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ABSTRACT

Whole-genome microarrays with large-insert clones
designed to determine DNA copy number often
show variation in hybridization intensity that is
related to the genomic position of the clones. We
found these ‘genomic waves’ to be present in
Illumina and Affymetrix SNP genotyping arrays, con-
firming that they are not platform-specific. The
causes of genomic waves are not well-understood,
and they may prevent accurate inference of copy
number variations (CNVs). By measuring DNA con-
centration for 1444 samples and by genotyping the
same sample multiple times with varying DNA quan-
tity, we demonstrated that DNA quantity correlates
with the magnitude of waves. We further showed
that wavy signal patterns correlate best with GC
content, among multiple genomic features consid-
ered. To measure the magnitude of waves, we pro-
posed a GC-wave factor (GCWF) measure, which
is a reliable predictor of DNA quantity (correlation
coefficient = 0.994 based on samples with serial dilu-
tion). Finally, we developed a computational app-
roach by fitting regression models with GC content
included as a predictor variable, and we show that
this approach improves the accuracy of CNV detec-
tion. With the wide application of whole-genome
SNP genotyping techniques, our wave adjustment
method will be important for taking full advantage
of genotyped samples for CNV analysis.

INTRODUCTION

Many genomics applications involve examination of
signal intensity patterns of probes across the genome,
and make inference on the gains and losses of genomic

elements from examination of these signal intensities at
different chromosome regions. These probes vary greatly
in size, ranging from hundreds of kilobases for traditional
BAC clone-based array-CGH experiments, to dozens of
base pairs for oligonucleotide arrays and high-density
single nucleotide polymorphism (SNP) genotyping arrays
(1). Typically, a signal intensity measure is calculated for
each probe or each probe set, and these intensity values
are used to make inference on gains or losses of genomic
segments. Various data normalization techniques have
been developed to better summarize the intensity values
between markers and between experiments, and to accu-
rately capture genomic gains and losses, commonly
referred to as copy number variations (CNVs) (2,3).
Recently, with the increasing application of high-resolu-

tion CNV detection methods, a genome-wide spatial auto-
correlation or ‘wave’ pattern in signal intensity data was
described that interferes with accurate CNVdetection (4).
We use the term ‘genomic wave’ to refer to these patterns
of signal intensities across all chromosomes, where differ-
ent samples may show highly variable magnitude of wavi-
ness. This phenomenon has been observed before (5), but
the first formal description appeared recently for CNV
analysis using an array-CGH platform (4). Marioni
et al. (4) described the presence of genomic waves in
their Whole-Genome Tiling Path arrays used for CNV
detection, and demonstrated that the wavy patterns they
observed appeared to be a ‘general feature of aCGH data
sets’. They developed a method based on Lowess regres-
sion to ‘break’ the waves and improve CNV calling.
Furthermore, Komura et al. (6) also described the wavy
patterns in signal intensities of Affymetrix arrays, and they
reduce the signal noise by incorporating probe and target
sequence characteristics in the Genomic Imbalance Map
(GIM) algorithm. Nannya et al. (7) has also described
similar phenomenon in CNV studies on cancer genome
by the Affymetrix SNP arrays, and this effect was adjusted
by the length and GC content of the PCR products using
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quadratic regressions, for the purpose of compensation for
different PCR conditions.
Besides array-CGH platforms, other CNV detection

platforms of similar nature may also be susceptible to
genomic waves. In our genotyping experiments using the
Illumina HumanHap550 arrays, we have observed
obvious genomic waves in many batches of samples. In
our studies, even for DNA samples available from com-
mercial cell line repositories, typically �10% show strong
wavy patterns that are visually discernable in the
BeadStudio software (Illumina Inc., San Deigo, CA,
USA). The presence of genomic waves may adversely
affect the performance of CNV calling algorithms and
can result in inflated false positive calls. It is of great
interest to perform a comprehensive analysis of signal
intensity patterns across several SNP genotyping plat-
forms, investigate the causes of genomic waves and find
ways to reduce these waves from both experimental and
computational perspectives.
In the current study, we first perform a comparative

analysis of genomic wave artifacts in several different
high-density SNP genotyping arrays, and confirm that
genomic waves are not a platform-specific phenomenon.
Next, we perform exploratory analysis of local genomic
features (such as GC content, gene content and segmental
duplication patterns), to find potential genomic features
that correlate with genomic waves. We investigate the
technical cause of waves by examining potential DNA
degradation or protein contamination, and by performing
serial dilutions from the same sample to assess the impact
of DNA quantity. These experiments allowed us to iden-
tify the property of DNA samples that leads to genomic
waves and to find ways to reduce genomic waves in the
experimental protocol. Finally, we present a method to
computationally reduce the effects of genomic waves and
show that this approach reduces the wavy patterns of
signal intensities and improves the accuracy of CNV
detection.

METHODS

Genotyping procedure

All DNA samples genotyped using the Illumina BeadChip
are part of an ongoing genome-wide association study
in neuroblastoma and satisfied stringent quality control
as described elsewhere (8). Genotyping was performed
using the Illumina InfiniumTM II HumanHap550
BeadChip (Illumina, San Diego, CA, USA) according to
methods detailed elsewhere (9,10). All DNA samples were
surveyed for quality both by optical density spectropho-
tometry and the pico-green assay, and samples judged to
be of sufficient quality for genotyping were assayed at the
Center for Applied Genomics, the Children’s Hospital of
Philadelphia. The genotyping signal intensity data for
Illumina HumanHap1M arrays and Affymetrix Mapping
500K arrays were generated on HapMap individuals, and
were acquired from Illumina Inc. and Affymetrix Inc.,
respectively. The genotyping signal intensity data for
Affymetrix genome-wide 6.0 arrays were generated from
an internal control collection recruited at Children’s

Hospital of Philadelphia. For the serial dilution experi-
ment, varying quantities of DNA (187.5, 375, 750, 1500
and 2250 ng) from an anonymous individual were used for
genotyping by the Illumina HumanHap550 array.

