock
D. E.
,
1986
,
ApJ
,
300
,
658

Fernández
V.
,
Terlevich
E.
,
Díaz
A. I.
,
Terlevich
R.
,
2019
,
MNRAS
,
487
,
3221

Fernández-Ontiveros
J. A.
,
Spinoglio
L.
,
Pereira-Santaella
M.
,
Malkan
M. A.
,
Andreani
P.
,
Dasyra
K. M.
,
2016
,
ApJS
,
226
,
19

Flury
S. R.
,
Moran
E. C.
,
2020
,
MNRAS
,
496
,
2191

Fox
A.
,
Richter
P.
,
Fechner
C.
,
2014
,
A&A
,
572
,
A102

Freitas
I. C.
et al. ,
2018
,
MNRAS
,
476
,
2760

Froese Fischer
C.
,
Tachiev
G.
,
2004
,
At. Data Nucl. Data Tables
,
87
,
1

Froese Fischer
C.
,
Tachiev
G.
,
Irimia
A.
,
2006
,
At. Data Nucl. Data Tables
,
92
,
607

Gaia Collaboration
et al. .,
2022
,
A&A
,
preprint
()

García-Benito
R.
et al. ,
2010
,
MNRAS
,
408
,
2234

García-Burillo
S.
et al. ,
2014
,
A&A
,
567
,
A125

García-Rojas
J.
,
Morisset
C.
,
Jones
D.
,
Wesson
R.
,
Boffin
H. M. J.
,
Monteiro
H.
,
Corradi
R. L. M.
,
Rodríguez-Gil
P.
,
2022
,
MNRAS
,
510
,
5444

Garnett
D. R.
,
1989
,
ApJ
,
345
,
282

Garnett
D. R.
,
1992
,
AJ
,
103
,
1330

Garnett
D. R.
,
Shields
G. A.
,
Skillman
E. D.
,
Sagan
S. P.
,
Dufour
R. J.
,
1997
,
ApJ
,
489
,
63

Goodrich
R. W.
,
Osterbrock
D. E.
,
1983
,
ApJ
,
269
,
416

Grevesse
N.
,
Sauval
A. J.
,
1998
,
Space Sci. Rev.
,
85
,
161

Gronow
S.
,
Côté
B.
,
Lach
F.
,
Seitenzahl
I. R.
,
Collins
C. E.
,
Sim
S. A.
,
Röpke
F. K.
,
2021
,
A&A
,
656
,
A94

Groves
B. A.
,
Heckman
T. M.
,
Kauffmann
G.
,
2006
,
MNRAS
,
371
,
1559

Guo
Y.
et al. ,
2020
,
ApJ
,
898
,
26

Guseva
N. G.
,
Izotov
Y. I.
,
Stasińska
G.
,
Fricke
K. J.
,
Henkel
C.
,
Papaderos
P.
,
2011
,
A&A
,
529
,
A149

Hägele
G. F.
,
Díaz
Á. I.
,
Terlevich
E.
,
Terlevich
R.
,
Pérez-Montero
E.
,
Cardaci
M. V.
,
2008
,
MNRAS
,
383
,
209

Hägele
G. F.
,
Firpo
V.
,
Bosch
G.
,
Díaz
Á. I.
,
Morrell
N.
,
2012
,
MNRAS
,
422
,
3475

Hägele
G. F.
,
García-Benito
R.
,
Pérez-Montero
E.
,
Díaz
Á. I.
,
Cardaci
M. V.
,
Firpo
V.
,
Terlevich
E.
,
Terlevich
R.
,
2011
,
MNRAS
,
414
,
272

Hägele
G. F.
,
Pérez-Montero
E.
,
Díaz
Á. I.
,
Terlevich
E.
,
Terlevich
R.
,
2006
,
MNRAS
,
372
,
293

Henry
R. B. C.
,
Kwitter
K. B.
,
Balick
B.
,
2004
,
AJ
,
127
,
2284

Hummer
D. G.
,
Storey
P. J.
,
1987
,
MNRAS
,
224
,
801

Israelian
G.
,
Rebolo
R.
,
2001
,
ApJ
,
557
,
L43

Izotov
Y. I.
,
Guseva
N. G.
,
Fricke
K. J.
,
Stasińska
G.
,
Henkel
C.
,
Papaderos
P.
,
2010
,
A&A
,
517
,
A90

Izotov
Y. I.
,
Stasińska
G.
,
Meynet
G.
,
Guseva
N. G.
,
Thuan
T. X.
,
2006
,
A&A
,
448
,
955

Izotov
Y. I.
,
Thuan
T. X.
,
2008
,
ApJ
,
687
,
133

Jenkins
E. B.
,
2009
,
ApJ
,
700
,
1299

Jin
Y.
,
Kewley
L. J.
,
Sutherland
R.
,
2022
,
ApJ
,
927
,
37

Kakkad
D.
et al. ,
2018
,
A&A
,
618
,
A6

Kawasaki
K.
,
Nagao
T.
,
Toba
Y.
,
Terao
K.
,
Matsuoka
K.
,
2017
,
ApJ
,
842
,
44

Kennicutt Robert
C. J.
,
Bresolin
F.
,
Garnett
D. R.
,
2003
,
ApJ
,
591
,
801

Kewley
L. J.
,
Dopita
M. A.
,
Sutherland
R. S.
,
Heisler
C. A.
,
Trevena
J.
,
2001
,
ApJ
,
556
,
121

Kewley
L. J.
,
Jansen
R. A.
,
Geller
M. J.
,
2005
,
PASP
,
117
,
227

Kewley
L. J.
,
Nicholls
D. C.
,
Sutherland
R. S.
,
2019
,
ARA&A
,
57
,
511

Kharb
P.
,
Lal
D. V.
,
Merritt
D.
,
2017
,
Nat. Astron.
,
1
,
727

Kisielius
R.
,
Storey
P. J.
,
Ferland
G. J.
,
Keenan
F. P.
,
2009
,
MNRAS
,
397
,
903

Koski
A. T.
,
1978
,
ApJ
,
223
,
56

Kraemer
S. B.
,
Turner
T. J.
,
Couto
J. D.
,
Crenshaw
D. M.
,
Schmitt
H. R.
,
Revalski
M.
,
Fischer
T. C.
,
2020
,
MNRAS
,
493
,
3893

Kraemer
S. B.
,
Wu
C.-C.
,
Crenshaw
D. M.
,
Harrington
J. P.
,
1994
,
ApJ
,
435
,
171

López-Sánchez
A. R.
,
Esteban
C.
,
2009
,
A&A
,
508
,
615

Lucertini
F.
,
Monaco
L.
,
Caffau
E.
,
Bonifacio
P.
,
Mucciarelli
A.
,
2022
,
A&A
,
657
,
A29

Luridiana
V.
,
Morisset
C.
,
Shaw
R. A.
,
2015
,
A&A
,
573
,
A42

Maiolino
R.
,
Mannucci
F.
,
2019
,
A&AR
,
27
,
3

Maksym
W. P.
et al. ,
2019
,
ApJ
,
872
,
94

Malkan
M. A.
,
Oke
J. B.
,
1983
,
ApJ
,
265
,
92

Mannucci
F.
et al. ,
2021
,
MNRAS
,
508
,
1582

Mateus
A.
,
Sodré
L.
,
Cid Fernandes
R.
,
Stasińska
G.
,
Schoenell
W.
,
Gomes
J. M.
,
2006
,
MNRAS
,
370
,
721

Matsuoka
K.
,
Nagao
T.
,
Maiolino
R.
,
Marconi
A.
,
Taniguchi
Y.
,
2009
,
A&A
,
503
,
721

Matsuoka
K.
,
Nagao
T.
,
Marconi
A.
,
Maiolino
R.
,
Mannucci
F.
,
Cresci
G.
,
Terao
K.
,
Ikeda
H.
,
2018
,
A&A
,
616
,
L4

Matteucci
F.
,
Padovani
P.
,
1993
,
ApJ
,
419
,
485

Mignoli
M.
et al. ,
2019
,
A&A
,
626
,
A9

Milingo
J. B.
,
Kwitter
K. B.
,
Henry
R. B. C.
,
Souza
S. P.
,
2010
,
ApJ
,
711
,
619

Mingozzi
M.
et al. ,
2019
,
A&A
,
622
,
A146

Mollá
M.
,
Díaz
A. I.
,
2005
,
MNRAS
,
358
,
521

Monreal-Ibero
A.
,
Walsh
J. R.
,
Vílchez
J. M.
,
2012
,
A&A
,
544
,
A60

Monteiro
A. F.
,
Dors
O. L.
,
2021
,
MNRAS
,
508
,
3023

Nagao
T.
,
Maiolino
R.
,
Marconi
A.
,
2006
,
A&A
,
459
,
85

Nakajima
K.
et al. ,
2018
,
A&A
,
612
,
A94

Nelson
E. J.
et al. ,
2012
,
ApJ
,
747
,
L28

Nelson
E. J.
et al. ,
2016
,
ApJ
,
828
,
27

Nissen
P. E.
,
Akerman
C.
,
Asplund
M.
,
Fabbian
D.
,
Kerber
F.
,
Kaufl
H. U.
,
Pettini
M.
,
2007
,
A&A
,
469
,
319

Nissen
P. E.
,
Chen
Y. Q.
,
Asplund
M.
,
Pettini
M.
,
2004
,
A&A
,
415
,
993

Nomoto
K.
,
Kobayashi
C.
,
Tominaga
N.
,
2013
,
ARA&A
,
51
,
457

Osterbrock
D. E.
,
1989
,
Astrophysics of Gaseous Nebulae and Active Galactic Nuclei
.
University Science Books
,
Mill Valley, CA

Pagel
B. E. J.
,
1978
,
MNRAS
,
183
,
1P

Pagomenos
G. J. S.
,
Bernard-Salas
J.
,
Pottasch
S. R.
,
2018
,
A&A
,
615
,
A29

Peimbert
M.
,
Costero
R.
,
1969
,
Bol. Obser. Tonantzintla Tacubaya
,
5
,
3

Peimbert
M.
,
Peimbert
A.
,
Delgado-Inglada
G.
,
2017
,
PASP
,
129
,
082001

Perdigon
J.
,
de Laverny
P.
,
Recio-Blanco
A.
,
Fernandez-Alvar
E.
,
Santos-Peral
P.
,
Kordopatis
G.
,
Álvarez
M. A.
,
2021
,
A&A
,
647
,
A162

Pérez-Díaz
B.
,
Masegosa
J.
,
Márquez
I.
,
Pérez-Montero
E.
,
2021
,
MNRAS
,
505
,
4289

Pérez-Montero
E.
et al. ,
2011
,
A&A
,
532
,
A141

Pérez-Montero
E.
,
2017
,
PASP
,
129
,
043001

Pérez-Montero
E.
,
Contini
T.
,
2009
,
MNRAS
,
398
,
949

Pérez-Montero
E.
,
Díaz
A. I.
,
2003
,
MNRAS
,
346
,
105

Pérez-Montero
E.
,
Díaz
A. I.
,
Vílchez
J. M.
,
Kehrig
C.
,
2006
,
A&A
,
449
,
193

Pérez-Montero
E.
,
Dors
O. L.
,
Vílchez
J. M.
,
García-Benito
R.
,
Cardaci
M. V.
,
Hägele
G. F.
,
2019
,
MNRAS
,
489
,
2652

Pettini
M.
,
Smith
L. J.
,
King
D. L.
,
Hunstead
R. W.
,
1997
,
ApJ
,
486
,
665

Phillips
M. M.
,
Charles
P. A.
,
Baldwin
J. A.
,
1983
,
ApJ
,
266
,
485

Pilyugin
L. S.
,
2003
,
A&A
,
399
,
1003

Pilyugin
L. S.
,
Lara-Lopez
M. A.
,
Vilchez
J. M.
,
Duarte Puertas
S.
,
Zinchenko
I. A.
,
Dors
O. L.
,
2022
,
A&A
,
668
,
A5

Pilyugin
L. S.
,
Vílchez
J. M.
,
Contini
T.
,
2004
,
A&A
,
425
,
849

Portinari
L.
,
Chiosi
C.
,
1999
,
A&A
,
350
,
827

Prochaska
J. X.
,
Wolfe
A. M.
,
2002
,
ApJ
,
566
,
68

Ramos Almeida
C.
,
Pérez García
A. M.
,
Acosta-Pulido
J. A.
,
Rodríguez Espinosa
J. M.
,
Barrena
R.
,
Manchado
A.
,
2006
,
ApJ
,
645
,
148

Recio-Blanco
A.
et al. ,
2022
,
A&A
,
preprint
()

Revalski
M.
et al. ,
2018b
,
ApJ
,
867
,
88

Revalski
M.
et al. ,
2021
,
ApJ
,
910
,
139

Revalski
M.
et al. ,
2022
,
ApJ
,
930
,
14

Revalski
M.
,
Crenshaw
D. M.
,
Kraemer
S. B.
,
Fischer
T. C.
,
Schmitt
H. R.
,
Machuca
C.
,
2018a
,
ApJ
,
856
,
46

Richardson
C. T.
,
Allen
J. T.
,
Baldwin
J. A.
,
Hewett
P. C.
,
Ferland
G. J.
,
2014
,
MNRAS
,
437
,
2376

Riffel
R. A.
et al. ,
2021a
,
MNRAS
,
501
,
L54

Riffel
R. A.
,
Dors
O. L.
,
Krabbe
A. C.
,
Esteban
C.
,
2021c
,
MNRAS
,
506
,
L11

