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ABSTRACT

Up to now, ) formation in tRNAs was found to be
catalysed by stand-alone enzymes. By computa-
tional analysis of archaeal genomes we detected
putative H/ACA sRNAs, in four Sulfolobales species
and in Aeropyrum pernix, that might guide )35 for-
mation in pre-tRNATyr(GUA). This modification is
achieved by Pus7p in eukarya. The validity of the
computational predictions was verified by in vitro
reconstitution of H/ACA sRNPs using the identified
Sulfolobus solfataricus H/ACA sRNA. Comparison
of Pus7-like enzymes encoded by archaeal genom-
es revealed amino acid substitutions in motifs
IIIa and II in Sulfolobales and A. pernix Pus7-like
enzymes. These conserved RNA:)-synthase-
motifs are essential for catalysis. As expected, the
recombinant Pyrococcus abyssi aPus7 was fully
active and acted at positions 35 and 13 and other
positions in tRNAs, while the recombinant S. solfa-
taricus aPus7 was only found to have a poor activity
at position 13. We showed that the presence of an A
residue 3’ to the target U residue is required for
P. abyssi aPus7 activity, and that this is not the
case for the reconstituted S. solfataricus H/ACA
sRNP. In agreement with the possible formation of
)35 in tRNATyr(GUA) by aPus7 in P. abyssi and by an
H/ACA sRNP in S. solfataricus, the A36G mutation in
the P. abyssi tRNATyr(GUA) abolished )35 formation
when using P. abyssi extract, whereas the A36G
substitution in the S. solfataricus pre-tRNATyr did
not affect )35 formation in this RNA when using
an S. solfataricus extract.

INTRODUCTION

In all domains of life, pseudouridine residues (�) are the
most frequent post-transcriptionally modified residues in
RNAs. They are universally found in ribosomal RNA
(rRNAs) and in tRNAs (1,2). U to � conversions are
catalysed either by stand-alone enzymes [specific RNA:
�-synthases, (3)] or by small ribonucleoprotein particles
[H/ACA snoRNPs or H/ACA scaRNPs in eukarya, and
H/ACA sRNPs in Archaea, (4)]. H/ACA RNPs contain a
small RNA that defines the targeted U residue by base-
pair interaction with the RNA substrate (5–8). Archaeal
and eukaryal H/ACA RNPs contain 4 proteins: Nop10,
Gar1, L7ae/Nhp2p and Cbf5/Dyskerin (9). CBF5 belongs
to the TruB family of RNA:�-synthases. Whereas aCBF5
alone has no activity on rRNAs (5–8), recent data showed
an in vitro activity of aCBF5 at position 55 in tRNAs. This
activity does not require the presence of a guide RNA
(10–12).

The additional free N1-H of the � nucleobase allows the
formation of an additional hydrogen bond, either in cis,
within the RNA molecule, or in trans, with another RNA
molecule or a protein. For instance, residue �35 in the
eukaryal cytoplasmic tRNATyr(GUA) allows the forma-
tion of an hydrogen bond with the O20 of residue U33,
which stabilizes the anticodon loop structure (13,14).
Furthermore, substitution of the C-N bond between the
ribose and the nucleobase by a C-C bond limits the flex-
ibility of the ribose-phosphate backbone and favours
RNA-RNA base-pair interactions (13–15).

In all organisms, pseudouridylations were found to
occur at numerous positions in tRNAs (seven in
Escherichia coli, at least 15 in Saccharomyces cerevisiae
and even more in higher eukaryotes) (1). Formation
of residue �55 in the T�C loop is the most frequent
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pseudouridylation in tRNAs. It is likely involved in the
recognition of elongator tRNA at the A site of ribosomes.
Pseudouridylations are also frequently found at tRNA
positions 13, 27, 28 and 39 (1). As it was found in
all eukaryal tRNATyr(GUA) and not in bacterial
tRNATyr(GUA), residue �35 in the anticodon loop of
tRNATyr(GUA) is considered as an eukaryal conserved
specific modification. It plays an important role in
mRNA decoding in eukarya (16,17). Identification of
modified residues in archaeal RNAs, especially tRNAs,
is far less advanced than in bacteria and eukarya. Studies
mainly focused on archaeal tRNA-specific post-
transcriptional modifications, such as methylations
(m1I58, Gm18) and archaeosine (18–20). For some
hyperthermophilic Archaea, global profiles of post-
transcriptional modifications in tRNAs were studied by
the HPLC/MS approach (2). However, the locations of
the modified residues were not defined. The full set of
tRNA molecules was only sequenced for the mesophilic
euryarchaeote Haloferax volcanii (1,21) and this halophilic
organism may not be representative of the whole archaeal
domain, since this domain includes organisms growing in
a large variety of conditions (22). However, the data
obtained for the complete set of Halobacterium volcanii
tRNAs and for a few tRNAs of other archaeal species,
show that U to � conversions occur at several positions
in archaeal tRNAs.

