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H-2100 Hungary and 2Department of Biochemistry and Seaver Foundation Center for Bioinformatics,
Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA

Received February 14, 2003; Revised and Accepted April 7, 2003

ABSTRACT

We describe several algorithms and public servers
that were developed to analyze and predict various
features of protein structures. These servers provide
information about the covalent state of cysteine
(CYSREDOX), as well as about residues involved in
non-covalent cross links that play an important role
in the structural stability of proteins (SCIDE and
SCPRED). We also discuss methods and servers
developed to identify helical transmembrane pro-
teins from large databases and rough genomic data,
including two of the most popular transmembrane
prediction methods, DAS and HMMTOP. Several
biologically interesting applications of these servers
are also presented. The servers are available through
http://www.enzim.hu/servers.html.

INTRODUCTION

Biochemical function of proteins is defined by their three-
dimensional (3D) structures and under physiological condi-
tions the 3D structures of proteins are defined by their primary
sequences. Nowadays, amino acid sequences can be obtained
in a fast and automated way, however solving the 3D structures
of proteins is still a much more complicated and often
unsuccessful endeavor. On average 20–30% of a typical
genome is predicted to be partially or fully membrane
immersed (1) and another 10–20% predicted to contain
unstructured proteins (2,3). The experimental solution of
structures, even for globular proteins, is far from trivial.
Furthermore, the complex 3D structure of proteins makes it
often complicated to extract the relevant biological informa-
tion, despite knowing the atomic coordinates (4).

Therefore there is a strong demand for automatic servers
which can predict structure related information from amino
acid sequence alone or offer an analytical tool to understand
the relationship between structural and functional properties of

proteins. In this paper, we present a collection of algorithms
and servers, providing information about the covalent state of
Cys, identifying and predicting residues involved in non-
covalent interactions and predicting putative transmembrane
segments and their topology. All the discussed algorithms and
servers were developed by current and former members of our
group at the Institute of Enzymology, Hungarian Academy of
Sciences with the exception of the DAS and DAS-TMfilter
membrane protein prediction methods, which were developed
as joint projects with laboratories in Austria, France and
Sweden.

PREDICTING THE REDOX STATE OF Cys
RESIDUES AND ELEMENTS OF COVALENT
CROSS-LINKS IN PROTEINS

From the view point of covalent structure, the amino acid
sequence determination from gene sequencing is not complete,
because it does not distinguish cysteine and half cystine
residues, the two different covalent structures coded by the
same triplets in DNA, and it does not account for various other
post translational covalent modifications. However, the cova-
lent state of cysteines is often a major factor determining
functional features of proteins: Cys is the second most frequent
active site residue (5). In addition, the covalent state of Cys
provides information about the possible cellular location of
proteins and many small proteins simply cannot form stable
structures without disulfide bonds. Information on Cys
residues can also greatly enhance the performance of ab initio
modeling studies (6).

Several methods have been developed to predict disulfide
bond forming Cys residues from the sequence, by setting up
disulfide bond forming statistical potentials or using neural
network based approaches or a combination of neural network
based approaches with hidden Markov models (7–9). Earlier
methods could be significantly improved by incorporating
evolutionary information of Cys residues from multiple seq-
uence alignments (10,11). These approaches proved to be
not only more effective but our analysis revealed that
the biologically meaningful borderline lies rather in between
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the different oxidation states of Cys and not in between
half cystines and cysteins (11,12). An automated server,
CYSREDOX (http://alto.rockefeller.edu/cysredox/cysredox.
html) (Table 1) was set up that implements this latter approach
predicting the oxidation state of Cys residues with an accuracy
of 82% (11).

The CYSREDOX server takes a single sequence as input,
collects relevant homologous sequences from the NR database
of NCBI using the Psi-Blast algorithm (13), and aligns them
with the ClustalW program (14). Next, the conservation of
residues in the resulting multiple sequence alignment is
analyzed by calculating conservation scores according to the
number of commonly shared or systematically neglected
physicochemical features in each position. The scale of
normalized conservation scores has been calibrated in our
study and is used to estimate the probable redox form of Cys.