Riffel
R. A.
,
Storchi-Bergmann
T.
,
Zakamska
N. L.
,
Riffel
R.
,
2020
,
MNRAS
,
496
,
4857

Riffel
R.
et al. ,
2021b
,
MNRAS
,
501
,
4064

Riffel
R.
,
Rodríguez-Ardila
A.
,
Pastoriza
M. G.
,
2006
,
A&A
,
457
,
61

Ritter
C.
,
Herwig
F.
,
Jones
S.
,
Pignatari
M.
,
Fryer
C.
,
Hirschi
R.
,
2018
,
MNRAS
,
480
,
538

Rodríguez-Ardila
A.
,
Prieto
M. A.
,
Portilla
J. G.
,
Tejeiro
J. M.
,
2011
,
ApJ
,
743
,
100

Rogers
N. S. J.
,
Skillman
E. D.
,
Pogge
R. W.
,
Berg
D. A.
,
Croxall
K. V.
,
Bartlett
J.
,
Arellano-Córdova
K. Z.
,
Moustakas
J.
,
2022
,
ApJ
,
939
,
44

Rogers
N. S. J.
,
Skillman
E. D.
,
Pogge
R. W.
,
Berg
D. A.
,
Moustakas
J.
,
Croxall
K. V.
,
Sun
J.
,
2021
,
ApJ
,
915
,
21

Roman-Duval
J.
et al. ,
2022
,
ApJ
,
935
,
105

Ruschel-Dutra
D.
et al. ,
2021
,
MNRAS
,
507
,
74

Ruschel-Dutra
D.
,
Dall’Agnol De Oliveira
B.
,
2020
,
danielrd6/ifscube v1.0 (v1.0). Zenodo
. Available at: https://doi.org/10.5281/zenodo.3945237

Samland
M.
,
Hensler
G.
,
Theis
C.
,
1997
,
ApJ
,
476
,
544

Savage
B. D.
,
Sembach
K. R.
,
1996
,
ARA&A
,
34
,
279

Shields
G. A.
,
Searle
L.
,
1978
,
ApJ
,
222
,
821

Shuder
J. M.
,
1980
,
ApJ
,
240
,
32

Shuder
J. M.
,
Osterbrock
D. E.
,
1981
,
ApJ
,
250
,
55

Sommer-Larsen
J.
,
Götz
M.
,
Portinari
L.
,
2003
,
ApJ
,
596
,
47

Stasińska
G.
,
1982
,
A&AS
,
48
,
299

Stasińska
G.
,
1984
,
A&A
,
135
,
341

Stasińska
G.
,
1990
,
A&AS
,
83
,
501

Storchi-Bergmann
T.
,
Pastoriza
M. G.
,
1990
,
PASP
,
102
,
1359

Storchi-Bergmann
T.
,
Schmitt
H. R.
,
Calzetti
D.
,
Kinney
A. L.
,
1998
,
AJ
,
115
,
909

Storey
P. J.
,
Sochi
T.
,
Badnell
N. R.
,
2014
,
MNRAS
,
441
,
3028

Storey
P. J.
,
Zeippen
C. J.
,
2000
,
MNRAS
,
312
,
813

Takada-Hidai
M.
et al. ,
2002
,
ApJ
,
573
,
614

Tananbaum
H.
et al. ,
1979
,
ApJ
,
234
,
L9

Tayal
S. S.
,
Gupta
G. P.
,
1999
,
ApJ
,
526
,
544

Tayal
S. S.
,
Zatsarinny
O.
,
2010
,
ApJS
,
188
,
32

Thomas
A. D.
et al. ,
2017
,
ApJS
,
232
,
11

Thomas
A. D.
,
Kewley
L. J.
,
Dopita
M. A.
,
Groves
B. A.
,
Hopkins
A. M.
,
Sutherland
R. S.
,
2019
,
ApJ
,
874
,
100

Thuan
T. X.
,
Izotov
Y. I.
,
Lipovetsky
V. A.
,
1995
,
ApJ
,
445
,
108

Toribio San Cipriano
L.
,
Domínguez-Guzmán
G.
,
Esteban
C.
,
García-Rojas
J.
,
Mesa-Delgado
A.
,
Bresolin
F.
,
Rodríguez
M.
,
Simón-Díaz
S.
,
2017
,
MNRAS
,
467
,
3759

Torres-Peimbert
S.
,
Peimbert
M.
,
1977
,
Rev. Mex. Astron. Astrofis.
,
2
,
181

Vale Asari
N.
,
Stasińska
G.
,
Morisset
C.
,
Cid Fernandes
R.
,
2016
,
MNRAS
,
460
,
1739

van Zee
L.
,
Salzer
J. J.
,
Haynes
M. P.
,
O’Donoghue
A. A.
,
Balonek
T. J.
,
1998
,
AJ
,
116
,
2805

Vaona
L.
,
Ciroi
S.
,
Di Mille
F.
,
Cracco
V.
,
La Mura
G.
,
Rafanelli
P.
,
2012
,
MNRAS
,
427
,
1266

Vermeij
R.
,
van der Hulst
J. M.
,
2002
,
A&A
,
391
,
1081

Vidal-García
A.
,
Plat
A.
,
Curtis-Lake
E.
,
Feltre
A.
,
Hirschmann
M.
,
Chevallard
J.
,
Charlot
S.
,
2022
,
preprint
()

Viegas-Aldrovandi
S. M.
,
Contini
M.
,
1989
,
ApJ
,
339
,
689

Vilchez
J. M.
,
Pagel
B. E. J.
,
Diaz
A. I.
,
Terlevich
E.
,
Edmunds
M. G.
,
1988
,
MNRAS
,
235
,
633

Vincenzo
F.
,
Kobayashi
C.
,
2018
,
MNRAS
,
478
,
155

Walsh
J. R.
et al. ,
2018
,
A&A
,
620
,
A169

Wiese
W. L.
,
Fuhr
J. R.
,
Deters
T. M.
,
1996
,
Atomic Transition Probabilities of Carbon, Nitrogen, and Oxygen: A Critical Data Compilation
.
American Chemical Society
,
Washington, DC

Woosley
S. E.
,
Weaver
T. A.
,
1995
,
ApJS
,
101
,
181

Xu
X.
,
Arav
N.
,
Miller
T.
,
Korista
K. T.
,
Benn
C.
,
2021
,
MNRAS
,
506
,
2725

York
D. G.
et al. ,
2000
,
AJ
,
120
,
1579

Zurita
A.
,
Bresolin
F.
,
2012
,
MNRAS
,
427
,
1463

APPENDIX: TABLES

Table A1.

Emission-line intensities of Seyfert 2s relative to Hβ = 1.00 taken from SDSS DR17 and compiled from the literature. For Mrk 3 the sum [S ii]λ6717 + 6731 (in relation to Hβ) is listed. Last column lists the references for the optical and near-infrared lines, except for Mrk 3 and ESO 138 G1 that the line set was taken from only one work.

