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H. Werner Mewes1,2

1Institute for Bioinformatics (MIPS), German Research Center for Environmental Health, Ingolstaedter Landstraße
1, D-85764 Neuherberg and 2Technische Universität München, Chair of Genome Oriented Bioinformatics, Center
of Life and Food Science, D-85350 Freising-Weihenstephan, Germany

Received September 12, 2007; Revised October 10, 2007; Accepted October 11, 2007

ABSTRACT

Protein complexes are key molecular entities that
integrate multiple gene products to perform cellular
functions. The CORUM (http://mips.gsf.de/genre/
proj/corum/index.html) database is a collection of
experimentally verified mammalian protein com-
plexes. Information is manually derived by critical
reading of the scientific literature from expert
annotators. Information about protein complexes
includes protein complex names, subunits, literature
references as well as the function of the complexes.
For functional annotation, we use the FunCat
catalogue that enables to organize the protein
complex space into biologically meaningful subsets.
The database contains more than 1750 protein
complexes that are built from 2400 different genes,
thus representing 12% of the protein-coding genes
in human. A web-based system is available to query,
view and download the data. CORUM provides a
comprehensive dataset of protein complexes for
discoveries in systems biology, analyses of protein
networks and protein complex-associated diseases.
Comparable to theMIPS reference dataset of protein
complexes from yeast, CORUM intends to serve as
a reference for mammalian protein complexes.

INTRODUCTION

Large community approaches like sequencing of mamma-
lian genomes as well as the characterization of genetic
elements within the ENCODE project (1) have revolution-
ized our knowledge about mammalian genetics. Systems
biology approaches to describe cellular processes as
suitable models need to integrate these data and to shift

from the functional description of the individual gene
towards the interaction in cellular networks. In recent
years, it has been shown by systematic experiments that
the large majority of proteins do not act as isolated entities
but form transient or stable interactions with other
proteins. Large datasets of protein–protein interaction
data can be presented as protein networks, which fulfil
higher-level cellular tasks, so-called functional modules.
The basic representatives of functional modules are
protein complexes, since they display strong and frequent
connections within the complex and weak and rare
connections to components outside the complex (2). The
concerted action of proteins within protein complexes
allows cells to acquire novel functionalities, which are
beyond the performance of individual proteins. Protein
complexes like proteasomes, chaperonins and spliceo-
somes are central components in vital cellular tasks like
protein folding, protein degradation and RNA splicing,
respectively.

Most of the analyses concerning eukaryotic protein
complexes have been performed with data from yeast.
This is due to the availability of high-throughput datasets
as well as a manually curated dataset, which received a
status as ‘gold standard’ (3,4). In a high-throughput
analysis of protein complexes in yeast, 4.9 different
subunits per complex were identified on an average (5).
Combining information from manual annotation and
high-throughput experiments reveals that 2733 (45%) of
6007 protein coding genes in yeast form components of
protein complexes (6). This number does not yet include
data of two recent large-scale approaches, which aimed to
collect a comprehensive set of protein complexes from
yeast (5,7). Therefore, it is tempting to speculate, that
at least half of the protein-coding genes in the lower
eukaryote yeast are involved in the formation of the yeast
‘complexosome’. The absolute number of protein com-
plexes that constitutes the complexosome remains also
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a matter of speculation. Two large-scale approaches
identified 491 and 547 protein complexes, respectively,
but neither of them covered the manually annotated
dataset from MIPS (3) exhaustively, indicating that the
final number of protein complexes in yeast extends the
current results significantly.

Analyses of protein complexes from yeast have also
shown that protein complex subunits have characteristic
properties. They exhibit a higher essentiality, are to a large
extent co-expressed and evolutionally stronger conserved
than other proteins (8,9). It can be assumed, that many of
the results which were observed from the analysis of yeast
complexes can be adopted for other organisms. However,
analysis of protein complexes that are involved in cell-
cycle regulation has shown that the transfer of informa-
tion has limitations, too. Periodically expressed protein
complex subunits, that confer the just-in-time assembly of
the respective protein complexes, are different in yeast,
Arabidopsis and human (10).

