Abstract

After four decades of study, the biological role of fetal microchimerism (FMC) remains elusive. Transfer of fetal cells to the mother begins soon after implantation, and increases with gestational age. FMC cells then decline after delivery, but remain detectable for years post-partum. These cells have been implicated in rheumatoid arthritis remission during pregnancy and the prevention of breast cancer by graft-versus-tumor-effects. However, any beneficial effects contrast with their suspected malevolence in triggering of systemic sclerosis after childrearing or their stromal support for tumor formation. Recent evidence that FMC cells participate in disease and tissue repair has stirred controversy on their origin. The detection of FMC cells during early embryogenesis together with the diversity of hematopoietic, mesenchymal and endothelial markers, and plasticity of morphology when integrated into various tissues, provides evidence for their stemness. However, proof of their phenotype in conventional stem cell differentiation assays has been beset with difficulty in isolating and expanding them in culture. Unraveling the function of FMC cells will provide insight into both their engagement in disease and their therapeutic potential.

You do not currently have access to this article.