Object[O ii]λ3727[O iii]λ4363[O iii]λ5007[N ii]λ5755[S iii]λ6312|$\rm H\alpha$|λ6563[N ii]λ6584[S ii]λ6716[S ii]λ6731[S iii]λ9069 + λ9532Ref.
Mrk 5732.13 ± 0.050.14 ± 0.01110.26 ± 0.052.86 ± 0.052.34 ± 0.040.79 ± 0.010.73 ± 0.022.581, 12|$^{a}$|
NGC 57282.32 ± 0.030.11 ± 0.0169.10 ± 0.112.86 ± 0.132.86 ± 0.130.97 ± 0.060.66 ± 0.031.921, 12|$^{a}$|
ESO 428 G142.220.2411.22.903.130.830.881.872, 12|$^{a}$|
NGC 43882.730.1610.552.841.500.720.621.103, 13|$^{a}$|
Mrk 784.960.1411.942.462.460.680.610.894, 14|$^{a}$|
NGC 76741.290.1212.553.703.680.540.643.155, 12|$^{a}$|
NGC 21104.380.174.762.663.761.521.421.916, 12|$^{a}$|
NGC 76822.850.169.343.103.031.091.171.957, 12|$^{a}$|
NGC 32273.220.5010.732.865.011.241.261.668, 12|$^{b}$|
Mrk 10663.340.083.842.762.420.510.550.759, 12|$^{a}$|
Mrk 3|$^{b, c}$|4.840.2311.222.853.211.452.5910
ESO 138 G1|$^{c}$|2.35 ± 0.050.34 ± 0.028.71 ± 0.253.01 ± 0.100.68 ± 0.030.47 ± 0.030.48 ± 0.030.6911
55978−09906.76 ± 0.430.14 ± 0.0610.70 ± 0.732.86 ± 0.313.30 ± 0.361.07 ± 0.180.87 ± 0.162.06 ± 0.6615
56104−09666.31 ± 0.140.07 ± 0.028.51 ± 0.202.86 ± 0.091.04 ± 0.040.62 ± 0.030.56 ± 0.030.73 ± 0.1215
55181−01544.12 ± 0.310.06 ± 0.037.82 ± 0.280.15 ± 0.042.86 ± 0.212.05 ± 0.150.60 ± 0.060.61 ± 0.062.02 ± 0.4215
56088−04732.07 ± 0.010.06 ± 0.017.70 ± 0.040.01 ± 0.012.86 ± 0.010.15 ± 0.010.12 ± 0.010.11 ± 0.010.63 ± 0.0215
56034−01543.02 ± 0.320.14 ± 0.0111.88 ± 0.230.05 ± 0.032.86 ± 0.072.13 ± 0.050.88 ± 0.030.81 ± 0.032.10 ± 0.1415
56067−03825.51 ± 1.330.21 ± 0.108.70 ± 0.830.192 ± 0.1652.86 ± 0.522.36 ± 0.440.86 ± 0.220.81 ± 0.221.19 ± 0.8915
56240−03408.32 ± 0.520.16 ± 0.067.24 ± 0.562.86 ± 0.282.60 ± 0.261.10 ± 0.210.86 ± 0.203.04 ± 0.9415
55539−01672.79 ± 0.200.05 ± 0.024.11 ± 0.080.078 ± 0.0472.86 ± 0.081.91 ± 0.050.61 ± 0.030.54 ± 0.031.08 ± 0.1415
56626−06363.82 ± 0.090.06 ± 0.016.12 ± 0.100.10 ± 0.022.86 ± 0.072.23 ± 0.051.06 ± 0.030.98 ± 0.031.22 ± 0.1015
56074−00454.23 ± 0.320.03 ± 0.012.69 ± 0.042.86 ± 0.071.52 ± 0.040.77 ± 0.020.58 ± 0.020.91 ± 0.1115
55212−03803.52 ± 1.130.10 ± 0.0312.54 ± 0.512.86 ± 0.152.94 ± 0.150.85 ± 0.060.84 ± 0.062.41 ± 0.3015
56399−03025.01 ± 0.370.08 ± 0.043.07 ± 0.192.86 ± 0.232.16 ± 0.191.58 ± 0.161.14 ± 0.141.33 ± 0.6315
56001−02935.05 ± 0.200.07 ± 0.017.63 ± 0.200.047 ± 0.0372.86 ± 0.131.74 ± 0.080.85 ± 0.050.61 ± 0.041.54 ± 0.2115
55651−00523.28 ± 0.760.02 ± 0.013.54 ± 0.040.05 ± 0.012.86 ± 0.062.06 ± 0.040.72 ± 0.020.68 ± 0.020.94 ± 0.0815
56566−07946.58 ± 0.610.05 ± 0.024.74 ± 0.120.017 ± 0.0160.08 ± 0.032.86 ± 0.102.16 ± 0.081.26 ± 0.061.07 ± 0.051.22 ± 0.1615
56748−03364.97 ± 0.510.08 ± 0.057.11 ± 0.412.86 ± 0.243.23 ± 0.270.99 ± 0.120.89 ± 0.121.85 ± 0.5015
56206−04547.35 ± 0.270.09 ± 0.026.67 ± 0.190.05 ± 0.032.86 ± 0.111.21 ± 0.061.12 ± 0.050.91 ± 0.051.08 ± 0.1915
55860−01125.74 ± 1.440.11 ± 0.077.82 ± 0.660.15 ± 0.122.86 ± 0.335.38 ± 0.611.80 ± 0.231.77 ± 0.231.78 ± 0.4615
56453−01443.19 ± 0.370.06 ± 0.026.42 ± 0.182.86 ± 0.102.64 ± 0.100.89 ± 0.060.78 ± 0.062.20 ± 0.3115
55710−01162.72 ± 1.050.07 ± 0.027.54 ± 0.240.06 ± 0.042.86 ± 0.124.47 ± 0.181.04 ± 0.061.13 ± 0.072.58 ± 0.2115
56209−03906.99 ± 0.770.07 ± 0.068.57 ± 0.972.86 ± 0.582.75 ± 0.550.39 ± 0.150.22 ± 0.140.52 ± 0.6515
56298−030210.16 ± 1.840.09 ± 0.075.39 ± 0.462.86 ± 0.423.29 ± 0.491.59 ± 0.271.40 ± 0.247.00 ± 2.2615
56366−09284.81 ± 0.410.12 ± 0.055.70 ± 0.400.21 ± 0.082.86 ± 0.282.51 ± 0.250.96 ± 0.120.96 ± 0.122.31 ± 0.5615
55742−03832.74 ± 0.550.05 ± 0.014.99 ± 0.100.049 ± 0.0382.86 ± 0.082.06 ± 0.060.63 ± 0.030.56 ± 0.031.01 ± 0.1415
55302−06554.90 ± 0.180.05 ± 0.022.06 ± 0.050.035 ± 0.0192.86 ± 0.081.67 ± 0.061.24 ± 0.041.00 ± 0.040.94 ± 0.1415
56328−05506.45 ± 0.260.06 ± 0.024.90 ± 0.150.06 ± 0.042.86 ± 0.133.35 ± 0.161.10 ± 0.060.86 ± 0.061.57 ± 0.2515
55646−07708.48 ± 2.320.14 ± 0.057.32 ± 1.312.86 ± 0.953.74 ± 1.231.50 ± 0.561.39 ± 0.521.82 ± 1.4915
55617−07588.05 ± 0.330.05 ± 0.043.84 ± 0.200.11 ± 0.062.86 ± 0.272.26 ± 0.221.24 ± 0.141.38 ± 0.151.33 ± 0.4015
56003−02183.35 ± 1.000.07 ± 0.044.70 ± 0.290.10 ± 0.072.86 ± 0.221.68 ± 0.150.56 ± 0.090.58 ± 0.092.06 ± 0.4515
55629−03649.11 ± 0.640.11 ± 0.077.08 ± 0.522.86 ± 0.413.91 ± 0.571.44 ± 0.241.32 ± 0.231.64 ± 0.8015
56568−00765.12 ± 0.590.03 ± 0.013.16 ± 0.050.031 ± 0.0212.86 ± 0.092.98 ± 0.100.71 ± 0.030.69 ± 0.030.66 ± 0.0915
55836−01603.57 ± 0.330.04 ± 0.023.70 ± 0.112.86 ± 0.142.24 ± 0.110.67 ± 0.050.59 ± 0.051.71 ± 0.3215
55505−06543.05 ± 0.190.04 ± 0.027.95 ± 0.280.05 ± 0.032.86 ± 0.172.70 ± 0.160.65 ± 0.050.58 ± 0.052.10 ± 0.3515
Object[O ii]λ3727[O iii]λ4363[O iii]λ5007[N ii]λ5755[S iii]λ6312|$\rm H\alpha$|λ6563[N ii]λ6584[S ii]λ6716[S ii]λ6731[S iii]λ9069 + λ9532Ref.
Mrk 5732.13 ± 0.050.14 ± 0.01110.26 ± 0.052.86 ± 0.052.34 ± 0.040.79 ± 0.010.73 ± 0.022.581, 12|$^{a}$|
NGC 57282.32 ± 0.030.11 ± 0.0169.10 ± 0.112.86 ± 0.132.86 ± 0.130.97 ± 0.060.66 ± 0.031.921, 12|$^{a}$|
ESO 428 G142.220.2411.22.903.130.830.881.872, 12|$^{a}$|
NGC 43882.730.1610.552.841.500.720.621.103, 13|$^{a}$|
Mrk 784.960.1411.942.462.460.680.610.894, 14|$^{a}$|
NGC 76741.290.1212.553.703.680.540.643.155, 12|$^{a}$|
NGC 21104.380.174.762.663.761.521.421.916, 12|$^{a}$|
NGC 76822.850.169.343.103.031.091.171.957, 12|$^{a}$|
NGC 32273.220.5010.732.865.011.241.261.668, 12|$^{b}$|
Mrk 10663.340.083.842.762.420.510.550.759, 12|$^{a}$|
Mrk 3|$^{b, c}$|4.840.2311.222.853.211.452.5910
ESO 138 G1|$^{c}$|2.35 ± 0.050.34 ± 0.028.71 ± 0.253.01 ± 0.100.68 ± 0.030.47 ± 0.030.48 ± 0.030.6911
55978−09906.76 ± 0.430.14 ± 0.0610.70 ± 0.732.86 ± 0.313.30 ± 0.361.07 ± 0.180.87 ± 0.162.06 ± 0.6615
56104−09666.31 ± 0.140.07 ± 0.028.51 ± 0.202.86 ± 0.091.04 ± 0.040.62 ± 0.030.56 ± 0.030.73 ± 0.1215
55181−01544.12 ± 0.310.06 ± 0.037.82 ± 0.280.15 ± 0.042.86 ± 0.212.05 ± 0.150.60 ± 0.060.61 ± 0.062.02 ± 0.4215
56088−04732.07 ± 0.010.06 ± 0.017.70 ± 0.040.01 ± 0.012.86 ± 0.010.15 ± 0.010.12 ± 0.010.11 ± 0.010.63 ± 0.0215
56034−01543.02 ± 0.320.14 ± 0.0111.88 ± 0.230.05 ± 0.032.86 ± 0.072.13 ± 0.050.88 ± 0.030.81 ± 0.032.10 ± 0.1415
56067−03825.51 ± 1.330.21 ± 0.108.70 ± 0.830.192 ± 0.1652.86 ± 0.522.36 ± 0.440.86 ± 0.220.81 ± 0.221.19 ± 0.8915
56240−03408.32 ± 0.520.16 ± 0.067.24 ± 0.562.86 ± 0.282.60 ± 0.261.10 ± 0.210.86 ± 0.203.04 ± 0.9415
55539−01672.79 ± 0.200.05 ± 0.024.11 ± 0.080.078 ± 0.0472.86 ± 0.081.91 ± 0.050.61 ± 0.030.54 ± 0.031.08 ± 0.1415
56626−06363.82 ± 0.090.06 ± 0.016.12 ± 0.100.10 ± 0.022.86 ± 0.072.23 ± 0.051.06 ± 0.030.98 ± 0.031.22 ± 0.1015
56074−00454.23 ± 0.320.03 ± 0.012.69 ± 0.042.86 ± 0.071.52 ± 0.040.77 ± 0.020.58 ± 0.020.91 ± 0.1115
55212−03803.52 ± 1.130.10 ± 0.0312.54 ± 0.512.86 ± 0.152.94 ± 0.150.85 ± 0.060.84 ± 0.062.41 ± 0.3015
56399−03025.01 ± 0.370.08 ± 0.043.07 ± 0.192.86 ± 0.232.16 ± 0.191.58 ± 0.161.14 ± 0.141.33 ± 0.6315
56001−02935.05 ± 0.200.07 ± 0.017.63 ± 0.200.047 ± 0.0372.86 ± 0.131.74 ± 0.080.85 ± 0.050.61 ± 0.041.54 ± 0.2115
55651−00523.28 ± 0.760.02 ± 0.013.54 ± 0.040.05 ± 0.012.86 ± 0.062.06 ± 0.040.72 ± 0.020.68 ± 0.020.94 ± 0.0815
56566−07946.58 ± 0.610.05 ± 0.024.74 ± 0.120.017 ± 0.0160.08 ± 0.032.86 ± 0.102.16 ± 0.081.26 ± 0.061.07 ± 0.051.22 ± 0.1615
56748−03364.97 ± 0.510.08 ± 0.057.11 ± 0.412.86 ± 0.243.23 ± 0.270.99 ± 0.120.89 ± 0.121.85 ± 0.5015
56206−04547.35 ± 0.270.09 ± 0.026.67 ± 0.190.05 ± 0.032.86 ± 0.111.21 ± 0.061.12 ± 0.050.91 ± 0.051.08 ± 0.1915
55860−01125.74 ± 1.440.11 ± 0.077.82 ± 0.660.15 ± 0.122.86 ± 0.335.38 ± 0.611.80 ± 0.231.77 ± 0.231.78 ± 0.4615
56453−01443.19 ± 0.370.06 ± 0.026.42 ± 0.182.86 ± 0.102.64 ± 0.100.89 ± 0.060.78 ± 0.062.20 ± 0.3115
55710−01162.72 ± 1.050.07 ± 0.027.54 ± 0.240.06 ± 0.042.86 ± 0.124.47 ± 0.181.04 ± 0.061.13 ± 0.072.58 ± 0.2115
56209−03906.99 ± 0.770.07 ± 0.068.57 ± 0.972.86 ± 0.582.75 ± 0.550.39 ± 0.150.22 ± 0.140.52 ± 0.6515
56298−030210.16 ± 1.840.09 ± 0.075.39 ± 0.462.86 ± 0.423.29 ± 0.491.59 ± 0.271.40 ± 0.247.00 ± 2.2615
56366−09284.81 ± 0.410.12 ± 0.055.70 ± 0.400.21 ± 0.082.86 ± 0.282.51 ± 0.250.96 ± 0.120.96 ± 0.122.31 ± 0.5615
55742−03832.74 ± 0.550.05 ± 0.014.99 ± 0.100.049 ± 0.0382.86 ± 0.082.06 ± 0.060.63 ± 0.030.56 ± 0.031.01 ± 0.1415
55302−06554.90 ± 0.180.05 ± 0.022.06 ± 0.050.035 ± 0.0192.86 ± 0.081.67 ± 0.061.24 ± 0.041.00 ± 0.040.94 ± 0.1415
56328−05506.45 ± 0.260.06 ± 0.024.90 ± 0.150.06 ± 0.042.86 ± 0.133.35 ± 0.161.10 ± 0.060.86 ± 0.061.57 ± 0.2515
55646−07708.48 ± 2.320.14 ± 0.057.32 ± 1.312.86 ± 0.953.74 ± 1.231.50 ± 0.561.39 ± 0.521.82 ± 1.4915
55617−07588.05 ± 0.330.05 ± 0.043.84 ± 0.200.11 ± 0.062.86 ± 0.272.26 ± 0.221.24 ± 0.141.38 ± 0.151.33 ± 0.4015
56003−02183.35 ± 1.000.07 ± 0.044.70 ± 0.290.10 ± 0.072.86 ± 0.221.68 ± 0.150.56 ± 0.090.58 ± 0.092.06 ± 0.4515
55629−03649.11 ± 0.640.11 ± 0.077.08 ± 0.522.86 ± 0.413.91 ± 0.571.44 ± 0.241.32 ± 0.231.64 ± 0.8015
56568−00765.12 ± 0.590.03 ± 0.013.16 ± 0.050.031 ± 0.0212.86 ± 0.092.98 ± 0.100.71 ± 0.030.69 ± 0.030.66 ± 0.0915
55836−01603.57 ± 0.330.04 ± 0.023.70 ± 0.112.86 ± 0.142.24 ± 0.110.67 ± 0.050.59 ± 0.051.71 ± 0.3215
55505−06543.05 ± 0.190.04 ± 0.027.95 ± 0.280.05 ± 0.032.86 ± 0.172.70 ± 0.160.65 ± 0.050.58 ± 0.052.10 ± 0.3515

Note.References: 1 – Dopita et al. (2015); 2 – Bergvall, Johansson & Olofsson (1986); 3 – Phillips, Charles & Baldwin (1983); 4 – Koski (1978); 5 – Kraemer et al. (1994); 6 – Shuder (1980); 7 – Thomas et al. (2017); 8 – Cohen (1983); 9 – Goodrich & Osterbrock (1983); 10 – Malkan & Oke (1983); 11 – Alloin et al. (1992); 12 – Riffel et al. (2006); 13 – Rodríguez-Ardila et al. (2011); 14 – Ramos Almeida et al. (2006); and 15 – BOSS/SDSS sample.

aReference that the [S iii]λ9069 emission-line fluxes was compiled.

bEmission-line intensities corrected by reddening in this work.

cObject that the [S iii]λ9069 was measured with the others.

Table A1.

Emission-line intensities of Seyfert 2s relative to Hβ = 1.00 taken from SDSS DR17 and compiled from the literature. For Mrk 3 the sum [S ii]λ6717 + 6731 (in relation to Hβ) is listed. Last column lists the references for the optical and near-infrared lines, except for Mrk 3 and ESO 138 G1 that the line set was taken from only one work.