Derivation of Log R Ratio as signal intensity measure

The Log R Ratio (LRR) value is originally developed on
the Illumina platform as a normalized signal intensity
measure (11). For each SNP, let the signal intensities for
the A and B alleles be denoted as X and Y, respectively.
We can then calculate the R-value as Robserved=X+Y.
As a normalized measure of total signal intensity, LRR is
then calculated as log2(Robserved/Rexpected), where Rexpected

is computed from linear interpolation of the canonical
genotype clusters (11). For the Illumina SNP arrays,
the LRR values can be directly calculated and exported
from the BeadStudio software. For the Affymetrix plat-
form, we first extract allele-specific signal intensity values
(X and Y) by the Affymetrix Power Tools (http://www.af
fymetrix.com/support/developer/powertools/index.affx),
then construct the canonical genotype clusters using
all genotyped samples and calculate the LRR values.
The Affymetrix genome-wide 6.0 and the Illumina
HumanHap1M arrays contain nonpolymorphic markers
to improve genome coverage. For each nonpolymorphic
marker in each sample, we take the median value of all
samples as the Rexpected value for computing the LRR
values.

Analysis of genomic features

We used a nonoverlapping window approach to test
whether the median signal intensity values within each
window correlate with particular genomic features, includ-
ing GC percentage, segmental duplication, gene content,
exon content, simple repeat and conserved genomic region.
All these features are annotated in the UCSC Genome
Browser annotation databases (12,13). The GC percentage
data was retrieved from the gc5Base table, the segmental
duplication data was retrieved from the
genomicSuperDups table, the gene content annotation
was retrieved from the refGene table, the exon annotation
was also retrieved from the refGene table, the simple repeat
annotation was retrieved from the simpleRepeat table and
the most conserved genomic region annotation was
retrieved from the phastConsElements28way table. We
sectioned the genome into 10 kb, 100 kb or 1Mb nonover-
lapping windows; for each window, we calculated the frac-
tion of bases that fall within the annotated regions for each
of the genomic features. Windows with less than three
SNPs were excluded from analysis. We then calculated
the correlation coefficient between the median LRR
values and the fraction of annotated bases within each
window across the genome.

Derivation of wave factor and GC-wave factor

To quantify the magnitude of signal fluctuation of geno-
typed samples, it is necessary to develop a summary mea-
sure of waviness. This measure should not be susceptible
to the presence of CNVs (which generate extreme values in
the signal intensity measures), and should be comparable
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between different cohorts, or even arrays with different
density of markers (for example, the Illumina
HumanHap300, HumanHap550 and HumanHap1M
arrays). We have developed a score called wave factor
(WF) that is based on median absolute deviation of
signal intensities. We calculate the median signal intensity
values (normalized signal intensity as LRR value) for
every 1Mb nonoverlapping window in the genome and
denote them as Yi (i=1 to �3000 for human genome).
The windows containing less than 10 SNPs were excluded
from the calculation. We then compute the correlation
between median signal intensity and local GC content in
all windows, and denote this value as rGC. In this study,
rGC is calculated using all windows on chromosome 11.
The WF score is defined as

SWF ¼ ð1� 2� IfrGC<0gÞ �median ðjYi �median ðYiÞjÞ

The first part of the equation is used to assign the sign of
the SWF, to help differentiate waves of different direction-
ality. The second part involves a median absolute devia-
tion calculation, which is a similar measure to the
commonly used average absolute deviation but is less
affected by extreme values in the tail. Therefore, even in
the presence of large CNVs in a genotyped sample, the
effects on WF score will be reduced or eliminated since
these regions are represented in the tail of the distribution.

The variability of signal intensity within each particular
sample could be due to multiple reasons, and GC content
may only explain partial variability of the WF. To quan-
tify the signal fluctuation that can be attributed to the
local GC content, we developed another measure called
GC-wave factor (GCWF). This measure is simply the pro-
duct of WF value and the absolute values of rGC:

SGCWF ¼ SWF � jrGCj

Intuitively, the WF and GCWF measures can be under-
stood in this way: the WF function as a proxy for total
signal fluctuation, but is more resilient to outliers than the
standard deviation measure. The square of rGC can be
considered as the fraction of variance explained by local
GC content. Therefore, the GCWF score is a summary
measure of the signal fluctuation explained by local GC
content.

Regression model for signal adjustments

We developed a simple statistical method to adjust signal
intensity values at each marker for samples affected
by genomic waves. Unlike ‘smoothing’ based regression
methods that try to borrow information from neighboring
markers in the adjustment, our method adjusts each
marker separately regardless of the signal intensities at
neighboring markers, therefore eliminating concerns on
smoothing out true CNV boundaries. Suppose there are
M (for example, M=�550K for Illumina HumanHap550
array) markers in a genotyped sample, we collect all the m
autosome markers that are at least 1Mb away from each
other (for example, m=�3K for Illumina HumanHap550
array). This method reduces the number of response vari-
ables in regression model, and eliminates the potential
dependence between markers due to colocalization in

the same genomic region. For each of the m markers,
we collect its LRR value as Lj (j=1, . . ., m) and the aver-
age GC percentage in the 1 Mb window around the
marker, then fit a linear regression model:

Lj ¼ �þ �� Gj þ "j

where the model parameters � and � are estimated by the
least-squares method. To reduce the effect of markers
within CNV regions on the regression coefficients, we
restricted the analysis to markers with LRR between �2
and 1. After obtaining these estimated regression param-
eters, for each of the M marker in the genotyping array,
we then calculate the expected signal intensity value based
on the GC percentage in the 1Mb window around the
marker. The adjusted signal intensity value is then
simply calculated as the observed LRR value minus the
expected value (residual in the regression model). The pro-
cedures for signal adjustment are implemented in the
PennCNV package, available at http://www.openbioinfo
rmatics.org/penncnv. The adjustment procedure is avail-
able as a stand-alone application that can be used outside
of PennCNV, and has also been incorporated directly into
the CNV calling procedure within PennCNV.