ANALYZING AND PREDICTING RESIDUES
INVOLVED IN NON-COVALENT CROSS
LINKS IN PROTEINS

Under physiological conditions, the native state of globular
protein is dominated by a relatively well-defined conformation.
The stability of this conformation is ensured by a large number
of non-covalent interactions. Although the energy of individual
interactions is small, comparable to the thermal energy of one
degree of freedom, interactions can have a significant
contribution to stability when they act cooperatively.
Furthermore, the prevention of large-scale motions requires
long-range interactions, which cross-link regions far apart in
the sequence. These simple arguments highlight the impor-
tance of cooperative long-range interactions in ensuring the
kinetic stability of proteins. Residues involved in these clusters
have been shown to have a primary effect on the rate of
spontaneous unfolding due to thermal fluctuation (15). It is
clear that identifying these residue clusters would greatly
enhance our understanding of stabilizing factors of proteins.

The concept of stabilization centers

We suggested an algorithm to select a subset of residues from
known protein structures, which have the desired property of
stabilizing interaction (i.e. they are involved in forming
cooperative long-range interactions). These clusters, called
stabilization centers, were defined in the following way. Two
residues are part of a stabilization center if (i) they are involved
in long range interactions (i.e. they are at least 10 residues
apart in the primary structure and have at least one pair of non-
hydrogen atoms which are closer than the sum of their van der
Waals radii plus 1.0 Å) and (ii) two supporting residues can be
selected from both of their flanking tetrapeptides, which
together with the central residues form at least seven out of the
possible nine contacts (16). The importance of residues
involved in these contacts is reflected in their higher
evolutionary conservation compared to the rest of the
sequence. Some special roles played by stabilization centers
in the structural stability of proteins has been reported for
MHC proteins (17) and for the class of four helix bundle
proteins (18).

Locating stabilization center residues in
proteins of known structure

The SCIDE server is devoted to the analysis of stabilization
centers in known protein structures (19). The server takes a
PDB coordinate file as an input—either specified by its PDB
code or uploaded as a file—and locates the residues involved
in stabilization centers. The analysis can be narrowed down to
regions specified by the user but stabilization centers formed
between different chains can be studied as well. This latter
approach is especially important when a protein chain is not
stable on its own but only by acquiring extra stability through
interactions with other chains. The result is presented in text or
graphical format. The text output returns the sequence of a
protein indicating residues involved in stabilization centers.
The graphical output shows the image of the contact map of
the protein, highlighting the stabilization centers among other
inter-residue interactions. Clicking to stabilization centers
brings up a detail of the contact map, highlighting which
contacts contribute to the formation of the given stabilization
center. The graphical output is useful for investigating protein
structures in detail, while the text output can be used for
automated analysis of larger datasets. This program is available
at http://www.enzim.hu/scide (Table 1).

Predicting stabilization center residues
from amino acid sequences

The information about positions in sequence, which are likely
to be involved in long-range contacts, can aid structure
predictions. For example, low energy structures of small
protein segments can easily be calculated by conformational
energy minimization but putting the pieces of the puzzle
together requires additional information on long range
interactions (6,20,21). Another possible application involves
protein engineering. It was suggested that amino acid
replacements in these centers could significantly influence
protein stability (22). For these and similar purposes a
method was developed to predict residues of stabilization
centers from amino acid sequences alone. The algorithm is
based on our finding that the sequential neighborhood of
residues involved in stabilization centers was different from
residues not involved in stabilization centers. Although
involvement in stabilization center refers to a global property
of proteins, some information is also stored locally in
agreement with the minimal frustration theory of proteins
(23). Based on the difference in sequential neighborhood, an
artificial neural network was trained to recognize the location
of probable stabilization center residues from the sequence. It
takes a 17 residue-long segment and predicts whether the

Table 1. Name and internet address of servers

Server Url

CYSREDOX http://alto.rockefeller.edu/cysredox/cysredox.html
SCIDE http://www.enzim.hu/scide
SCPRED http://www.enzim.hu/scpred
DAS http://www.sbc.su.se/~miklos/DAS
HMMTOP http://www.enzim.hu/hmmtop
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central residue is involved in stabilization center or not.
Using a single sequence as an input, the accuracy of the
prediction was 65%, which improved marginally using
multiple alignments (68%) (16). The SCPRED server is
available at http://www.enzim.hu/scpred (Table 1).