Object[O ii]λ3727[O iii]λ4363[O iii]λ5007[N ii]λ5755[S iii]λ6312|$\rm H\alpha$|λ6563[N ii]λ6584[S ii]λ6716[S ii]λ6731[S iii]λ9069 + λ9532Ref.
Mrk 5732.13 ± 0.050.14 ± 0.01110.26 ± 0.052.86 ± 0.052.34 ± 0.040.79 ± 0.010.73 ± 0.022.581, 12|$^{a}$|
NGC 57282.32 ± 0.030.11 ± 0.0169.10 ± 0.112.86 ± 0.132.86 ± 0.130.97 ± 0.060.66 ± 0.031.921, 12|$^{a}$|
ESO 428 G142.220.2411.22.903.130.830.881.872, 12|$^{a}$|
NGC 43882.730.1610.552.841.500.720.621.103, 13|$^{a}$|
Mrk 784.960.1411.942.462.460.680.610.894, 14|$^{a}$|
NGC 76741.290.1212.553.703.680.540.643.155, 12|$^{a}$|
NGC 21104.380.174.762.663.761.521.421.916, 12|$^{a}$|
NGC 76822.850.169.343.103.031.091.171.957, 12|$^{a}$|
NGC 32273.220.5010.732.865.011.241.261.668, 12|$^{b}$|
Mrk 10663.340.083.842.762.420.510.550.759, 12|$^{a}$|
Mrk 3|$^{b, c}$|4.840.2311.222.853.211.452.5910
ESO 138 G1|$^{c}$|2.35 ± 0.050.34 ± 0.028.71 ± 0.253.01 ± 0.100.68 ± 0.030.47 ± 0.030.48 ± 0.030.6911
55978−09906.76 ± 0.430.14 ± 0.0610.70 ± 0.732.86 ± 0.313.30 ± 0.361.07 ± 0.180.87 ± 0.162.06 ± 0.6615
56104−09666.31 ± 0.140.07 ± 0.028.51 ± 0.202.86 ± 0.091.04 ± 0.040.62 ± 0.030.56 ± 0.030.73 ± 0.1215
55181−01544.12 ± 0.310.06 ± 0.037.82 ± 0.280.15 ± 0.042.86 ± 0.212.05 ± 0.150.60 ± 0.060.61 ± 0.062.02 ± 0.4215
56088−04732.07 ± 0.010.06 ± 0.017.70 ± 0.040.01 ± 0.012.86 ± 0.010.15 ± 0.010.12 ± 0.010.11 ± 0.010.63 ± 0.0215
56034−01543.02 ± 0.320.14 ± 0.0111.88 ± 0.230.05 ± 0.032.86 ± 0.072.13 ± 0.050.88 ± 0.030.81 ± 0.032.10 ± 0.1415
56067−03825.51 ± 1.330.21 ± 0.108.70 ± 0.830.192 ± 0.1652.86 ± 0.522.36 ± 0.440.86 ± 0.220.81 ± 0.221.19 ± 0.8915
56240−03408.32 ± 0.520.16 ± 0.067.24 ± 0.562.86 ± 0.282.60 ± 0.261.10 ± 0.210.86 ± 0.203.04 ± 0.9415
55539−01672.79 ± 0.200.05 ± 0.024.11 ± 0.080.078 ± 0.0472.86 ± 0.081.91 ± 0.050.61 ± 0.030.54 ± 0.031.08 ± 0.1415
56626−06363.82 ± 0.090.06 ± 0.016.12 ± 0.100.10 ± 0.022.86 ± 0.072.23 ± 0.051.06 ± 0.030.98 ± 0.031.22 ± 0.1015
56074−00454.23 ± 0.320.03 ± 0.012.69 ± 0.042.86 ± 0.071.52 ± 0.040.77 ± 0.020.58 ± 0.020.91 ± 0.1115
55212−03803.52 ± 1.130.10 ± 0.0312.54 ± 0.512.86 ± 0.152.94 ± 0.150.85 ± 0.060.84 ± 0.062.41 ± 0.3015
56399−03025.01 ± 0.370.08 ± 0.043.07 ± 0.192.86 ± 0.232.16 ± 0.191.58 ± 0.161.14 ± 0.141.33 ± 0.6315
56001−02935.05 ± 0.200.07 ± 0.017.63 ± 0.200.047 ± 0.0372.86 ± 0.131.74 ± 0.080.85 ± 0.050.61 ± 0.041.54 ± 0.2115
55651−00523.28 ± 0.760.02 ± 0.013.54 ± 0.040.05 ± 0.012.86 ± 0.062.06 ± 0.040.72 ± 0.020.68 ± 0.020.94 ± 0.0815
56566−07946.58 ± 0.610.05 ± 0.024.74 ± 0.120.017 ± 0.0160.08 ± 0.032.86 ± 0.102.16 ± 0.081.26 ± 0.061.07 ± 0.051.22 ± 0.1615
56748−03364.97 ± 0.510.08 ± 0.057.11 ± 0.412.86 ± 0.243.23 ± 0.270.99 ± 0.120.89 ± 0.121.85 ± 0.5015
56206−04547.35 ± 0.270.09 ± 0.026.67 ± 0.190.05 ± 0.032.86 ± 0.111.21 ± 0.061.12 ± 0.050.91 ± 0.051.08 ± 0.1915
55860−01125.74 ± 1.440.11 ± 0.077.82 ± 0.660.15 ± 0.122.86 ± 0.335.38 ± 0.611.80 ± 0.231.77 ± 0.231.78 ± 0.4615
56453−01443.19 ± 0.370.06 ± 0.026.42 ± 0.182.86 ± 0.102.64 ± 0.100.89 ± 0.060.78 ± 0.062.20 ± 0.3115
55710−01162.72 ± 1.050.07 ± 0.027.54 ± 0.240.06 ± 0.042.86 ± 0.124.47 ± 0.181.04 ± 0.061.13 ± 0.072.58 ± 0.2115
56209−03906.99 ± 0.770.07 ± 0.068.57 ± 0.972.86 ± 0.582.75 ± 0.550.39 ± 0.150.22 ± 0.140.52 ± 0.6515
56298−030210.16 ± 1.840.09 ± 0.075.39 ± 0.462.86 ± 0.423.29 ± 0.491.59 ± 0.271.40 ± 0.247.00 ± 2.2615
56366−09284.81 ± 0.410.12 ± 0.055.70 ± 0.400.21 ± 0.082.86 ± 0.282.51 ± 0.250.96 ± 0.120.96 ± 0.122.31 ± 0.5615
55742−03832.74 ± 0.550.05 ± 0.014.99 ± 0.100.049 ± 0.0382.86 ± 0.082.06 ± 0.060.63 ± 0.030.56 ± 0.031.01 ± 0.1415
55302−06554.90 ± 0.180.05 ± 0.022.06 ± 0.050.035 ± 0.0192.86 ± 0.081.67 ± 0.061.24 ± 0.041.00 ± 0.040.94 ± 0.1415
56328−05506.45 ± 0.260.06 ± 0.024.90 ± 0.150.06 ± 0.042.86 ± 0.133.35 ± 0.161.10 ± 0.060.86 ± 0.061.57 ± 0.2515
55646−07708.48 ± 2.320.14 ± 0.057.32 ± 1.312.86 ± 0.953.74 ± 1.231.50 ± 0.561.39 ± 0.521.82 ± 1.4915
55617−07588.05 ± 0.330.05 ± 0.043.84 ± 0.200.11 ± 0.062.86 ± 0.272.26 ± 0.221.24 ± 0.141.38 ± 0.151.33 ± 0.4015
56003−02183.35 ± 1.000.07 ± 0.044.70 ± 0.290.10 ± 0.072.86 ± 0.221.68 ± 0.150.56 ± 0.090.58 ± 0.092.06 ± 0.4515
55629−03649.11 ± 0.640.11 ± 0.077.08 ± 0.522.86 ± 0.413.91 ± 0.571.44 ± 0.241.32 ± 0.231.64 ± 0.8015
56568−00765.12 ± 0.590.03 ± 0.013.16 ± 0.050.031 ± 0.0212.86 ± 0.092.98 ± 0.100.71 ± 0.030.69 ± 0.030.66 ± 0.0915
55836−01603.57 ± 0.330.04 ± 0.023.70 ± 0.112.86 ± 0.142.24 ± 0.110.67 ± 0.050.59 ± 0.051.71 ± 0.3215
55505−06543.05 ± 0.190.04 ± 0.027.95 ± 0.280.05 ± 0.032.86 ± 0.172.70 ± 0.160.65 ± 0.050.58 ± 0.052.10 ± 0.3515
Object[O ii]λ3727[O iii]λ4363[O iii]λ5007[N ii]λ5755[S iii]λ6312|$\rm H\alpha$|λ6563[N ii]λ6584[S ii]λ6716[S ii]λ6731[S iii]λ9069 + λ9532Ref.
Mrk 5732.13 ± 0.050.14 ± 0.01110.26 ± 0.052.86 ± 0.052.34 ± 0.040.79 ± 0.010.73 ± 0.022.581, 12|$^{a}$|
NGC 57282.32 ± 0.030.11 ± 0.0169.10 ± 0.112.86 ± 0.132.86 ± 0.130.97 ± 0.060.66 ± 0.031.921, 12|$^{a}$|
ESO 428 G142.220.2411.22.903.130.830.881.872, 12|$^{a}$|
NGC 43882.730.1610.552.841.500.720.621.103, 13|$^{a}$|
Mrk 784.960.1411.942.462.460.680.610.894, 14|$^{a}$|
NGC 76741.290.1212.553.703.680.540.643.155, 12|$^{a}$|
NGC 21104.380.174.762.663.761.521.421.916, 12|$^{a}$|
NGC 76822.850.169.343.103.031.091.171.957, 12|$^{a}$|
NGC 32273.220.5010.732.865.011.241.261.668, 12|$^{b}$|
Mrk 10663.340.083.842.762.420.510.550.759, 12|$^{a}$|
Mrk 3|$^{b, c}$|4.840.2311.222.853.211.452.5910
ESO 138 G1|$^{c}$|2.35 ± 0.050.34 ± 0.028.71 ± 0.253.01 ± 0.100.68 ± 0.030.47 ± 0.030.48 ± 0.030.6911
55978−09906.76 ± 0.430.14 ± 0.0610.70 ± 0.732.86 ± 0.313.30 ± 0.361.07 ± 0.180.87 ± 0.162.06 ± 0.6615
56104−09666.31 ± 0.140.07 ± 0.028.51 ± 0.202.86 ± 0.091.04 ± 0.040.62 ± 0.030.56 ± 0.030.73 ± 0.1215
55181−01544.12 ± 0.310.06 ± 0.037.82 ± 0.280.15 ± 0.042.86 ± 0.212.05 ± 0.150.60 ± 0.060.61 ± 0.062.02 ± 0.4215
56088−04732.07 ± 0.010.06 ± 0.017.70 ± 0.040.01 ± 0.012.86 ± 0.010.15 ± 0.010.12 ± 0.010.11 ± 0.010.63 ± 0.0215
56034−01543.02 ± 0.320.14 ± 0.0111.88 ± 0.230.05 ± 0.032.86 ± 0.072.13 ± 0.050.88 ± 0.030.81 ± 0.032.10 ± 0.1415
56067−03825.51 ± 1.330.21 ± 0.108.70 ± 0.830.192 ± 0.1652.86 ± 0.522.36 ± 0.440.86 ± 0.220.81 ± 0.221.19 ± 0.8915
56240−03408.32 ± 0.520.16 ± 0.067.24 ± 0.562.86 ± 0.282.60 ± 0.261.10 ± 0.210.86 ± 0.203.04 ± 0.9415
55539−01672.79 ± 0.200.05 ± 0.024.11 ± 0.080.078 ± 0.0472.86 ± 0.081.91 ± 0.050.61 ± 0.030.54 ± 0.031.08 ± 0.1415
56626−06363.82 ± 0.090.06 ± 0.016.12 ± 0.100.10 ± 0.022.86 ± 0.072.23 ± 0.051.06 ± 0.030.98 ± 0.031.22 ± 0.1015
56074−00454.23 ± 0.320.03 ± 0.012.69 ± 0.042.86 ± 0.071.52 ± 0.040.77 ± 0.020.58 ± 0.020.91 ± 0.1115
55212−03803.52 ± 1.130.10 ± 0.0312.54 ± 0.512.86 ± 0.152.94 ± 0.150.85 ± 0.060.84 ± 0.062.41 ± 0.3015
56399−03025.01 ± 0.370.08 ± 0.043.07 ± 0.192.86 ± 0.232.16 ± 0.191.58 ± 0.161.14 ± 0.141.33 ± 0.6315
56001−02935.05 ± 0.200.07 ± 0.017.63 ± 0.200.047 ± 0.0372.86 ± 0.131.74 ± 0.080.85 ± 0.050.61 ± 0.041.54 ± 0.2115
55651−00523.28 ± 0.760.02 ± 0.013.54 ± 0.040.05 ± 0.012.86 ± 0.062.06 ± 0.040.72 ± 0.020.68 ± 0.020.94 ± 0.0815
56566−07946.58 ± 0.610.05 ± 0.024.74 ± 0.120.017 ± 0.0160.08 ± 0.032.86 ± 0.102.16 ± 0.081.26 ± 0.061.07 ± 0.051.22 ± 0.1615
56748−03364.97 ± 0.510.08 ± 0.057.11 ± 0.412.86 ± 0.243.23 ± 0.270.99 ± 0.120.89 ± 0.121.85 ± 0.5015
56206−04547.35 ± 0.270.09 ± 0.026.67 ± 0.190.05 ± 0.032.86 ± 0.111.21 ± 0.061.12 ± 0.050.91 ± 0.051.08 ± 0.1915
55860−01125.74 ± 1.440.11 ± 0.077.82 ± 0.660.15 ± 0.122.86 ± 0.335.38 ± 0.611.80 ± 0.231.77 ± 0.231.78 ± 0.4615
56453−01443.19 ± 0.370.06 ± 0.026.42 ± 0.182.86 ± 0.102.64 ± 0.100.89 ± 0.060.78 ± 0.062.20 ± 0.3115
55710−01162.72 ± 1.050.07 ± 0.027.54 ± 0.240.06 ± 0.042.86 ± 0.124.47 ± 0.181.04 ± 0.061.13 ± 0.072.58 ± 0.2115
56209−03906.99 ± 0.770.07 ± 0.068.57 ± 0.972.86 ± 0.582.75 ± 0.550.39 ± 0.150.22 ± 0.140.52 ± 0.6515
56298−030210.16 ± 1.840.09 ± 0.075.39 ± 0.462.86 ± 0.423.29 ± 0.491.59 ± 0.271.40 ± 0.247.00 ± 2.2615
56366−09284.81 ± 0.410.12 ± 0.055.70 ± 0.400.21 ± 0.082.86 ± 0.282.51 ± 0.250.96 ± 0.120.96 ± 0.122.31 ± 0.5615
55742−03832.74 ± 0.550.05 ± 0.014.99 ± 0.100.049 ± 0.0382.86 ± 0.082.06 ± 0.060.63 ± 0.030.56 ± 0.031.01 ± 0.1415
55302−06554.90 ± 0.180.05 ± 0.022.06 ± 0.050.035 ± 0.0192.86 ± 0.081.67 ± 0.061.24 ± 0.041.00 ± 0.040.94 ± 0.1415
56328−05506.45 ± 0.260.06 ± 0.024.90 ± 0.150.06 ± 0.042.86 ± 0.133.35 ± 0.161.10 ± 0.060.86 ± 0.061.57 ± 0.2515
55646−07708.48 ± 2.320.14 ± 0.057.32 ± 1.312.86 ± 0.953.74 ± 1.231.50 ± 0.561.39 ± 0.521.82 ± 1.4915
55617−07588.05 ± 0.330.05 ± 0.043.84 ± 0.200.11 ± 0.062.86 ± 0.272.26 ± 0.221.24 ± 0.141.38 ± 0.151.33 ± 0.4015
56003−02183.35 ± 1.000.07 ± 0.044.70 ± 0.290.10 ± 0.072.86 ± 0.221.68 ± 0.150.56 ± 0.090.58 ± 0.092.06 ± 0.4515
55629−03649.11 ± 0.640.11 ± 0.077.08 ± 0.522.86 ± 0.413.91 ± 0.571.44 ± 0.241.32 ± 0.231.64 ± 0.8015
56568−00765.12 ± 0.590.03 ± 0.013.16 ± 0.050.031 ± 0.0212.86 ± 0.092.98 ± 0.100.71 ± 0.030.69 ± 0.030.66 ± 0.0915
55836−01603.57 ± 0.330.04 ± 0.023.70 ± 0.112.86 ± 0.142.24 ± 0.110.67 ± 0.050.59 ± 0.051.71 ± 0.3215
55505−06543.05 ± 0.190.04 ± 0.027.95 ± 0.280.05 ± 0.032.86 ± 0.172.70 ± 0.160.65 ± 0.050.58 ± 0.052.10 ± 0.3515