For mammalian protein complexes, there is neither a
high-throughput dataset nor a comprehensive collection
of manually and functionally annotated complexes avail-
able. However, there is a growing interest in the analysis
of mammalian complexes. Besides the investigation of
cell-cycle complexes, the disease relevance of human
protein complexes was analysed recently (11). There,
the protein complexes were computationally generated
from protein–protein interaction data. In order to provide
an experimentally validated dataset of mammalian protein
complexes, we generated the comprehensive resource of
mammalian protein complexes (CORUM) database.
In CORUM, a protein complex is defined as a group of
two or more proteins that physically interact and form
a quaternary structure. Protein complexes can be stable
or appear transiently and can be found in vivo. The
interaction of protein complex members is required to
perform together at the same time a cellular function or
reaction. CORUM is a protein complex information
resource that depicts various features of protein complexes
like protein complex composition, biological function,
cellular localization and other associated information like
disease relevance. CORUM is freely available at http://
mips.gsf.de/genre/proj/corum/index.html.

ANNOTATION OF PROTEIN COMPLEXES

In order to provide a high-quality dataset of mammalian
protein complexes, all entries are manually created. Only
protein complexes which have been isolated and char-
acterized by reliable experimental evidence are included
in CORUM. To be considered for CORUM, a protein
complex has to be isolated as one molecule and must not
be a construct derived from several experiments. Also,
artificial constructs of subcomplexes are not taken into
account. Since information from high-throughput experi-
ments contains a significant fraction of false-positive
results, this type of data is excluded. References for
relevant articles were mainly found in general review
articles, cross-references to related protein complexes
within analysed literature and comments on referenced

articles in UniProt (12). Table 1 shows that the highest
fraction of the used articles was published in The Journal
of Biological Chemistry (23.6%), followed by PNAS
(7.1%), Molecular and Cellular Biology (6.1%) and Cell
(5.7%). The vast majority of the used articles are from
journals with high-impact factor, which shows that
characterization of protein complexes is considered as
important information.
In order to define community standards for data repre-

sentation in proteomics to facilitate data comparison,
exchange and verification the PSI-MI standard was
introduced (13). The CORUM dataset is annotated
according to the currently valid PSI-MI 2.5 standard.
One rule of PSI-MI annotation is to separate information
about molecular interactions, which are described redun-
dantly by different publications. The advantage of this
approach is that annotators present the information
exactly as described by the authors and do not need to
amalgamate the result of different groups, if the experi-
ments show conflicting results. Another advantage is that
if one protein complex has been isolated and characterized
by different groups, the reproducibility confirms the
composition of the protein complex. The drawback of
this approach is that it results in a certain extent of
redundancy.
Many well-characterized protein complexes are asso-

ciated with scientific names like ribosome, proteasome
or spliceosome in literature. These descriptions are also
provided in CORUM, as well as synonyms if they
are frequently used in the literature. An example is the
eukaryotic chaperonin CCT (chaperonin containing
TCP-1), which is also well known as TRiC (TCP-1 ring
complex). If there is no name found for a protein complex
available, we define one which is usually composed of gene
names of the complex, e.g. ‘BRCA1-RAD51 complex’ or
‘Ubiquitin E3 ligase (containing FBXW7, CUL1, SKP1A
and RBX1)’.
Another annotated feature is the organism, from which

the protein complex originates. The concentration of
many research activities towards the biology of humans is

Table 1. Analysis about the absolute number and fraction of articles

from respective scientific journals that were used for the annotation of

mammalian protein complexes in CORUM

Journal Number
of articles

Fraction of
all articles (%)