PREDICTION METHODS CONCERNING
INTEGRAL MEMBRANE PROTEINS

Integral membrane proteins play a central role in material and
information exchange between the cell and the outside world
including the adjacent cells of the living organism. Therefore,
these proteins are the primary targets of many basic research
and pharmaceutical studies. Since it is extremely difficult to
crystallize these proteins and they are much too big for NMR
structure determination, theoretical approaches for obtaining
structural information about these proteins are especially
important. Several methods have been developed to predict
the location of the transmembrane segments in the primary
structure of proteins and the orientation of these segments, that
is the topology from the amino acid sequences (reviewed in 24
and 25). Since the membrane interior is rather hydrophobic and
contains no proton donor or acceptor, the transmembrane
segments of the polypeptide chain should be composed mainly
of hydrophobic residues. In order to minimize the free energy
of the protein–membrane system, regions interacting with the
membrane interior are dictated to form alpha helical or beta-
barrel structures, which ensures that all proton donors and
acceptors are fully satisfied in hydrogen bonds. So far, beta
barrel structures have been found only in bacterial outer
membrane (26), while the overwhelming majority of the
transmembrane segments form alpha helices.

Transmembrane segments can be identified on the bases of
the hydrophobic residue content above the average (27) but
this simple method is rather inaccurate. A more accurate
method can be obtained based on the observation that all
transmembrane segments recognize each other as related ones
in the course of sequence alignment (28).

The DAS and DAS-TMfilter algorithms of
transmembrane segment predictions

The DAS (‘Dense Alignment Surface’) method is based on the
very traditional dot-plot of a query sequence against a well-
characterized reference. The algorithm differs from the original
method in three important aspects. The various segments of the
two sequences are compared and the stringency score is
calculated in a sliding window. Scores exceeding a certain
value are marked on the alignment surface as hits. In the DAS
algorithm, this limit is set to very low level resulting in
thousands of hits all over the surface. However, the distribution
of the hits on the surface is not random but follows a
characteristic ‘chess-board’ like pattern—due to our special
substitution matrix (29). If the two sequences in question are
transmembrane proteins, the hits are concentrated in the areas
at the intersections of the transmembrane segment positions.
The evaluation of the alignment surface is the third unique
aspect of the DAS algorithm. The surface is scanned for hits at
each position of the query along the reference sequence and
the score is summed. This procedure converts the surface to

a profile projecting it to the query axis. As the hits are
concentrated around the transmembrane segments, these parts
are represented by high values in the resulting profile. In the
prediction procedure, the segments above an empirical limit
are identified as helical transmembrane fragments. Please note:
the endpoints of the segments do not correspond to the points
where the protein enters into the membrane. The experimental
database is not sufficiently accurate to verify this kind of
prediction. The efficiency of the method in terms of number of
correctly predicted transmembrane segments is >90% (25).

The public server implementing the DAS algorithm is
available at http://www.sbc.su.se/~miklos/DAS/ (Table 1). The
server takes an input sequence as the query and runs it against
the library of 44 experimentally documented transmembrane
sequences. It returns the average profile of the query profiles of
the individual runs and lists the segments above the empirical
limit as possible transmembrane locations (30).