Note.References: 1 – Dopita et al. (2015); 2 – Bergvall, Johansson & Olofsson (1986); 3 – Phillips, Charles & Baldwin (1983); 4 – Koski (1978); 5 – Kraemer et al. (1994); 6 – Shuder (1980); 7 – Thomas et al. (2017); 8 – Cohen (1983); 9 – Goodrich & Osterbrock (1983); 10 – Malkan & Oke (1983); 11 – Alloin et al. (1992); 12 – Riffel et al. (2006); 13 – Rodríguez-Ardila et al. (2011); 14 – Ramos Almeida et al. (2006); and 15 – BOSS/SDSS sample.

aReference that the [S iii]λ9069 emission-line fluxes was compiled.

bEmission-line intensities corrected by reddening in this work.

cObject that the [S iii]λ9069 was measured with the others.

Table A2.

Electron density and electron temperature values assumed in the ionic abundance calculations. |$T_{\rm e}(\rm O^{2+})$| was calculated through the observational RO3 line ratio, whose line intensities are listed in Table A1, and by using the PyNeb code (Luridiana et al. 2015). |$T_{\rm e}(\rm N^{+})$| and |$T_{\rm e}(\rm S^{2+})$| were calculated either from RN2 and RS3 line ratios (when these line ratios were measured), respectively, or from equations (3) and (4) (when auroral lines were not measured, see Table A1).

Object|$T_{\rm e}(\rm O^{2+})$| (K)|$T_{\rm e}(\rm S^{2+})$| (K)|$T_{\rm e}(\rm N^{+})$| (K)|$N_{\rm e} \ (\rm cm^{-3})$|
Mrk 57312 888 ± 42521 341 ± 788111 673 ± 1899559 ± 102
NGC 572812 301 ± 72520 030 ± 792911 373 ± 1923674 ± 167
ESO 428 G1415 651 ± 119727 501 ± 805513 082 ± 19831059 ± 466
NGC 438813 446 ± 125422 585 ± 807411 958 ± 1992393:
Mrk 7812 162 ± 113919 721 ± 803611 303 ± 1974475:
NGC 767411 296 ± 112617 790 ± 803210 861 ± 19721396 ± 620
NGC 211020 761 ± 339538 896 ± 933815 688 ± 2561691 ± 300
NGC 768214 146 ± 141224 146 ± 813112 315 ± 20201067 ± 495
NGC 322725 028 ± 250048 412 ± 1700017 864 ± 58001067 ± 485
Mrk 106615 446 ± 355327 045 ± 946612 978 ± 26161122:
Mrk 315 335 ± 118526 796 ± 805112 921 ± 1981500:
ESO 138 G121 996 ± 131841 650 ± 809716 318 ± 20031039 ± 452
55978−099012 685 ± 249020 888 ± 868411 570 ± 2274266:
56104−096610 754 ± 109516 582 ± 802310 585 ± 1968471 ± 210
55181−015410 508 ± 185524 392 ± 967910 459 ± 2111778 ± 384
56088−047310 566 ± 3019244 ± 135110 488 ± 1893502 ± 186
56034−015412 184 ± 40911 052 ± 248111 314 ± 1898537 ± 167
56067−038216 612 ± 503029 644 ± 1084531 422 ± 9900666:
56240−034015 912 ± 358828 083 ± 949513 215 ± 2628200:
55539−016712 334 ± 197620 105 ± 838716 670 ± 5500445 ± 218
56626−063611 409 ± 72627 152 ± 599710 919 ± 1923537 ± 137
56074−004511 954 ± 153119 258 ± 817911 197 ± 2042127 ± 58
55212−038010 644 ± 118516 335 ± 805110 528 ± 1981699 ± 315
56399−030217 311 ± 534731 203 ± 1117513 929 ± 331650:
56001−029311 159 ± 64017 484 ± 791313 152 ± 450055:
55651−00529576 ± 73318 122 ± 27979984 ± 1923555 ± 130
56566−079411 713 ± 180621 676 ± 753910 771 ± 3800347 ± 162
56748−033611 981 ± 312819 319 ± 912911 211 ± 2471477:
56206−045412 842 ± 126616 315 ± 701211 649 ± 1994266 ± 130
55860−011213 038 ± 393127 975 ± 1288011 749 ± 2753735 ± 360
56453−014411 224 ± 140017 630 ± 812710 824 ± 2017410 ± 202
55710−011611 189 ± 121810 917 ± 275610 806 ± 19861021 ± 381
56209−039010 735 ± 386216 538 ± 815010 575 ± 2728198 ± 49
56298−030214 006 ± 560423 833 ± 1145112 243 ± 3425451 ± 215
56366−092815 523 ± 368230 648 ± 972713 017 ± 2662839 ± 410
55742−038311 497 ± 88918 239 ± 796612 245 ± 3500445 ± 206
55302−065516 672 ± 367429 778 ± 956811 547 ± 3178267 ± 122
56328−055012 373 ± 171414 346 ± 562111 410 ± 2080192:
55646−077014 856 ± 380525 729 ± 968012 676 ± 2706593:
55617−075812 640 ± 454027 347 ± 1010911 546 ± 29871168 ± 560
56003−021813 337 ± 356316 884 ± 833011 902 ± 2620913 ± 430
55629−036413 575 ± 419222 872 ± 1002812 023 ± 2852546:
56568−007611 281 ± 136817 756 ± 811510 853 ± 2012666 ± 215
55836−016011 814 ± 231418 946 ± 857611 125 ± 2225427 ± 205
55505−06549268 ± 144611 052 ± 29559827 ± 2026422 ± 190
Object|$T_{\rm e}(\rm O^{2+})$| (K)|$T_{\rm e}(\rm S^{2+})$| (K)|$T_{\rm e}(\rm N^{+})$| (K)|$N_{\rm e} \ (\rm cm^{-3})$|
Mrk 57312 888 ± 42521 341 ± 788111 673 ± 1899559 ± 102
NGC 572812 301 ± 72520 030 ± 792911 373 ± 1923674 ± 167
ESO 428 G1415 651 ± 119727 501 ± 805513 082 ± 19831059 ± 466
NGC 438813 446 ± 125422 585 ± 807411 958 ± 1992393:
Mrk 7812 162 ± 113919 721 ± 803611 303 ± 1974475:
NGC 767411 296 ± 112617 790 ± 803210 861 ± 19721396 ± 620
NGC 211020 761 ± 339538 896 ± 933815 688 ± 2561691 ± 300
NGC 768214 146 ± 141224 146 ± 813112 315 ± 20201067 ± 495
NGC 322725 028 ± 250048 412 ± 1700017 864 ± 58001067 ± 485
Mrk 106615 446 ± 355327 045 ± 946612 978 ± 26161122:
Mrk 315 335 ± 118526 796 ± 805112 921 ± 1981500:
ESO 138 G121 996 ± 131841 650 ± 809716 318 ± 20031039 ± 452
55978−099012 685 ± 249020 888 ± 868411 570 ± 2274266:
56104−096610 754 ± 109516 582 ± 802310 585 ± 1968471 ± 210
55181−015410 508 ± 185524 392 ± 967910 459 ± 2111778 ± 384
56088−047310 566 ± 3019244 ± 135110 488 ± 1893502 ± 186
56034−015412 184 ± 40911 052 ± 248111 314 ± 1898537 ± 167
56067−038216 612 ± 503029 644 ± 1084531 422 ± 9900666:
56240−034015 912 ± 358828 083 ± 949513 215 ± 2628200:
55539−016712 334 ± 197620 105 ± 838716 670 ± 5500445 ± 218
56626−063611 409 ± 72627 152 ± 599710 919 ± 1923537 ± 137
56074−004511 954 ± 153119 258 ± 817911 197 ± 2042127 ± 58
55212−038010 644 ± 118516 335 ± 805110 528 ± 1981699 ± 315
56399−030217 311 ± 534731 203 ± 1117513 929 ± 331650:
56001−029311 159 ± 64017 484 ± 791313 152 ± 450055:
55651−00529576 ± 73318 122 ± 27979984 ± 1923555 ± 130
56566−079411 713 ± 180621 676 ± 753910 771 ± 3800347 ± 162
56748−033611 981 ± 312819 319 ± 912911 211 ± 2471477:
56206−045412 842 ± 126616 315 ± 701211 649 ± 1994266 ± 130
55860−011213 038 ± 393127 975 ± 1288011 749 ± 2753735 ± 360
56453−014411 224 ± 140017 630 ± 812710 824 ± 2017410 ± 202
55710−011611 189 ± 121810 917 ± 275610 806 ± 19861021 ± 381
56209−039010 735 ± 386216 538 ± 815010 575 ± 2728198 ± 49
56298−030214 006 ± 560423 833 ± 1145112 243 ± 3425451 ± 215
56366−092815 523 ± 368230 648 ± 972713 017 ± 2662839 ± 410
55742−038311 497 ± 88918 239 ± 796612 245 ± 3500445 ± 206
55302−065516 672 ± 367429 778 ± 956811 547 ± 3178267 ± 122
56328−055012 373 ± 171414 346 ± 562111 410 ± 2080192:
55646−077014 856 ± 380525 729 ± 968012 676 ± 2706593:
55617−075812 640 ± 454027 347 ± 1010911 546 ± 29871168 ± 560
56003−021813 337 ± 356316 884 ± 833011 902 ± 2620913 ± 430
55629−036413 575 ± 419222 872 ± 1002812 023 ± 2852546:
56568−007611 281 ± 136817 756 ± 811510 853 ± 2012666 ± 215
55836−016011 814 ± 231418 946 ± 857611 125 ± 2225427 ± 205
55505−06549268 ± 144611 052 ± 29559827 ± 2026422 ± 190

Note. For some objects we use ‘:’ to indicate that error bars are at least an order of magnitude larger than the expected density. This is due to the significant emission-line errors (see Section 3.1).

Table A2.

Electron density and electron temperature values assumed in the ionic abundance calculations. |$T_{\rm e}(\rm O^{2+})$| was calculated through the observational RO3 line ratio, whose line intensities are listed in Table A1, and by using the PyNeb code (Luridiana et al. 2015). |$T_{\rm e}(\rm N^{+})$| and |$T_{\rm e}(\rm S^{2+})$| were calculated either from RN2 and RS3 line ratios (when these line ratios were measured), respectively, or from equations (3) and (4) (when auroral lines were not measured, see Table A1).