Quantitative PCR for CNV validation

The copy numbers of six CNV regions were examined by
real-time quantitative PCR (Q-PCR) in 48 samples on the
ABI Prism 7900HT system (Applied Biosystems, Foster
City, CA, USA) using SYBR Green Dye. The primer
pairs were designed using PrimerExpress2.0 software
(sequences available upon request). The endogenous con-
trol was designed to target the DEC2 gene in chromosome
12, avoiding any known structural variations including
CNVs. The ��Ct method (User Bulletin #2 for ABI
Prism 7700 Sequence Detection System; Applied
Biosystems) was employed to quantify the genomic copy
numbers by setting a normal number at two copies. For all
CNV regions and for all samples, the quantitative copy
number estimates by Q-PCR are 1.0E-6 to 3.8E-4 for zero
copy genomic regions, 0.79–1.33 for one copy, 1.58–2.52
for two copies, 2.63–3.36 for three copies, 3.62–4.72 for
four copies, therefore implicating the high accuracy of
Q-PCR for CNV validation.

RESULTS

The presence of genomic waves in SNP genotyping
platforms

To examine whether wavy patterns of signal intensities
exist in different types of SNP genotyping platforms, we
analyzed the intensity data for the Affymetrix Mapping
500K array, Affymetrix genome-wide 6.0 array, and the
Illumina HumanHap550 and HumanHap1M arrays (see
Methods section). We examined the LRR value, which is
a normalized signal intensity measure originally developed
for the Illumina platform (11), but we note that it can
be adapted to the Affymetrix platform as well
(see Methods section). The LRR value for a probe is a
measure of the difference between the signal intensity of
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the test sample and a pool of reference samples of the
same SNP genotype. This measure is a preferred signal
intensity summarization measure for CNV detection,
since it greatly reduces the signal variability between dif-
ferent markers.
For each SNP array, we selected one example with

strong waves and displayed their signal intensities on chro-
mosome 11, where the wavy patterns are especially easy to
discern visually (Figure 1). Although, different samples
were selected from each platform, when we compared
the four arrays, we found the waves had similar periods
and phases at similar genomic regions, indicating that
regions with inflated or deflated signal intensities in one
array are likely to show similar patterns in other arrays.
However, the directionality of the magnitude of waves can
be identical or opposite between arrays, that is, the waves
can be either ‘in phase’ or ‘of opposite phase’ with each
other: we specifically selected examples where the peaks of
one Illumina (or Affymetrix) array correspond to troughs
of another Illumina (or Affymetrix) array. In addition,
the magnitude of waves can be different between diffe-
rent genotyped samples: for example, the sample in
Figure 1D showed more obvious wave patterns than
other genotyped samples.
For the four genotyped samples in Figure 1, we calcu-

lated their pairwise correlation coefficients of median LRR

values in 1Mb nonoverlapping windows of autosomes
(Supplementary Table 1). The absolute values of these
correlations range from 0.73–0.91, further demonstrating
that the locations of peaks and troughs in signal intensity
are consistent across arrays. Therefore, the presence
of genomic waves is unlikely to be an artifact caused by
probe hybridization or data normalization specific for
each particular SNP genotyping platform. It is of interest
to investigate what genomic features correlate with the
peaks and troughs of the waves.

Correlation of local genomic features with signal intensity

Since different SNP genotyping arrays show the same
phase and period of genomic waves, we assume that cer-
tain local genomic features may determine the magnitude
of waves in local genomic regions. Previous studies in
array-CGH platforms and Affymetrix SNP genotyping
platforms suggested correlation between intensity of the
clones/probes and the local GC content (4,6). However,
GC content is correlated with many genomic features, and
these features have not been investigated to find the most
likely predictor of waves.

To investigate the relationships between variations in
several local genomic features and variation in local
signal intensities, we randomly chose two samples with

Figure 1. Genomic wave is not platform-specific. An illustration of four representative examples showing the LRR values for chromosome 11 in the
Affymetrix 250K NSP (from Affymetrix Mapping 500K array sets) and genome-wide 6.0 arrays, as well as the Illumina HumanHap550 and
HumanHap1M arrays. Four different DNA samples were genotyped by these four arrays. In all cases, we observe similar shapes of wavy patterns
with identical or opposite peaks and troughs. This indicates that genomic wave is an intrinsic property of the human genome, regardless of the
technical platforms.
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opposite direction of genomic wave (Figure 2A and E,
Table 1). We generated nonoverlapping windows across
the entire genome, and calculated the median signal inten-
sity in each of these windows. We then calculated the
correlation coefficient of median signal intensities for
each window with multiple genomic features in the same
window, including the fraction of GC content, the fraction
of bases with segmental duplication (14), the fraction of
bases within RefSeq transcripts (15), the fraction of bases
within exons of RefSeq transcripts (15), the fraction of
bases within simple repeat region (16) and the fraction
of bases within most conserved genomic regions in
28-way vertebrate multiple alignments (17). The analysis
was repeated with a window size of 10, 100 kb and 1Mb,
respectively. Among all genomic features we examined, we
found that local GC content is the most correlated factor
with median signal intensities. In addition, for both sam-
ples, the magnitude of correlation between signal intensity
and GC content increases for larger window sizes
(Figure 2B–D and F–G). To further illustrate the correla-
tion of the signal intensity values and the six genomic
features in 1Mb windows, we plotted the values along
a representative chromosome for the two samples, and
demonstrated the clear correspondence of peaks and
troughs between signal intensity and GC content
(Figure 3). Finally, we plotted the signal intensity values
and GC content in 1Mb windows in the entire genome,
and demonstrated a consistent pattern of correspondence
across all chromosomes (Supplementary Figure 1).
Altogether, our analysis indicates that local GC content
is the best predictor of the magnitude of local genomic
waves among the features we evaluated. To distinguish
the directionality of wavy patterns in different samples,
we refer to waves that have positive correlation with GC
as positive waves (Figure 2A) and those with negative
correlation as negative waves (Figure 2E).