Recently, it became obvious that while the most advanced
transmembrane prediction methods perform with a success rate
>90% for integral helical proteins, they tend to incorrectly
identify other hydrophobic clusters in globular proteins as
‘transmembrane segments’. It was shown that even the best
transmembrane prediction methods falsely identify at least one
transmembrane segment in >25% of the non-transmembrane
protein sequences (31,32). Since servers often used to ana-
lyze rough genetic sequence data, we upgraded the DAS
algorithm to be able to filter out false positive transmembrane
segment results. This modified DAS-TMfilter method per-
forms a DAS prediction first: runs the query against the
updated TM-sequence library of well-documented TM-
proteins. In the second step the query is used in a ‘reverse
prediction’ cycle as ‘reference’ sequence and a set of known
TM-proteins tested for TM-regions. True TM-proteins perform
well in this test (i.e. most of the known TM-segments are
detected) while these segments are missed when the set is
tested with a globular sequence. This even happens if the
globular sequence contains a false positive TM-segment
prediction. In that case, the original DAS prediction is
overruled and the sequence is identified as globular (33).

The HMMTOP server

Another transmembrane segment and topology prediction
method developed in our laboratory is the HMMTOP method
(34). This prediction method is based on the principle that
the topology of the transmembrane proteins is determined by
the maximum divergence of amino acid composition of seq-
uence segments. These segments are located in different areas
of the cell, for example in the membrane interior, in the
membrane border areas, in the cytosol or in the extra-cytosolic
space. The physicochemical properties of the cell within these
compartments are different, therefore the amino acid composi-
tion of polypeptide segments passing through these areas
has to be different. These amino acid compositions should
differ the most—according to the maximum-likelihood law—
considering all possible segmentations of a given sequence.
This segmentation can be found by probabilistic methods,
such as hidden Markov models (HMM). Because HMM is
applied as an optimization method, there is no need to teach the
model, and the parameters are independent of the available
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databases. The optimization performed by the Baum–Welch
algorithm provides the model parameters, which in turn can be
used by the Viterbi algorithm to find the most probable
segmentation of a sequence resulting in the topology prediction.

The improved version of HMMTOP program can take into
account preliminary experimental information or any other
knowledge about the topology as conditional probabilities (35).
It is worth emphasizing that this method solves the segmenta-
tion problem (mentioned above) using conditional probability,
to assess whether a certain sequence is located in a certain
segment, which in turn can affect the predicted topology of
other parts of the protein sequence. This means that the number,
position and orientation of the transmembrane helices can
change according to the given condition. According to our
knowledge, this new version of HMMTOP is the first method
that can incorporate this type of conditions in a prediction.

The segment accuracy of HMMTOP 2.0 was >97% on a
dataset (36) containing 148 transmembrane proteins, while the
accuracy of transmembrane helix and topology prediction at
the protein level was 90% and 73%, respectively (35).
HMMTOP is freely available to non-commercial users at
http://www.enzim.hu/hmmtop (Table 1). Source code is
available upon request to academic users. The web server
can handle both ‘post’ and ‘get’ http requests, allowing
external linking to prediction results. The server accepts
sequence as plain text or in fasta and NBRF/PIR format. There
are two submission forms, one for doing simple prediction on
one sequence, and one for advanced users, where various
options can be given to the server. The output format can be
varied as well, from a very simple one line description of
topology and transmembrane helices to a detailed output
containing the full sequence(s), as well as the parameters of the
HMM used for the prediction.

ALGORITHMS—USE NOT ONLY AS DIRECTED

The obvious field of application of the algorithms discussed in
this paper is analyzing and predicting redox states of Cys
residues, as well as residues composing stabilization centers
and transmembrane helices. However, these algorithms can be
applied in non-conventional ways, too. The different results of
cysteine/half-cysteine and of redox state prediction methods
triggered the proposed mechanism for prion protein polymeri-
zation (37). The analysis of stabilization center residues led
to the proposed model of divergent evolution of certain
restriction endonucleases (38). The application of transmem-
brane prediction methods in the structural study of a non-
transmembrane protein, prion, led to our proposal that the very
special structure feature of this protein is the consequence of
its putative transmembrane origin (32). Therefore, we would
like to encourage the potential users to apply these algorithms
and servers in a wide area of research.
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