Object|$T_{\rm e}(\rm O^{2+})$| (K)|$T_{\rm e}(\rm S^{2+})$| (K)|$T_{\rm e}(\rm N^{+})$| (K)|$N_{\rm e} \ (\rm cm^{-3})$|
Mrk 57312 888 ± 42521 341 ± 788111 673 ± 1899559 ± 102
NGC 572812 301 ± 72520 030 ± 792911 373 ± 1923674 ± 167
ESO 428 G1415 651 ± 119727 501 ± 805513 082 ± 19831059 ± 466
NGC 438813 446 ± 125422 585 ± 807411 958 ± 1992393:
Mrk 7812 162 ± 113919 721 ± 803611 303 ± 1974475:
NGC 767411 296 ± 112617 790 ± 803210 861 ± 19721396 ± 620
NGC 211020 761 ± 339538 896 ± 933815 688 ± 2561691 ± 300
NGC 768214 146 ± 141224 146 ± 813112 315 ± 20201067 ± 495
NGC 322725 028 ± 250048 412 ± 1700017 864 ± 58001067 ± 485
Mrk 106615 446 ± 355327 045 ± 946612 978 ± 26161122:
Mrk 315 335 ± 118526 796 ± 805112 921 ± 1981500:
ESO 138 G121 996 ± 131841 650 ± 809716 318 ± 20031039 ± 452
55978−099012 685 ± 249020 888 ± 868411 570 ± 2274266:
56104−096610 754 ± 109516 582 ± 802310 585 ± 1968471 ± 210
55181−015410 508 ± 185524 392 ± 967910 459 ± 2111778 ± 384
56088−047310 566 ± 3019244 ± 135110 488 ± 1893502 ± 186
56034−015412 184 ± 40911 052 ± 248111 314 ± 1898537 ± 167
56067−038216 612 ± 503029 644 ± 1084531 422 ± 9900666:
56240−034015 912 ± 358828 083 ± 949513 215 ± 2628200:
55539−016712 334 ± 197620 105 ± 838716 670 ± 5500445 ± 218
56626−063611 409 ± 72627 152 ± 599710 919 ± 1923537 ± 137
56074−004511 954 ± 153119 258 ± 817911 197 ± 2042127 ± 58
55212−038010 644 ± 118516 335 ± 805110 528 ± 1981699 ± 315
56399−030217 311 ± 534731 203 ± 1117513 929 ± 331650:
56001−029311 159 ± 64017 484 ± 791313 152 ± 450055:
55651−00529576 ± 73318 122 ± 27979984 ± 1923555 ± 130
56566−079411 713 ± 180621 676 ± 753910 771 ± 3800347 ± 162
56748−033611 981 ± 312819 319 ± 912911 211 ± 2471477:
56206−045412 842 ± 126616 315 ± 701211 649 ± 1994266 ± 130
55860−011213 038 ± 393127 975 ± 1288011 749 ± 2753735 ± 360
56453−014411 224 ± 140017 630 ± 812710 824 ± 2017410 ± 202
55710−011611 189 ± 121810 917 ± 275610 806 ± 19861021 ± 381
56209−039010 735 ± 386216 538 ± 815010 575 ± 2728198 ± 49
56298−030214 006 ± 560423 833 ± 1145112 243 ± 3425451 ± 215
56366−092815 523 ± 368230 648 ± 972713 017 ± 2662839 ± 410
55742−038311 497 ± 88918 239 ± 796612 245 ± 3500445 ± 206
55302−065516 672 ± 367429 778 ± 956811 547 ± 3178267 ± 122
56328−055012 373 ± 171414 346 ± 562111 410 ± 2080192:
55646−077014 856 ± 380525 729 ± 968012 676 ± 2706593:
55617−075812 640 ± 454027 347 ± 1010911 546 ± 29871168 ± 560
56003−021813 337 ± 356316 884 ± 833011 902 ± 2620913 ± 430
55629−036413 575 ± 419222 872 ± 1002812 023 ± 2852546:
56568−007611 281 ± 136817 756 ± 811510 853 ± 2012666 ± 215
55836−016011 814 ± 231418 946 ± 857611 125 ± 2225427 ± 205
55505−06549268 ± 144611 052 ± 29559827 ± 2026422 ± 190
Object|$T_{\rm e}(\rm O^{2+})$| (K)|$T_{\rm e}(\rm S^{2+})$| (K)|$T_{\rm e}(\rm N^{+})$| (K)|$N_{\rm e} \ (\rm cm^{-3})$|
Mrk 57312 888 ± 42521 341 ± 788111 673 ± 1899559 ± 102
NGC 572812 301 ± 72520 030 ± 792911 373 ± 1923674 ± 167
ESO 428 G1415 651 ± 119727 501 ± 805513 082 ± 19831059 ± 466
NGC 438813 446 ± 125422 585 ± 807411 958 ± 1992393:
Mrk 7812 162 ± 113919 721 ± 803611 303 ± 1974475:
NGC 767411 296 ± 112617 790 ± 803210 861 ± 19721396 ± 620
NGC 211020 761 ± 339538 896 ± 933815 688 ± 2561691 ± 300
NGC 768214 146 ± 141224 146 ± 813112 315 ± 20201067 ± 495
NGC 322725 028 ± 250048 412 ± 1700017 864 ± 58001067 ± 485
Mrk 106615 446 ± 355327 045 ± 946612 978 ± 26161122:
Mrk 315 335 ± 118526 796 ± 805112 921 ± 1981500:
ESO 138 G121 996 ± 131841 650 ± 809716 318 ± 20031039 ± 452
55978−099012 685 ± 249020 888 ± 868411 570 ± 2274266:
56104−096610 754 ± 109516 582 ± 802310 585 ± 1968471 ± 210
55181−015410 508 ± 185524 392 ± 967910 459 ± 2111778 ± 384
56088−047310 566 ± 3019244 ± 135110 488 ± 1893502 ± 186
56034−015412 184 ± 40911 052 ± 248111 314 ± 1898537 ± 167
56067−038216 612 ± 503029 644 ± 1084531 422 ± 9900666:
56240−034015 912 ± 358828 083 ± 949513 215 ± 2628200:
55539−016712 334 ± 197620 105 ± 838716 670 ± 5500445 ± 218
56626−063611 409 ± 72627 152 ± 599710 919 ± 1923537 ± 137
56074−004511 954 ± 153119 258 ± 817911 197 ± 2042127 ± 58
55212−038010 644 ± 118516 335 ± 805110 528 ± 1981699 ± 315
56399−030217 311 ± 534731 203 ± 1117513 929 ± 331650:
56001−029311 159 ± 64017 484 ± 791313 152 ± 450055:
55651−00529576 ± 73318 122 ± 27979984 ± 1923555 ± 130
56566−079411 713 ± 180621 676 ± 753910 771 ± 3800347 ± 162
56748−033611 981 ± 312819 319 ± 912911 211 ± 2471477:
56206−045412 842 ± 126616 315 ± 701211 649 ± 1994266 ± 130
55860−011213 038 ± 393127 975 ± 1288011 749 ± 2753735 ± 360
56453−014411 224 ± 140017 630 ± 812710 824 ± 2017410 ± 202
55710−011611 189 ± 121810 917 ± 275610 806 ± 19861021 ± 381
56209−039010 735 ± 386216 538 ± 815010 575 ± 2728198 ± 49
56298−030214 006 ± 560423 833 ± 1145112 243 ± 3425451 ± 215
56366−092815 523 ± 368230 648 ± 972713 017 ± 2662839 ± 410
55742−038311 497 ± 88918 239 ± 796612 245 ± 3500445 ± 206
55302−065516 672 ± 367429 778 ± 956811 547 ± 3178267 ± 122
56328−055012 373 ± 171414 346 ± 562111 410 ± 2080192:
55646−077014 856 ± 380525 729 ± 968012 676 ± 2706593:
55617−075812 640 ± 454027 347 ± 1010911 546 ± 29871168 ± 560
56003−021813 337 ± 356316 884 ± 833011 902 ± 2620913 ± 430
55629−036413 575 ± 419222 872 ± 1002812 023 ± 2852546:
56568−007611 281 ± 136817 756 ± 811510 853 ± 2012666 ± 215
55836−016011 814 ± 231418 946 ± 857611 125 ± 2225427 ± 205
55505−06549268 ± 144611 052 ± 29559827 ± 2026422 ± 190

Note. For some objects we use ‘:’ to indicate that error bars are at least an order of magnitude larger than the expected density. This is due to the significant emission-line errors (see Section 3.1).

Table A3.

Ionic and total abundances for Seyfert 2 nuclei derived through the Te method.