Quantifying the magnitude of genomic waves

Since different DNA samples demonstrate varying magni-
tude of waviness, we have developed two quantitative
measures to summarize the signal fluctuation patterns
for genotyped samples. The first measure, called WF, sum-
marizes the total signal fluctuation of a genotyped sample
across the genome (see Methods section). The second mea-
sure, called GCWF, specifically summarizes the fraction of
signal fluctuation that correlates with patterns of GC dis-
tribution. Since signal fluctuation can be caused by many
factors, including genotyping array defects, presence of
large CNVs, cell-line induced rearrangements and local
GC content, the GCWF measure effectively measure the
fraction of signal fluctuation that can be explained by
genome-wide patterns of GC distribution. Both the WF
and GCWF use the median absolute deviation of signal
intensities, and therefore are less affected by the presence
of extreme values (such as those within CNVs) than
a standard deviation measure. The WF for samples in
Figure 2A and Figure 2E are �0.09 and 0.05, respectively,
while the GCWF for them are �0.09 and 0.04, respec-
tively. These measures are applicable to many different
types of arrays that measure signal intensities across

genome, including array-CGH, SNP genotyping arrays
and whole-genome oligonucleotide arrays. Since the mag-
nitude of genomic waves is highly correlated with GC
content, we utilize the GCWF in our subsequent analyses.

The quantity of DNA causes genomic waves

The presence of positive or negative waves with different
magnitudes in different genotyped samples indicates that
the directionality of waves reflect certain sample proper-
ties. An intuitive explanation is that the LRR is calculated
using a fixed set of reference samples, so the wave pattern
is a reflection of how similar a given testing sample is
to the pool of reference samples. Different directions of
signal deviation from population mean result in different
directions of waves due to the signal normalization proce-
dure. It is therefore interesting to test what property of
DNA samples correlate with the magnitude of wavy
patterns.
We initially suspected that DNA quality, such as DNA

degradation or protein contamination, could be a direct
cause of genomic waves, since strong waves are less fre-
quently observed for DNA samples purchased from stan-
dardized cell line repositories than for DNA extracted
from patient samples. Using a set of 1444 DNA samples
genotyped by the Illumina HumanHap550 arrays, we
investigated the relationship between DNA quality and
the magnitude of waves. We first calculated the GCWF
for each of the 1444 DNA samples. Figure 4A illustrates
that DNA purity, as estimated by the 260/280 ratio of
DNA samples, does not correlate with GCWF. To inves-
tigate the possibility of DNA degradation affecting wavi-
ness, we performed an electrophoresis assay (Figure 4B)
on a representative set of 18 cases, including six with little
genomic wave, six with strong positive waves and six with
strong negative waves. We did not observe evidence of
increased DNA degradation for samples with positive or
negative waves (examples of gel patterns for degraded
DNA samples were given in Supplementary Figure 2).
We next investigated whether the quantity of DNA is

the predominant factor in generating genomic waves. For
the Illumina Infinium assay, the recommended DNA
quantity for each sample is 750 ng; however, in many
large studies, variable concentrations of DNA are typi-
cally available for different samples, and it is generally
difficult to control DNA quantity for all genotyped sam-
ples accurately. We compared the GCWF for each of the
1444 DNA samples described above with the total quan-
tity of DNA hybridized as estimated from available pico-
green DNA concentration measurements (Figure 4C). We
observed a positive correlation between DNA quantity
and waviness (Pearson correlation coefficient=0.4371).
To test this effect more directly, we performed a serial

dilution experiment and genotyped the same subject on
the HumanHap550 array using five different DNA quan-
tities (187.5, 375, 750, 1500 and 2250 ng; Figure 4D). This
anonymous subject is chosen since we had sufficiently
large amounts of DNA extracted from the same batch
of whole blood without whole-genome amplification.
We found that when DNA quantity is low (for example,
187.5 ng), the LRR values show patterns of positive
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Figure 2. Genomic wave is correlated with GC content. Analysis of the correlation between GC percentage and median values of LRR in
nonoverlapping windows across the genome, using 10, 100 kb and 1Mb window sizes, respectively. (A) A sample genotyped by the Illumina
HumanHap550 array is chosen and the signal pattern on chromosome 11 is shown. (B–D) We observe increasingly higher correlations between
these two measures with larger sliding window sizes. The correlation coefficients for panels (B)–(D) are 0.70, 0.85 and 0.96, respectively. (E) A sample
genotyped by the Illumina HumanHap550 array that has opposite peaks and troughs as (A) is chosen and the signal pattern on chromosome 11 is
shown. (F–G) We observe increasingly higher correlations between these two measures with larger sliding window sizes.
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waves; conversely, when DNA quantity is high (for exam-
ple, 2250 ng), the LRR values show patterns of negative
waves (Figure 5A). The GCWF values for the five samples
with increasing DNA quantity are �0.044, �0.018, 0,
0.012 and 0.023, respectively, reflecting the direction and

magnitude of signal fluctuation for each sample. The cor-
relation between GCWF and DNA quantity (logarithm
scale) is 0.994, indicating that GCWF is a reliable measure
of the DNA quantity, which is usually not well controlled
in genotyping experiments.