The Journal of Biological Chemistry 253 23.6%
PNAS 76 7.1%
Molecular and Cellular Biology 65 6.1%
Cell 61 5.7%
Molecular Cell 55 5.1%
The EMBO Journal 52 4.8%
Nature 37 3.4%
The Journal of Cell Biology 34 3.2%
Science 24 2.2%

Total 1073 100%

Since some articles contain information about more than one protein
complex, the number of articles is lower than the number of annotated
complexes.
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reflected by the high content of human protein complexes
in CORUM. The vast majority of all analysed protein
complexes in CORUM originates from human (65%),
followed by mouse (14%) and rat (14%).
The subunits of protein complexes are annotated

according to the respective SwissProt entries. In
CORUM, only the primary accessions are stored as iden-
tifiers. Associated information like gene names and
protein names is retrieved via the BioRS sequence retrieval
system, enabling up-to-date information from the primary
data sources without the need of synchronization.
Other important information besides the identification

of the different subunits is the number of individual
proteins that are required to assemble the complex. In
most cases, the molecular characterization of the protein
complex composition is limited to the identification of
the subunits. For cases where the stoichiometry of the
subunits has been analysed, the information is given in the
‘Number of subunits’ field (see e.g. complex 960).
We use the Functional Catalogue (FunCat) anno-

tation scheme for protein and protein complex function
characterization (14). The FunCat has been used for
manual annotation of model organisms like Saccharo-
myces cerevisiae, Arabidopsis thaliana and mouse (15)
and was also frequently used for the analysis of protein
networks and high-throughput experiments (14).
Application of FunCat organizes data in a systematic,
computer-readable format. The hierarchical structure of
FunCat allows browsing for protein complexes with
particular cellular functions or localizations (Figure 1).
This reveals subsets, which would otherwise require
specialised databases like the PIN database for nuclear
protein complexes (16). Examples of such sub datasets are
presented on the CORUM home page. In addition,
FunCat annotation allows fast access to some statistics
of the data. The CORUM dataset contains e.g. far more

protein complexes from the nucleus (67% of all complexes
with annotated localization) than from the cytoplasm
(9%). This might be explained by the complexity of the
information processes within the nucleus. However, the
data do not necessarily correlate to the situation of living
cells but might rather reflect the topics which have been
investigated by individual research projects.

The evidence for applying a functional category is given
in a separate field (Figure 2). There are five different
evidences which provide information about the underlying
rationale why a functional category has been applied.
These include different qualities, ranging from experi-
mental evidence (exp) to predicted functions (pred). For
all evidences but predicted annotation the underlying
PubMed references are provided (Figure 2). Additional
information like disease relevance or more detailed
information about the cellular function of protein com-
plexes is given in the comment field (Figure 2).

One of the mandatory information for PSI-MI com-
pliant annotation is the experimental method which led to
the identification of the protein interaction. For this kind
of data the PSI consortium provides a list of methods
(http://www.psidev.info/). If several methods were used to
isolate a protein complex, all methods are listed. The
PubMed reference of the article that describes the
isolation of the protein complex is given in the PubMed
field (Figure 2).

Concerning the inventory of protein complexes of an
organism, the complexosome, important questions are (i)
of how many different subunits protein complexes are
composed, (ii) the fraction of protein coding genes are
devoted by cells to build the complexosome and (iii) how
many protein complexes does a cell contain?

(i) In September 2007, the CORUM database contained
about 1750 protein complexes. On average, each complex
consists of 4.7 different subunits. This is well in line with