Object|$\rm O^{+}/H^{+}$||$\rm O^{2+}/H^{+}$|O/H|$\rm S^{+}/H^{+}$||$\rm S^{2+}/H^{+}$|ICF(S)S/HS/O
Mrk 5737.95 ± 0.128.21 ± 0.048.58 ± 0.136.46 ± 0.126.52 ± 0.162.027.08 ± 0.18−1.50 ± 0.22
NGC 57288.03 ± 0.128.22 ± 0.078.61 ± 0.146.52 ± 0.126.42 ± 0.171.817.07 ± 0.18−1.55 ± 0.23
ESO 428 G147.79 ± 0.108.03 ± 0.078.40 ± 0.126.44 ± 0.106.24 ± 0.151.956.94 ± 0.16−1.46 ± 0.20
NGC 43888.03 ± 0.128.17 ± 0.098.59 ± 0.136.37 ± 0.126.12 ± 0.161.836.85 ± 0.18−1.74 ± 0.22
Mrk 788.38 ± 0.138.35 ± 0.108.84 ± 0.146.41 ± 0.136.10 ± 0.171.526.87 ± 0.19−1.97 ± 0.23
NGC 76747.85 ± 0.138.47 ± 0.108.74 ± 0.156.47 ± 0.136.71 ± 0.182.947.20 ± 0.19−1.54 ± 0.24
NGC 21107.84 ± 0.107.39 ± 0.098.15 ± 0.116.50 ± 0.106.30 ± 0.141.226.71 ± 0.16−1.43 ± 0.19
NGC 76827.99 ± 0.128.06 ± 0.098.50 ± 0.136.61 ± 0.116.33 ± 0.161.617.08 ± 0.17−1.42 ± 0.22
NGC 32277.55 ± 0.147.59 ± 0.068.04 ± 0.156.36 ± 0.156.28 ± 0.191.726.62 ± 0.21−1.42 ± 0.26
Mrk 10667.98 ± 0.137.58 ± 0.118.30 ± 0.146.24 ± 0.135.85 ± 0.171.216.68 ± 0.19−1.62 ± 0.24
Mrk 38.16 ± 0.118.05 ± 0.078.58 ± 0.126.62 ± 0.116.40 ± 0.151.467.11 ± 0.17−1.47 ± 0.21
ESO 138 G17.52 ± 0.087.60 ± 0.058.04 ± 0.096.00 ± 0.085.78 ± 0.121.746.20 ± 0.14−1.83 ± 0.16
55978−09908.49 ± 0.148.25 ± 0.098.86 ± 0.156.55 ± 0.146.43 ± 0.181.357.09 ± 0.20−1.78 ± 0.25
56104−09668.60 ± 0.148.37 ± 0.118.97 ± 0.156.44 ± 0.146.12 ± 0.181.326.90 ± 0.20−2.08 ± 0.25
55181−01548.42 ± 0.158.36 ± 0.118.87 ± 0.166.48 ± 0.156.34 ± 0.191.437.01 ± 0.21−1.86 ± 0.26
56088−04738.13 ± 0.148.35 ± 0.048.73 ± 0.155.74 ± 0.146.50 ± 0.181.896.86 ± 0.20−1.87 ± 0.25
56034−01548.16 ± 0.128.35 ± 0.048.74 ± 0.146.53 ± 0.126.87 ± 0.171.877.32 ± 0.18−1.41 ± 0.23
56067−03827.58 ± 0.167.86 ± 0.138.04 ± 0.176.03 ± 0.156.01 ± 0.191.316.32 ± 0.21−1.72 ± 0.27
56240−03408.38 ± 0.137.82 ± 0.108.66 ± 0.146.43 ± 0.136.44 ± 0.171.187.03 ± 0.19−1.63 ± 0.23
55539−01677.58 ± 0.157.87 ± 0.108.22 ± 0.166.03 ± 0.156.17 ± 0.201.326.70 ± 0.22−1.53 ± 0.27
56626−06368.32 ± 0.138.14 ± 0.078.72 ± 0.146.65 ± 0.136.06 ± 0.171.357.04 ± 0.19−1.68 ± 0.24
56074−00458.35 ± 0.137.73 ± 0.098.62 ± 0.146.41 ± 0.136.12 ± 0.171.156.88 ± 0.19−1.74 ± 0.24
55212−03808.34 ± 0.148.55 ± 0.108.94 ± 0.156.62 ± 0.146.65 ± 0.181.817.22 ± 0.20−1.71 ± 0.25
56399−03028.10 ± 0.147.37 ± 0.128.35 ± 0.156.51 ± 0.146.47 ± 0.181.136.79 ± 0.20−1.56 ± 0.25
56001−02938.19 ± 0.178.27 ± 0.078.71 ± 0.186.29 ± 0.156.41 ± 0.191.386.95 ± 0.21−1.76 ± 0.28
55651−00528.41 ± 0.158.16 ± 0.108.78 ± 0.166.58 ± 0.156.17 ± 0.191.287.01 ± 0.21−1.77 ± 0.26
56566−07948.57 ± 0.138.00 ± 0.118.85 ± 0.147.06 ± 0.166.18 ± 0.201.167.40 ± 0.22−1.45 ± 0.26
56748−03368.39 ± 0.158.14 ± 0.128.76 ± 0.166.58 ± 0.156.43 ± 0.191.327.10 ± 0.21−1.66 ± 0.26
56206−04548.51 ± 0.128.03 ± 0.108.81 ± 0.146.56 ± 0.126.30 ± 0.171.207.04 ± 0.18−1.77 ± 0.23
55860−01128.37 ± 0.158.08 ± 0.128.72 ± 0.166.83 ± 0.156.21 ± 0.191.277.22 ± 0.21−1.51 ± 0.27
56453−01448.26 ± 0.148.19 ± 0.098.70 ± 0.156.56 ± 0.146.56 ± 0.181.477.15 ± 0.20−1.55 ± 0.25
55710−01168.18 ± 0.138.26 ± 0.118.70 ± 0.156.72 ± 0.136.97 ± 0.181.587.45 ± 0.20−1.25 ± 0.24
56209−03908.66 ± 0.178.38 ± 0.139.02 ± 0.186.12 ± 0.145.97 ± 0.191.326.65 ± 0.20−2.37 ± 0.27
56298−03028.56 ± 0.167.83 ± 0.138.81 ± 0.176.70 ± 0.156.89 ± 0.191.107.40 ± 0.21−1.42 ± 0.27
56366−09288.13 ± 0.137.74 ± 0.118.46 ± 0.146.48 ± 0.136.81 ± 0.171.226.98 ± 0.19−1.48 ± 0.24
55742−03837.99 ± 0.168.04 ± 0.098.50 ± 0.176.30 ± 0.156.20 ± 0.201.416.84 ± 0.21−1.65 ± 0.28
55302−06558.35 ± 0.167.23 ± 0.118.56 ± 0.186.61 ± 0.155.91 ± 0.201.096.98 ± 0.21−1.58 ± 0.28
56328−05508.50 ± 0.137.94 ± 0.118.78 ± 0.146.56 ± 0.136.55 ± 0.171.177.15 ± 0.19−1.63 ± 0.24
55646−07708.42 ± 0.137.90 ± 0.118.71 ± 0.156.66 ± 0.146.26 ± 0.181.177.10 ± 0.20−1.62 ± 0.25
55617−07588.54 ± 0.167.81 ± 0.128.79 ± 0.176.74 ± 0.166.10 ± 0.211.097.12 ± 0.22−1.67 ± 0.28
56003−02188.11 ± 0.147.83 ± 0.118.47 ± 0.156.34 ± 0.146.56 ± 0.191.277.05 ± 0.20−1.42 ± 0.26
55629−03648.54 ± 0.157.99 ± 0.128.82 ± 0.166.69 ± 0.156.28 ± 0.191.167.12 ± 0.21−1.70 ± 0.26
56568−00768.45 ± 0.147.87 ± 0.108.73 ± 0.156.50 ± 0.136.03 ± 0.181.136.92 ± 0.20−1.81 ± 0.25
55836−01608.26 ± 0.147.88 ± 0.118.59 ± 0.156.41 ± 0.146.41 ± 0.181.237.00 ± 0.20−1.59 ± 0.25
55505−06548.42 ± 0.158.56 ± 0.118.97 ± 0.176.53 ± 0.166.87 ± 0.201.747.33 ± 0.22−1.65 ± 0.27
Object|$\rm O^{+}/H^{+}$||$\rm O^{2+}/H^{+}$|O/H|$\rm S^{+}/H^{+}$||$\rm S^{2+}/H^{+}$|ICF(S)S/HS/O
Mrk 5737.95 ± 0.128.21 ± 0.048.58 ± 0.136.46 ± 0.126.52 ± 0.162.027.08 ± 0.18−1.50 ± 0.22
NGC 57288.03 ± 0.128.22 ± 0.078.61 ± 0.146.52 ± 0.126.42 ± 0.171.817.07 ± 0.18−1.55 ± 0.23
ESO 428 G147.79 ± 0.108.03 ± 0.078.40 ± 0.126.44 ± 0.106.24 ± 0.151.956.94 ± 0.16−1.46 ± 0.20
NGC 43888.03 ± 0.128.17 ± 0.098.59 ± 0.136.37 ± 0.126.12 ± 0.161.836.85 ± 0.18−1.74 ± 0.22
Mrk 788.38 ± 0.138.35 ± 0.108.84 ± 0.146.41 ± 0.136.10 ± 0.171.526.87 ± 0.19−1.97 ± 0.23
NGC 76747.85 ± 0.138.47 ± 0.108.74 ± 0.156.47 ± 0.136.71 ± 0.182.947.20 ± 0.19−1.54 ± 0.24
NGC 21107.84 ± 0.107.39 ± 0.098.15 ± 0.116.50 ± 0.106.30 ± 0.141.226.71 ± 0.16−1.43 ± 0.19
NGC 76827.99 ± 0.128.06 ± 0.098.50 ± 0.136.61 ± 0.116.33 ± 0.161.617.08 ± 0.17−1.42 ± 0.22
NGC 32277.55 ± 0.147.59 ± 0.068.04 ± 0.156.36 ± 0.156.28 ± 0.191.726.62 ± 0.21−1.42 ± 0.26
Mrk 10667.98 ± 0.137.58 ± 0.118.30 ± 0.146.24 ± 0.135.85 ± 0.171.216.68 ± 0.19−1.62 ± 0.24
Mrk 38.16 ± 0.118.05 ± 0.078.58 ± 0.126.62 ± 0.116.40 ± 0.151.467.11 ± 0.17−1.47 ± 0.21
ESO 138 G17.52 ± 0.087.60 ± 0.058.04 ± 0.096.00 ± 0.085.78 ± 0.121.746.20 ± 0.14−1.83 ± 0.16
55978−09908.49 ± 0.148.25 ± 0.098.86 ± 0.156.55 ± 0.146.43 ± 0.181.357.09 ± 0.20−1.78 ± 0.25
56104−09668.60 ± 0.148.37 ± 0.118.97 ± 0.156.44 ± 0.146.12 ± 0.181.326.90 ± 0.20−2.08 ± 0.25
55181−01548.42 ± 0.158.36 ± 0.118.87 ± 0.166.48 ± 0.156.34 ± 0.191.437.01 ± 0.21−1.86 ± 0.26
56088−04738.13 ± 0.148.35 ± 0.048.73 ± 0.155.74 ± 0.146.50 ± 0.181.896.86 ± 0.20−1.87 ± 0.25
56034−01548.16 ± 0.128.35 ± 0.048.74 ± 0.146.53 ± 0.126.87 ± 0.171.877.32 ± 0.18−1.41 ± 0.23
56067−03827.58 ± 0.167.86 ± 0.138.04 ± 0.176.03 ± 0.156.01 ± 0.191.316.32 ± 0.21−1.72 ± 0.27
56240−03408.38 ± 0.137.82 ± 0.108.66 ± 0.146.43 ± 0.136.44 ± 0.171.187.03 ± 0.19−1.63 ± 0.23
55539−01677.58 ± 0.157.87 ± 0.108.22 ± 0.166.03 ± 0.156.17 ± 0.201.326.70 ± 0.22−1.53 ± 0.27
56626−06368.32 ± 0.138.14 ± 0.078.72 ± 0.146.65 ± 0.136.06 ± 0.171.357.04 ± 0.19−1.68 ± 0.24
56074−00458.35 ± 0.137.73 ± 0.098.62 ± 0.146.41 ± 0.136.12 ± 0.171.156.88 ± 0.19−1.74 ± 0.24
55212−03808.34 ± 0.148.55 ± 0.108.94 ± 0.156.62 ± 0.146.65 ± 0.181.817.22 ± 0.20−1.71 ± 0.25
56399−03028.10 ± 0.147.37 ± 0.128.35 ± 0.156.51 ± 0.146.47 ± 0.181.136.79 ± 0.20−1.56 ± 0.25
56001−02938.19 ± 0.178.27 ± 0.078.71 ± 0.186.29 ± 0.156.41 ± 0.191.386.95 ± 0.21−1.76 ± 0.28
55651−00528.41 ± 0.158.16 ± 0.108.78 ± 0.166.58 ± 0.156.17 ± 0.191.287.01 ± 0.21−1.77 ± 0.26
56566−07948.57 ± 0.138.00 ± 0.118.85 ± 0.147.06 ± 0.166.18 ± 0.201.167.40 ± 0.22−1.45 ± 0.26
56748−03368.39 ± 0.158.14 ± 0.128.76 ± 0.166.58 ± 0.156.43 ± 0.191.327.10 ± 0.21−1.66 ± 0.26
56206−04548.51 ± 0.128.03 ± 0.108.81 ± 0.146.56 ± 0.126.30 ± 0.171.207.04 ± 0.18−1.77 ± 0.23
55860−01128.37 ± 0.158.08 ± 0.128.72 ± 0.166.83 ± 0.156.21 ± 0.191.277.22 ± 0.21−1.51 ± 0.27
56453−01448.26 ± 0.148.19 ± 0.098.70 ± 0.156.56 ± 0.146.56 ± 0.181.477.15 ± 0.20−1.55 ± 0.25
55710−01168.18 ± 0.138.26 ± 0.118.70 ± 0.156.72 ± 0.136.97 ± 0.181.587.45 ± 0.20−1.25 ± 0.24
56209−03908.66 ± 0.178.38 ± 0.139.02 ± 0.186.12 ± 0.145.97 ± 0.191.326.65 ± 0.20−2.37 ± 0.27
56298−03028.56 ± 0.167.83 ± 0.138.81 ± 0.176.70 ± 0.156.89 ± 0.191.107.40 ± 0.21−1.42 ± 0.27
56366−09288.13 ± 0.137.74 ± 0.118.46 ± 0.146.48 ± 0.136.81 ± 0.171.226.98 ± 0.19−1.48 ± 0.24
55742−03837.99 ± 0.168.04 ± 0.098.50 ± 0.176.30 ± 0.156.20 ± 0.201.416.84 ± 0.21−1.65 ± 0.28
55302−06558.35 ± 0.167.23 ± 0.118.56 ± 0.186.61 ± 0.155.91 ± 0.201.096.98 ± 0.21−1.58 ± 0.28
56328−05508.50 ± 0.137.94 ± 0.118.78 ± 0.146.56 ± 0.136.55 ± 0.171.177.15 ± 0.19−1.63 ± 0.24
55646−07708.42 ± 0.137.90 ± 0.118.71 ± 0.156.66 ± 0.146.26 ± 0.181.177.10 ± 0.20−1.62 ± 0.25
55617−07588.54 ± 0.167.81 ± 0.128.79 ± 0.176.74 ± 0.166.10 ± 0.211.097.12 ± 0.22−1.67 ± 0.28
56003−02188.11 ± 0.147.83 ± 0.118.47 ± 0.156.34 ± 0.146.56 ± 0.191.277.05 ± 0.20−1.42 ± 0.26
55629−03648.54 ± 0.157.99 ± 0.128.82 ± 0.166.69 ± 0.156.28 ± 0.191.167.12 ± 0.21−1.70 ± 0.26
56568−00768.45 ± 0.147.87 ± 0.108.73 ± 0.156.50 ± 0.136.03 ± 0.181.136.92 ± 0.20−1.81 ± 0.25
55836−01608.26 ± 0.147.88 ± 0.118.59 ± 0.156.41 ± 0.146.41 ± 0.181.237.00 ± 0.20−1.59 ± 0.25
55505−06548.42 ± 0.158.56 ± 0.118.97 ± 0.176.53 ± 0.166.87 ± 0.201.747.33 ± 0.22−1.65 ± 0.27
Table A3.

Ionic and total abundances for Seyfert 2 nuclei derived through the Te method.