Adjustment of signal intensity reduces genomic waves

The presence of strong genomic waves creates artificial
gains and losses in signal intensities for SNP genotyping
arrays, and may lead to spurious CNV calls. To reduce the
effect of genomic waves on accurate CNV inference, we
developed a regression model to correct and adjust for
genomic waves (see Methods section). The essence of
our adjustment approach lies in building a regression
model for each genotyped sample that correlates the
signal intensity at a given marker with GC content
within a 1Mb window centered around the marker, and
then calculating the residual for each marker in the array
as the adjusted signal intensity. This signal adjustment
method does not require a training data set for model
construction, and can be applied to many different tech-
nical platforms.
To demonstrate the effectiveness of our signal adjust-

ment procedure in reducing genomic waves, we examined
the GCWF values for the 1444 genotyped samples before
and after signal adjustment. The distribution of GCWF
values after adjustment was much tighter around zero,
indicating overall lower magnitude of positive and nega-
tive waves (Supplementary Figure 3). Before adjustment,
the 5th and 95th percentile of GCWF values were �0.0869
and 0.0770, respectively; after adjustment these measures
narrowed to �0.0062 and 0.0157. To give some concrete
examples, we plotted the signal intensity patterns after
wave adjustment for the two samples used in Figure 2,
indicating that genomic waves are reduced for both sam-
ples with positive and negative waves (Supplementary
Figure 4).
To investigate whether our wave adjustment procedure

works on other types of arrays, we examined the GCWF
values for 270HapMap samples genotyped by the
Affymetrix genome-wide 6.0 arrays. Before adjustment,
the 5th and 95th percentile of GCWF values were
�0.011 and 0.010, respectively. These HapMap samples
do not show strong wavy patterns, since their signal inten-
sities were normalized against a reference clustering file

Table 1. Correlation of wave with genomic features

Genomic features Sample 1 Sample 2

10 kb window 100 kb window 1Mb window 10 kb window 100 kb window 1Mb window

GC percentage 0.70 0.85 0.96 �0.47 �0.69 �0.89
Segmental duplication 0.03 0.06 0.17 �0.02 �0.05 �0.17
Gene content 0.07 0.13 0.34 �0.03 �0.09 �0.31
Exon content 0.12 0.36 0.62 �0.09 �0.29 �0.62
Simple repeats 0.18 0.21 0.19 �0.12 �0.23 �0.27
Conserved region 0.04 0.16 0.26 �0.01 �0.12 �0.24

The list of correlation coefficients between median LRR values and several genomic features within nonoverlapping windows. Three different window
sizes, including 10, 100 kb and 1Mb, are examined. Two representative samples with opposite phases are included. The local GC content appears to
be best correlated with median signal intensity in sliding windows of varying sizes.

Figure 3. The signal intensity is highly correlated with GC content in
sliding windows in chromosome 11. The median LRR values for 1Mb
sliding windows in two samples (one with negative wave and one with
positive wave) are plotted against several genomic features, including
GC content, segmental duplication, gene content, exon content, simple
repeats and conserved region.
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constructed from themselves. Nevertheless, after adjust-
ment, these measures narrowed to �0.0046 and 0.005,
respectively. Therefore, the wave adjustment procedure
can be applied to different technical platforms.
Since Lowess regression has been previously used to

reduce genomic waves in array-CGH platforms (4), we
investigated its application to SNP genotyping arrays.
The method relies on correlating signals from neighboring
markers and smoothes the signal intensities continuously

along the chromosome. Unlike array-CGH studies, where
each CNV may be represented by one or very few clones
(probes), the SNP genotyping arrays may reveal CNVs
covered by a few SNPs or many hundreds of SNPs.
Therefore, the smoothing procedure may not work well
for CNVs that are of vastly different sizes. To demonstrate
this, we applied Lowess regression with several different
window sizes on two samples affected by strong genomic
waves (Supplementary Figures 5 and 6). When smaller

Figure 4. Genomic wave is correlated with DNA quantity, but not quality. (A) Plot of GCWF measure against 260/280 ratio for DNA of 1444
neuroblastoma patients (Pearson correlation coefficient=0.0918). (B) Gel electrophoresis assay for 750 ng DNA from 18 genotyped samples (six
without waves, six with positive waves and six with negative waves) shows no evidence of DNA degradation, which would appear as smears rather
than clear bands (see Supplementary Figure 2 for examples). The largest size marker for the 100-bp ladder lane is 2072 bp, while the largest size
marker for the 1-kb ladder lane is 12 kb. (C) Plot of GCWF against total quantity of DNA for 1444 samples (Pearson correlation coeffi-
cient=0.4371). Samples with an initial estimated concentration> 100 ng/ml were diluted to 75 ng/ml, explaining the clustering at 1125 ng. (D) Plot
of DNA quantity versus GCWF for serial dilutions of DNA from a single sample.
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window sizes are used in the Lowess regression, the wavy
patterns in signals are successfully eliminated, but the true
CNV also disappears from the adjusted signal intensities.
When a larger window size is used, the decreased signal

intensity in the CNV region is preserved, however, the
wave adjustment no longer works well. Therefore our
signal adjustment procedure, which operates on each
SNP independent of signals in neighboring SNPs, is
better suited for SNP genotyping platforms.