Figure 1. Overview about the FunCat functional annotation results of the protein complexes in CORUM. The different search options of the
database are also shown.
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data from yeast (see above). The largest protein complex
of the dataset, the spliceosome, consists of 143 different
proteins. (ii) If all genes of the protein complexes in
CORUM are mapped to e.g. the human genome, the
dataset covers �2400 genes. Based on current estimations
that the human genome codes for 20 488 protein coding
genes (17), the entries from CORUM represent 12% of a
mammalian genome. Due to the lack of data it is not
possible to give a reliable approximation for the total
number of protein coding genes in mammalian organisms
involved in complex formation. However, assuming that
in mammals like in yeast more than half of the protein
coding genes are used for the formation of protein
complexes would offer cells an enormous repertoire of
building blocks for the development of complexes with
novel functionalities. The modular architecture of protein
complexes is exemplified by large protein complex families
like SNARE complexes (96 members), integrin complexes
(69 members) and ubiquitin E3 ligases (54 members) that
were annotated in CORUM. These protein complex
families originated from the association of protein
family members which emerged in evolution as the result
of gene duplication and specification events (2). (iii) To
date, including data from CORUM, BIND (18) and
HPRD (19) the number of non-redundant protein
complexes in mammals is well above 2500. Since those
are only a part of all protein complexes from literature
that have been annotated and novel experimentally

characterized protein complexes continuously appear,
this number will certainly increase in the future.

SEARCH OPTIONS

CORUM offers three different possibilities to select
suitable protein complexes from the dataset. As a quick
start, we offer predefined sets of protein complexes on the
home page. The ‘Browse protein complexes localized
in . . . ’ and ‘Browse protein complexes involved in . . . ’
buttons are linked to selections of protein complexes with
a certain cellular localization or function, respectively. The
underlying information of the selected complexes is based
on the FunCat annotation. Further selections with the
same topic can be inspected via the ‘more . . . ’ link. A
comprehensive overview about protein complexes asso-
ciated with a specific FunCat category is given with the
‘Browse functional annotation’ link (Figure 1) on the
home page. The numbers beside the functional categories
show how many protein complexes were annotated with
the respective category.
The second search option is the ‘General search’ which

performs simultaneous searches across several attributes
(Figure 1). This is especially suited for searches where
comprehensiveness rather than specificity is required.
A query for ‘proteasome’ e.g. reveals not only all
proteasome complexes but also all complexes that contain
a proteasomal subunit.

Figure 2. Result page of the Ubiquitin E3 ligase (containing FBXW7, CUL1, SKP1A and RBX1) protein complex from the CORUM database.
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Finally, the ‘Specific search’ allows to select individual
attributes that were annotated (Figure 1). Additionally,
specific searches can be combined by using the logic
operators AND, OR and NOT. Searches for gene names
and protein names include also the synonyms that were
annotated by UniProt.

AVAILABILITY OF THE DATA

CORUM data is available for download in tab delimited
as well as in XML file format. Download versions of
the protein complex are regularly updated. Beside the
complete dataset, CORUM offers the download of
subsets, which were generated by individual searches.
Respective buttons for download in PSI-MI 2.5 or tab
delimited form are available on the web pages.

TECHNOLOGY

CORUM is embedded within the MIPS Genome Research
Environment (GenRE) (20). This component-oriented
multi-tier architecture, based on J2EE technology, ensures
scalability and provides consistent data access via
Enterprise Java Beans (EJBs). As data exchange format
XML is used, thus enabling readability across platforms
and systems. The webpage layout is rendered with XSL
transformations following the Model-View-Controller
design pattern. As data backend, the relational MySQL
database system (www.mysql.com) is applied.

CONCLUSION

Protein complexes are a link between the parts-list of the
synthesized gene products and entire cellular systems.
The importance of the cellular machines was recognized a
decade ago (21) but only in recent years a growing number
of bioinformatics articles on this topic appeared. These
included the investigation of the properties of the protein
members, the evolution of protein complexes, the appear-
ance of protein complexes during the cell cycle and disease
relevance of protein complexes (2,8–11). It became clear
that a comprehensive understanding of cellular systems is
not possible without the knowledge about the cellular
machines. Thus, it was stated that ‘Identifying all protein
complexes in an organism is a major goal of systems
biology’ (22). With CORUM, we provide a resource of
manually annotated protein complexes for systems biol-
ogy and the investigation of protein-associated diseases.
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