Object|$\rm O^{+}/H^{+}$||$\rm O^{2+}/H^{+}$|O/H|$\rm S^{+}/H^{+}$||$\rm S^{2+}/H^{+}$|ICF(S)S/HS/O
Mrk 5737.95 ± 0.128.21 ± 0.048.58 ± 0.136.46 ± 0.126.52 ± 0.162.027.08 ± 0.18−1.50 ± 0.22
NGC 57288.03 ± 0.128.22 ± 0.078.61 ± 0.146.52 ± 0.126.42 ± 0.171.817.07 ± 0.18−1.55 ± 0.23
ESO 428 G147.79 ± 0.108.03 ± 0.078.40 ± 0.126.44 ± 0.106.24 ± 0.151.956.94 ± 0.16−1.46 ± 0.20
NGC 43888.03 ± 0.128.17 ± 0.098.59 ± 0.136.37 ± 0.126.12 ± 0.161.836.85 ± 0.18−1.74 ± 0.22
Mrk 788.38 ± 0.138.35 ± 0.108.84 ± 0.146.41 ± 0.136.10 ± 0.171.526.87 ± 0.19−1.97 ± 0.23
NGC 76747.85 ± 0.138.47 ± 0.108.74 ± 0.156.47 ± 0.136.71 ± 0.182.947.20 ± 0.19−1.54 ± 0.24
NGC 21107.84 ± 0.107.39 ± 0.098.15 ± 0.116.50 ± 0.106.30 ± 0.141.226.71 ± 0.16−1.43 ± 0.19
NGC 76827.99 ± 0.128.06 ± 0.098.50 ± 0.136.61 ± 0.116.33 ± 0.161.617.08 ± 0.17−1.42 ± 0.22
NGC 32277.55 ± 0.147.59 ± 0.068.04 ± 0.156.36 ± 0.156.28 ± 0.191.726.62 ± 0.21−1.42 ± 0.26
Mrk 10667.98 ± 0.137.58 ± 0.118.30 ± 0.146.24 ± 0.135.85 ± 0.171.216.68 ± 0.19−1.62 ± 0.24
Mrk 38.16 ± 0.118.05 ± 0.078.58 ± 0.126.62 ± 0.116.40 ± 0.151.467.11 ± 0.17−1.47 ± 0.21
ESO 138 G17.52 ± 0.087.60 ± 0.058.04 ± 0.096.00 ± 0.085.78 ± 0.121.746.20 ± 0.14−1.83 ± 0.16
55978−09908.49 ± 0.148.25 ± 0.098.86 ± 0.156.55 ± 0.146.43 ± 0.181.357.09 ± 0.20−1.78 ± 0.25
56104−09668.60 ± 0.148.37 ± 0.118.97 ± 0.156.44 ± 0.146.12 ± 0.181.326.90 ± 0.20−2.08 ± 0.25
55181−01548.42 ± 0.158.36 ± 0.118.87 ± 0.166.48 ± 0.156.34 ± 0.191.437.01 ± 0.21−1.86 ± 0.26
56088−04738.13 ± 0.148.35 ± 0.048.73 ± 0.155.74 ± 0.146.50 ± 0.181.896.86 ± 0.20−1.87 ± 0.25
56034−01548.16 ± 0.128.35 ± 0.048.74 ± 0.146.53 ± 0.126.87 ± 0.171.877.32 ± 0.18−1.41 ± 0.23
56067−03827.58 ± 0.167.86 ± 0.138.04 ± 0.176.03 ± 0.156.01 ± 0.191.316.32 ± 0.21−1.72 ± 0.27
56240−03408.38 ± 0.137.82 ± 0.108.66 ± 0.146.43 ± 0.136.44 ± 0.171.187.03 ± 0.19−1.63 ± 0.23
55539−01677.58 ± 0.157.87 ± 0.108.22 ± 0.166.03 ± 0.156.17 ± 0.201.326.70 ± 0.22−1.53 ± 0.27
56626−06368.32 ± 0.138.14 ± 0.078.72 ± 0.146.65 ± 0.136.06 ± 0.171.357.04 ± 0.19−1.68 ± 0.24
56074−00458.35 ± 0.137.73 ± 0.098.62 ± 0.146.41 ± 0.136.12 ± 0.171.156.88 ± 0.19−1.74 ± 0.24
55212−03808.34 ± 0.148.55 ± 0.108.94 ± 0.156.62 ± 0.146.65 ± 0.181.817.22 ± 0.20−1.71 ± 0.25
56399−03028.10 ± 0.147.37 ± 0.128.35 ± 0.156.51 ± 0.146.47 ± 0.181.136.79 ± 0.20−1.56 ± 0.25
56001−02938.19 ± 0.178.27 ± 0.078.71 ± 0.186.29 ± 0.156.41 ± 0.191.386.95 ± 0.21−1.76 ± 0.28
55651−00528.41 ± 0.158.16 ± 0.108.78 ± 0.166.58 ± 0.156.17 ± 0.191.287.01 ± 0.21−1.77 ± 0.26
56566−07948.57 ± 0.138.00 ± 0.118.85 ± 0.147.06 ± 0.166.18 ± 0.201.167.40 ± 0.22−1.45 ± 0.26
56748−03368.39 ± 0.158.14 ± 0.128.76 ± 0.166.58 ± 0.156.43 ± 0.191.327.10 ± 0.21−1.66 ± 0.26
56206−04548.51 ± 0.128.03 ± 0.108.81 ± 0.146.56 ± 0.126.30 ± 0.171.207.04 ± 0.18−1.77 ± 0.23
55860−01128.37 ± 0.158.08 ± 0.128.72 ± 0.166.83 ± 0.156.21 ± 0.191.277.22 ± 0.21−1.51 ± 0.27
56453−01448.26 ± 0.148.19 ± 0.098.70 ± 0.156.56 ± 0.146.56 ± 0.181.477.15 ± 0.20−1.55 ± 0.25
55710−01168.18 ± 0.138.26 ± 0.118.70 ± 0.156.72 ± 0.136.97 ± 0.181.587.45 ± 0.20−1.25 ± 0.24
56209−03908.66 ± 0.178.38 ± 0.139.02 ± 0.186.12 ± 0.145.97 ± 0.191.326.65 ± 0.20−2.37 ± 0.27
56298−03028.56 ± 0.167.83 ± 0.138.81 ± 0.176.70 ± 0.156.89 ± 0.191.107.40 ± 0.21−1.42 ± 0.27
56366−09288.13 ± 0.137.74 ± 0.118.46 ± 0.146.48 ± 0.136.81 ± 0.171.226.98 ± 0.19−1.48 ± 0.24
55742−03837.99 ± 0.168.04 ± 0.098.50 ± 0.176.30 ± 0.156.20 ± 0.201.416.84 ± 0.21−1.65 ± 0.28
55302−06558.35 ± 0.167.23 ± 0.118.56 ± 0.186.61 ± 0.155.91 ± 0.201.096.98 ± 0.21−1.58 ± 0.28
56328−05508.50 ± 0.137.94 ± 0.118.78 ± 0.146.56 ± 0.136.55 ± 0.171.177.15 ± 0.19−1.63 ± 0.24
55646−07708.42 ± 0.137.90 ± 0.118.71 ± 0.156.66 ± 0.146.26 ± 0.181.177.10 ± 0.20−1.62 ± 0.25
55617−07588.54 ± 0.167.81 ± 0.128.79 ± 0.176.74 ± 0.166.10 ± 0.211.097.12 ± 0.22−1.67 ± 0.28
56003−02188.11 ± 0.147.83 ± 0.118.47 ± 0.156.34 ± 0.146.56 ± 0.191.277.05 ± 0.20−1.42 ± 0.26
55629−03648.54 ± 0.157.99 ± 0.128.82 ± 0.166.69 ± 0.156.28 ± 0.191.167.12 ± 0.21−1.70 ± 0.26
56568−00768.45 ± 0.147.87 ± 0.108.73 ± 0.156.50 ± 0.136.03 ± 0.181.136.92 ± 0.20−1.81 ± 0.25
55836−01608.26 ± 0.147.88 ± 0.118.59 ± 0.156.41 ± 0.146.41 ± 0.181.237.00 ± 0.20−1.59 ± 0.25
55505−06548.42 ± 0.158.56 ± 0.118.97 ± 0.176.53 ± 0.166.87 ± 0.201.747.33 ± 0.22−1.65 ± 0.27
Object|$\rm O^{+}/H^{+}$||$\rm O^{2+}/H^{+}$|O/H|$\rm S^{+}/H^{+}$||$\rm S^{2+}/H^{+}$|ICF(S)S/HS/O
Mrk 5737.95 ± 0.128.21 ± 0.048.58 ± 0.136.46 ± 0.126.52 ± 0.162.027.08 ± 0.18−1.50 ± 0.22
NGC 57288.03 ± 0.128.22 ± 0.078.61 ± 0.146.52 ± 0.126.42 ± 0.171.817.07 ± 0.18−1.55 ± 0.23
ESO 428 G147.79 ± 0.108.03 ± 0.078.40 ± 0.126.44 ± 0.106.24 ± 0.151.956.94 ± 0.16−1.46 ± 0.20
NGC 43888.03 ± 0.128.17 ± 0.098.59 ± 0.136.37 ± 0.126.12 ± 0.161.836.85 ± 0.18−1.74 ± 0.22
Mrk 788.38 ± 0.138.35 ± 0.108.84 ± 0.146.41 ± 0.136.10 ± 0.171.526.87 ± 0.19−1.97 ± 0.23
NGC 76747.85 ± 0.138.47 ± 0.108.74 ± 0.156.47 ± 0.136.71 ± 0.182.947.20 ± 0.19−1.54 ± 0.24
NGC 21107.84 ± 0.107.39 ± 0.098.15 ± 0.116.50 ± 0.106.30 ± 0.141.226.71 ± 0.16−1.43 ± 0.19
NGC 76827.99 ± 0.128.06 ± 0.098.50 ± 0.136.61 ± 0.116.33 ± 0.161.617.08 ± 0.17−1.42 ± 0.22
NGC 32277.55 ± 0.147.59 ± 0.068.04 ± 0.156.36 ± 0.156.28 ± 0.191.726.62 ± 0.21−1.42 ± 0.26
Mrk 10667.98 ± 0.137.58 ± 0.118.30 ± 0.146.24 ± 0.135.85 ± 0.171.216.68 ± 0.19−1.62 ± 0.24
Mrk 38.16 ± 0.118.05 ± 0.078.58 ± 0.126.62 ± 0.116.40 ± 0.151.467.11 ± 0.17−1.47 ± 0.21
ESO 138 G17.52 ± 0.087.60 ± 0.058.04 ± 0.096.00 ± 0.085.78 ± 0.121.746.20 ± 0.14−1.83 ± 0.16
55978−09908.49 ± 0.148.25 ± 0.098.86 ± 0.156.55 ± 0.146.43 ± 0.181.357.09 ± 0.20−1.78 ± 0.25
56104−09668.60 ± 0.148.37 ± 0.118.97 ± 0.156.44 ± 0.146.12 ± 0.181.326.90 ± 0.20−2.08 ± 0.25
55181−01548.42 ± 0.158.36 ± 0.118.87 ± 0.166.48 ± 0.156.34 ± 0.191.437.01 ± 0.21−1.86 ± 0.26
56088−04738.13 ± 0.148.35 ± 0.048.73 ± 0.155.74 ± 0.146.50 ± 0.181.896.86 ± 0.20−1.87 ± 0.25
56034−01548.16 ± 0.128.35 ± 0.048.74 ± 0.146.53 ± 0.126.87 ± 0.171.877.32 ± 0.18−1.41 ± 0.23
56067−03827.58 ± 0.167.86 ± 0.138.04 ± 0.176.03 ± 0.156.01 ± 0.191.316.32 ± 0.21−1.72 ± 0.27
56240−03408.38 ± 0.137.82 ± 0.108.66 ± 0.146.43 ± 0.136.44 ± 0.171.187.03 ± 0.19−1.63 ± 0.23
55539−01677.58 ± 0.157.87 ± 0.108.22 ± 0.166.03 ± 0.156.17 ± 0.201.326.70 ± 0.22−1.53 ± 0.27
56626−06368.32 ± 0.138.14 ± 0.078.72 ± 0.146.65 ± 0.136.06 ± 0.171.357.04 ± 0.19−1.68 ± 0.24
56074−00458.35 ± 0.137.73 ± 0.098.62 ± 0.146.41 ± 0.136.12 ± 0.171.156.88 ± 0.19−1.74 ± 0.24
55212−03808.34 ± 0.148.55 ± 0.108.94 ± 0.156.62 ± 0.146.65 ± 0.181.817.22 ± 0.20−1.71 ± 0.25
56399−03028.10 ± 0.147.37 ± 0.128.35 ± 0.156.51 ± 0.146.47 ± 0.181.136.79 ± 0.20−1.56 ± 0.25
56001−02938.19 ± 0.178.27 ± 0.078.71 ± 0.186.29 ± 0.156.41 ± 0.191.386.95 ± 0.21−1.76 ± 0.28
55651−00528.41 ± 0.158.16 ± 0.108.78 ± 0.166.58 ± 0.156.17 ± 0.191.287.01 ± 0.21−1.77 ± 0.26
56566−07948.57 ± 0.138.00 ± 0.118.85 ± 0.147.06 ± 0.166.18 ± 0.201.167.40 ± 0.22−1.45 ± 0.26
56748−03368.39 ± 0.158.14 ± 0.128.76 ± 0.166.58 ± 0.156.43 ± 0.191.327.10 ± 0.21−1.66 ± 0.26
56206−04548.51 ± 0.128.03 ± 0.108.81 ± 0.146.56 ± 0.126.30 ± 0.171.207.04 ± 0.18−1.77 ± 0.23
55860−01128.37 ± 0.158.08 ± 0.128.72 ± 0.166.83 ± 0.156.21 ± 0.191.277.22 ± 0.21−1.51 ± 0.27
56453−01448.26 ± 0.148.19 ± 0.098.70 ± 0.156.56 ± 0.146.56 ± 0.181.477.15 ± 0.20−1.55 ± 0.25
55710−01168.18 ± 0.138.26 ± 0.118.70 ± 0.156.72 ± 0.136.97 ± 0.181.587.45 ± 0.20−1.25 ± 0.24
56209−03908.66 ± 0.178.38 ± 0.139.02 ± 0.186.12 ± 0.145.97 ± 0.191.326.65 ± 0.20−2.37 ± 0.27
56298−03028.56 ± 0.167.83 ± 0.138.81 ± 0.176.70 ± 0.156.89 ± 0.191.107.40 ± 0.21−1.42 ± 0.27
56366−09288.13 ± 0.137.74 ± 0.118.46 ± 0.146.48 ± 0.136.81 ± 0.171.226.98 ± 0.19−1.48 ± 0.24
55742−03837.99 ± 0.168.04 ± 0.098.50 ± 0.176.30 ± 0.156.20 ± 0.201.416.84 ± 0.21−1.65 ± 0.28
55302−06558.35 ± 0.167.23 ± 0.118.56 ± 0.186.61 ± 0.155.91 ± 0.201.096.98 ± 0.21−1.58 ± 0.28
56328−05508.50 ± 0.137.94 ± 0.118.78 ± 0.146.56 ± 0.136.55 ± 0.171.177.15 ± 0.19−1.63 ± 0.24
55646−07708.42 ± 0.137.90 ± 0.118.71 ± 0.156.66 ± 0.146.26 ± 0.181.177.10 ± 0.20−1.62 ± 0.25
55617−07588.54 ± 0.167.81 ± 0.128.79 ± 0.176.74 ± 0.166.10 ± 0.211.097.12 ± 0.22−1.67 ± 0.28
56003−02188.11 ± 0.147.83 ± 0.118.47 ± 0.156.34 ± 0.146.56 ± 0.191.277.05 ± 0.20−1.42 ± 0.26
55629−03648.54 ± 0.157.99 ± 0.128.82 ± 0.166.69 ± 0.156.28 ± 0.191.167.12 ± 0.21−1.70 ± 0.26
56568−00768.45 ± 0.147.87 ± 0.108.73 ± 0.156.50 ± 0.136.03 ± 0.181.136.92 ± 0.20−1.81 ± 0.25
55836−01608.26 ± 0.147.88 ± 0.118.59 ± 0.156.41 ± 0.146.41 ± 0.181.237.00 ± 0.20−1.59 ± 0.25
55505−06548.42 ± 0.158.56 ± 0.118.97 ± 0.176.53 ± 0.166.87 ± 0.201.747.33 ± 0.22−1.65 ± 0.27
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)