Signal intensity adjustment improves CNV detection

To demonstrate that wave adjustment leads to improved
CNV detection, we analyzed a recently genotyped three-
generation pedigree with 51 individuals (Supplementary
Figure 7). The DNA were extracted from fibroblast cell
lines, and were then subject to Illumina HumanHap550
arrays without appropriate dilution to ensure optimal
DNA quantity used in genotyping. As a result, a large
fraction of the samples show visually discernable genomic
waves and this hinders accurate CNV inference. Excluding
the three samples that failed genotyping, for the remaining
48 samples, the GCWF values range from �0.09 to 0.01,
with interquantile range of �0.05 to �0.02. After signal
adjustment, all samples have GCWF values between
�0.004 and 0.004, with interquantile range of �0.002 to
0.001, suggesting effective elimination of wavy patterns in
these samples by our wave adjustment procedure.
One major concern on the wave adjustment is that gen-

uine CNVs may be abolished by the procedure that
attempts to flatten wavy signal patterns across the
genome. To investigate this issue, we selected six CNV
regions and measured their copy numbers in 48 individ-
uals by Q-PCR. The six regions include three deletions
(with copy number 0 and 1) and three duplications (with
copy number 3 and 4), and each of them is present in 6–29
individuals in the pedigree. We then applied the PennCNV
algorithm (18) on the adjusted signal intensity on the 48
individuals, and found that there are only three false nega-
tive calls without false positive calls for these six CNV
regions (Table 2). We note that the same false negative
calls were also made in the absence of signal adjustment.
Although wave adjustment did not reduce the false nega-
tive rate here (3.5%, 3/85 CNV calls), the adjustment pro-
cedure preserves signals from genuine CNVs in these CNV
regions and does not introduce false positive calls. To
further validate this visually, we plotted examples of
signal intensities before and after adjustment for samples
with experimentally validated CNVs (Supplementary
Figure 8), and show that the signal adjustment procedure
reduces the overall magnitude of genomic waves but has
little effects on the signals of the true CNV regions.
Another concern on wave adjustment is that it may

create false positive CNVs, by making signals in some
genomic regions deviate from zero. Since false positive
calls are more difficult to assess than false negatives, to
investigate this issue, we took advantage of the three large
sibships (each with 7–12 siblings) in this pedigree
(Supplementary Figure 7). We define ‘unique’ CNV calls
in the sibships as those detected in only one individual
(but not in the parents or other family members). A
‘unique’ CNV can occur if (i) the CNV is a false positive
call; (ii) both parents have normal copies, and the off-
spring has copy number change due to de novo event;
or (iii) at least one parent has copy number change but

Figure 5. A comparison of signal intensities along chromosome 11 for
five duplicated samples with different DNA quantities genotyped by the
Illumina HumanHap550 arrays. The LRR signal intensity shows wavy
patterns when the DNA quantity deviates from the recommended
quantity (750 ng). The directionality of the waves is reversed when
increasing amounts of DNA is used for genotyping.

PAGE 9 OF 12 Nucleic Acids Research, 2008, Vol. 36, No. 19 e126

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/36/19/e126/2409936 by guest on 24 April 2024



due to false negative calls, the copy number change is not
detected in the parents and are also not detected in any
other siblings. In the context of this large pedigree, since
the probability of (i) far exceeds both (ii) and (iii), it is
reasonable to treat those ‘unique’ CNVs as false positive
calls. Before signal adjustment, we identified 42 unique
CNV calls in the three sibships; after signal adjustment,
only 15 unique CNV calls were detected, suggesting a
reduction in false positive calls with wave adjustment.
To further validate the performance of the wave adjust-

ment procedure, we analyzed the five samples used in the
serial dilution experiment (Figure 5). Before adjustment,
the GCWF values for the five samples ranged from �0.044
to 0.023, which correlated with the DNA quantity
(Figure 5B). However, after adjustment, the GCWF
values for the five samples were 0, �0.001, 0, 0 and
�0.003, respectively, supporting the effectiveness of wave
adjustment procedure. We next generated CNV calls in
the BeadStudio software using the cnvPartition algorithm
(the default CNV-calling algorithm developed by
Illumina), as well as the PennCNV algorithm (18) without
and with wave adjustment (Figure 6). The cnvPartition
algorithm is used here as an alternative approach to inde-
pendently support CNV calls in the absence of experimen-
tal data. The CNV calls are represented as colored bars
in the corresponding chromosome positions in the graph
for each sample and for each algorithm. Using the
cnvPartition algorithm, we detected 16, 10, 7, 13 and 11
CNV calls for the five samples with increasing DNA quan-
tity. With the PennCNV algorithm without wave adjust-
ment, we detected 24, 14, 14, 11 and 13 CNV calls for the
five samples. Clearly, for both algorithms, the sample with
the lowest DNA quantity (and the strongest wavy pattern)
had more CNV calls, reflecting possible false positive calls.
The concordance between the five samples was generally
poor (Supplementary Tables 2 and 3).
We next performed signal intensity adjustment and gen-

erated CNV calls by PennCNV (cnvPartition is a built-in
algorithm that cannot be applied on adjusted signal inten-
sities). With wave adjustment, the PennCNV algorithm

generated 17, 11, 11, 8 and 15 calls, for the five samples
with increasing DNA quantity. Despite having fewer CNV
calls after adjustment, a higher concordance rate is
achieved between five samples (Supplementary Table 4):
six CNV regions were consistently detected in all samples,
including three CNVs that have identical boundaries in all
samples. In comparison, without adjustment, only two
and five CNV regions were consistently detected by
cnvPartition and PennCNV, respectively. This data set
further demonstrates that the wave adjustment procedure
reduces spurious CNV calls and increases the concordance
rate on duplicated samples.

DISCUSSION

In this article we described the impact of genomic waves
on the quality of signal intensity data generated using
several high-density SNP genotyping platforms, and inves-
tigate the underlying mechanism for their presence. Our
experimental analysis illustrated the importance of DNA
preparation for the Illumina Infinium platforms in achiev-
ing the best genotyping data quality, and this is likely the
case for other microarray platforms, such as the
Affymetrix platform. In addition, we showed that our
computational approach can reduce the effects of genomic
waves and salvage data for CNV analysis when wavy
signal patterns are present.

We proposed two measures for wavy patterns of any
genotyped sample. The main advantages of these measures
are that they are not dependent on an external data model
or reference sample, and can be applied to many different
technical platforms and different array designs. We further
showed that the GCWF measure correlates strongly with
DNA quantity, and can be used to evaluate the effective-
ness of reducing genomic waves. Besides GCWF, we have
also tried other measures of autocorrelation, including the
correlation of signal intensities of neighboring markers
with lag 1, lag 10, lag 100 and lag 500 distance
(Supplementary Table 5). Although, the autocorrelation
measure does reflect the general trend of correlation
between nearby markers (with positive values), they are
poor predictors of DNA quantity and were not useful in
evaluating the magnitude or directionality of waves.

Although we have applied our method to correct geno-
mic waves on the Illumina platforms, this method may be
readily extended to other whole-genome arrays, such as
array-CGH with BAC clones or whole-genome oligo–
nucleotide arrays. Unlike SNP genotyping arrays, these
arrays utilize hybridization of nonpolymorphic probes,
however the data normalization techniques (especially
the derivation of LRR) could still be applied to such
data for reducing variation across markers, and then for
building regression models for signal intensity adjust-
ments. Similarly, for SNP genotyping arrays with nonpo-
lymorphic markers, the LRR values can also be derived
using the same multisample normalization approach.

Unlike previously described methods that use
‘smoothing’ techniques by borrowing information from
signals of adjacent markers within each sample (4), our
method borrows information on the GC content of the

Table 2. Comparison of computationally generated CNV calls with

Q-PCR results on six CNV regions on 48 subjects in a large pedigree

CNV
region

Aberrant
copy number

Number of
subjects
with CNVs
by Q-PCR

Number of subjects
with CNV calls (Number

of overlapping with
Q-PCR results)

With signal
adjustment

Without signal
adjustment

4p12 3 19 16 (16) 16 (16)
4q13.2 1 6 6 (6) 6 (6)
6q14.1 0, 1 29 29 (29) 29 (29)
6q27 4 10 10 (10) 10 (10)
12p13.31 3 15 15 (15) 15 (15)
15q14 1 6 6 (6) 6 (6)

The CNV calling results are the same before and after signal adjust-
ment on these six regions, and only three false negative CNV calls were
made, indicating a false negative rate of 3.5% without or with wave
adjustment. In all cases, the exact copy numbers (0, 1, 3 or 4) for CNVs
were identified correctly.
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surrounding genomic region. The advantage of our
approach is that each marker in the testing sample is inde-
pendently adjusted regardless of neighboring markers in
the same testing sample, so that the boundaries of a true
CNV in a testing sample will not be affected by neighbor-
ing normal copy markers. In addition, unlike the
‘smoothing’ techniques that are trained on signal intensity
only, our model is trained upon genome-wide GC distri-
butions that are identical for each sample, effectively using
more available information for improved model construc-
tion. Finally, Lowess regression is computationally inten-
sive and may not scale up well for even a single
chromosome with hundreds of thousands of markers.
Unlike the smoothing approach, our method only uses a
subset of autosome markers that are at least 1 Mb away

from each other when building the regression model.
While this simple approach circumvents the problem of
dependency between neighboring markers, this also
raises a concern on the model stability. To investigate
this issue, we tested building models with 10 different
sets of markers on the two samples used in Figure 2,
and found that the regression model parameters are
quite stable and are little affected by the use of different
markers in the training process. The resulting GCWF
values after adjustment are virtually identical.
Our wave adjustment approach shares some similarities

with the improved version of the GIM algorithm (6) and
with the algorithm proposed by Nannya et al. (7), since
these approaches all incorporated GC content informa-
tion into the model building. The improved GIM

Figure 6. DNA quantity and waves impact CNV calling. CNV calling results from the cnvPartition algorithm, and the PennCNV algorithm without
and with signal adjustment, as implemented in the BeadStudio software, on five duplicated DNA samples with different quantities. A 5-SNP
threshold was used in PennCNV so that the number of calls was comparable to cnvPartition. The color and the thickness of the bars represent
the copy number and the size of the CNV calls, respectively. DNA quantity and signal intensity waves severely affect the accuracy of CNV calling;
however, after signal adjustment, higher specificity and higher concordance rate in CNV calls are achieved.
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algorithm takes into account of the GC percentage of
40 kb of sequence surrounding each SNP, and then uses
a robust regression to determine the optimal degree of
polynomials in place of least-squares regression. The
Nannya et al. algorithm applies an empirical formula:
the regression model contains both the length and the
GC content of the PCR fragment that contains SNP, as
well as the squares of these two measures, into a quadratic
regression form. Our algorithm has several distinct differ-
ences: first, we used linear least-squares regression, due to
the simplicity and elegance of the model, and due to the
linear relationships observed in Figure 2. Second, we used
GC content of 1Mb window around each marker in the
regression model, since this long-range GC content
appears to be better correlated with the variation of
signal intensities. Third, we used markers that are at
least 1 Mb away from each other in the model building
to eliminate potential dependence between markers, that
is, correlated signal intensities of neighboring markers due
to factors unrelated to GC content, such as being covered
by the same CNV. Despite these differences, it is clear
from all studies that genome-wide GC patterns provide
a strong basis for signal adjustment in SNP genotyping
platforms.
In summary, we describe the presence of genomic waves

in several high-density SNP genotyping platforms and pre-
sent experiments and analyses to investigate the major
causes of these patterns. Moreover, we propose a simple
computational procedure that generates adjusted signal
intensities to reduce the effects of genomic waves and to
improve the accuracy of CNV inference. With the increas-
ing use of SNP genotyping platforms for genome-wide
association studies and genome-wide CNV analysis, our
method will be useful for taking full advantage of all avail-
able samples.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank the technical staff at the Center for Applied
Genomics, Children’s Hospital of Philadelphia for per-
forming the genotyping experiments. We thank the four
reviewers in their constructive comments and insightful
suggestions on additional experiments.

FUNDING

National Institutes of Health (grant T32 HG000046 to
S.J.D.); Institute Development Award to the Center for
Applied Genomics from the Children’s Hospital of
Philadelphia (H.H.); National Institutes of Health (grant
R01 MH604687 to M.B.); NARSAD distinguished
Investigator Award (M.B.); National Institutes of Health
(grant R01 CA124709 to J.M.M.); the Giulio D’Angio
Endowed Chair and Alex’s Lemonade Stand Foundation
(J.M.M.). Funding for open access charge: R01
CA124709.

Conflict of interest statement. None declared.

REFERENCES

1. Carter,N.P. (2007) Methods and strategies for analyzing copy number
variation using DNA microarrays. Nat. Genet., 39, S16–S21.

2. Scherer,S.W., Lee,C., Birney,E., Altshuler,D., Eichler,E.E.,
Carter,N., Hurles,M. and Feuk,L. (2007) Challenges and standards
in integrating surveys of structural variation. Nat. Genet., 39,
S7–S15.

3. Feuk,L., Carson,A.R. and Scherer,S.W. (2006) Structural variation
in the human genome. Nat. Rev. Genet., 7, 85–97.

4. Marioni,J.C., Thorne,N.P., Valsesia,A., Fitzgerald,T., Redon,R.,
Fiegler,H., Andrews,T.D., Stranger,B.E., Lynch,A.G.,
Dermitzakis,E.T. et al. (2007) Breaking the waves: improved
detection of copy number variation from microarray-based
comparative genomic hybridization. Genome Biol., 8, R228.

5. Frilyand,J., Snijders,A.M., Pinkel,D., Albertson,D.G. and
Jain,A.N. (2004) Hidden Markov models approach to the analysis
of array CGH data. J. Multivar. Anal., 90, 132–153.

6. Komura,D., Shen,F., Ishikawa,S., Fitch,K.R., Chen,W., Zhang,J.,
Liu,G., Ihara,S., Nakamura,H., Hurles,M.E. et al. (2006) Genome-
wide detection of human copy number variations using high-density
DNA oligonucleotide arrays. Genome Res., 16, 1575–1584.

7. Nannya,Y., Sanada,M., Nakazaki,K., Hosoya,N., Wang,L.,
Hangaishi,A., Kurokawa,M., Chiba,S., Bailey,D.K., Kennedy,G.C.
et al. (2005) A robust algorithm for copy number detection using
high-density oligonucleotide single nucleotide polymorphism
genotyping arrays. Cancer Res., 65, 6071–6079.

8. Maris,J.M., Mosse,Y.P., Bradfield,J.P., Hou,C., Monni,S.,
Scott,R.H., Asgharzadeh,S., Attiyeh,E.F., Diskin,S.J.,
Laudenslager,M. et al. (2008) Chromosome 6p22 locus associated
with clinically aggressive neuroblastoma. N. Engl. J. Med., 358,
2585–2593.

9. Steemers,F.J., Chang,W., Lee,G., Barker,D.L., Shen,R. and
Gunderson,K.L. (2006) Whole-genome genotyping with the single-
base extension assay. Nat. Methods, 3, 31–33.

10. Illumina. (2006) Whole-genome genotyping with Sentrix
HumanHap550 genotyping BeadChip and the Infinium II assay.
Illumina Technical Bulletin, Pub. No. 370-2006-017.

11. Peiffer,D.A., Le,J.M., Steemers,F.J., Chang,W., Jenniges,T.,
Garcia,F., Haden,K., Li,J., Shaw,C.A., Belmont,J. et al. (2006)
High-resolution genomic profiling of chromosomal aberrations
using Infinium whole-genome genotyping. Genome Res., 16,
1136–1148.

12. Kuhn,R.M., Karolchik,D., Zweig,A.S., Trumbower,H.,
Thomas,D.J., Thakkapallayil,A., Sugnet,C.W., Stanke,M.,
Smith,K.E., Siepel,A. et al. (2007) The UCSC genome browser
database: update 2007. Nucleic Acids Res., 35, D668–D673.

13. Karolchik,D., Kuhn,R.M., Baertsch,R., Barber,G.P., Clawson,H.,
Diekhans,M., Giardine,B., Harte,R.A., Hinrichs,A.S., Hsu,F. et al.
(2008) The UCSC genome browser database: 2008 update. Nucleic
Acids Res., 36, D773–D779.

14. Bailey,J.A., Yavor,A.M., Massa,H.F., Trask,B.J. and Eichler,E.E.
(2001) Segmental duplications: organization and impact within the
current human genome project assembly. Genome Res., 11,
1005–1017.

15. Pruitt,K.D., Tatusova,T. and Maglott,D.R. (2007) NCBI reference
sequences (RefSeq): a curated non-redundant sequence database of
genomes, transcripts and proteins. Nucleic Acids Res., 35, D61–D65.

16. Benson,G. (1999) Tandem repeats finder: a program to analyze
DNA sequences. Nucleic Acids Res., 27, 573–580.

17. Miller,W., Rosenbloom,K., Hardison,R.C., Hou,M., Taylor,J.,
Raney,B., Burhans,R., King,D.C., Baertsch,R., Blankenberg,D.
et al. (2007) 28-way vertebrate alignment and conservation track in
the UCSC Genome browser. Genome Res., 17, 1797–1808.

18. Wang,K., Li,M., Hadley,D., Liu,R., Glessner,J., Grant,S.F.A.,
Hakonarson,H. and Bucan,M. (2007) PennCNV: an integrated
hidden Markov model designed for high-resolution copy number
variation detection in whole-genome SNP genotyping data. Genome
Res., 17, 1665–1674.

e126 Nucleic Acids Research, 2008, Vol. 36, No. 19 PAGE 12 OF 12

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/36/19/e126/2409936 by guest on 24 April 2024