Up to now, in bacteria and eukarya, all pseudouridyla-
tions in tRNAs were shown to be catalysed by stand-alone
enzymes and most of the tRNA:�-synthases in E. coli and
in S. cerevisiae were identified (for review, 3,23). Some of
them have quite narrow substrate specificities, as is the
case for the bacterial TruB, TruD and TruC enzymes
(modification at a single position for each of them, 55,
13 and 65, respectively) (24–26). The yeast Pus4p, Pus8p
(cytoplasmic) and Pus9p (mitochondrial) enzymes also
have narrow specificities (positions 55 for Pus4p and 32
for Pus8p and Pus9p) (27–29). In contrast, the TruA bac-
terial tRNA:�-synthases acts at several sites in tRNAs
(30), and RluA modifies both tRNAs and rRNAs (31).
The eukaryal Pus1p and Pus7p enzymes also have very
broad specificities. Pus1p acts at eight distinct positions
in tRNAs (32,33) and at position 44 in U2 snRNA (34).
Pus7p converts U into � in U2 snRNA (position 35) (35),
several tRNAs (position 13), the pre-tRNATyr(GUA)
(position 35) (36) and 5S rRNA (position 50) (37).

The number of rRNA:�-synthases is highly reduced in
eukarya compared to bacteria, since several stand-alone
specific rRNA:�-synthases are replaced by the H/ACA
snoRNP system. Altogether, 11 and 10 distinct
RNA:�-synthases were characterized in E. coli and in
S. cerevisiae, respectively. Five of them act on tRNAs
in E. coli (24–26,30,31), while eight of them act on
tRNAs in S. cerevisiae (27–29,33,36,38,39).

Studies on RNA:�-synthases in archaea are far less
advanced. One puzzling observation is the detection
of only a very limited number of putative genes for
RNA:�-synthases in archaeal genomes, when taking
into account the known signatures of RNA:�-synthases.
The only putative genes, which are found in all

species, encode a TruD/Pus7 homologue, aCBF5
(TruB homologue) and PusX/Pus10 which can both act
at position 55 in tRNAs (9–12). In euryarchaeal species an
additional gene encoding a member of the TruA family
was also detected (9). The activities of the TruD/Pus7 and
the TruA family members have not been studied in details.
According to the present knowledge on pseudouridyla-

tions in archaeal tRNAs, the most frequently modified
positions are 13, 39, 54 and 55. In vitro tests made with
a Pyrococcus furiosus cellular extract and H. volcanii on
S. cerevisiae tRNA transcripts revealed the presence of
tRNA:�-synthase activities acting at positions 39 and
55 (40). As mentioned above, aCBF5 and/or Pus10
might be the catalyst(s) at position 55. Pus10 was also
recently found to be the catalyst for � formation at posi-
tion 54 (41). The enzymes acting at the other positions
still remain to be identified. Based on the specificities iden-
tified for the E. coli TruD enzyme and its yeast and plant
Pus7 counterparts, archaeal Pus7-like enzymes may cata-
lyze modification at position 13 in some tRNAs and per-
haps at position 35 in tRNAsTyr(GUA) which are
expressed with an intron. Indeed, modification at this
position in tRNATyr(GUA) was found to be intron depen-
dent in eukarya (42,43). Therefore, the absence of �35 in
mature tRNATyr(GUA) in the H. volcanii pre-
tRNATyr(GUA) was up to now expected to be explained
by the absence of intron in this tRNA (21). Finally, based
on the limited number of putative RNA:�-synthases
found in archaea and the detection of tRNA specific
C/D sRNPs in archaea (44), one can reasonably ask the
question whether there may also be some tRNA-specific
H/ACA sRNPs in archaea explaining why, in spite of a
limited number of RNA:�-synthases, archaeal tRNAs
contain several � residues. An alternative explanation
can be a very broad specificity of tRNA:�-synthases in
these organisms.
Here, by a computational search in archaeal genomes,

using a recently developed approach (45), we found
H/ACA sRNAs which may guide �35 formation in
the pre-tRNATyr(GUA). However, these H/ACA sRNAs
were only found in species of the Sulfolobales and
Desulfurococcales orders. We demonstrated their activity
by in vitro reconstitution of the H/ACA sRNPs. On the
other hand, comparison of the amino acid sequences of
Sulfolobales and Desulfurococcales aPus7 enzymes with
those of other archaeal species revealed amino acid sub-
stitutions in the active site. We verified the defect of activ-
ity of the Sulfolobales enzymes by production of
recombinant aPus7 enzymes from Pyrococcus abyssi and
Sulfolobus solfataricus. Interestingly, we found that the
recombinant P. abyssi aPus7 enzyme has a broad specifi-
city in vitro. It modifies tRNAs at position 13 and at other
positions as well as intron-less and intron-containing
tRNAsTyr(GUA) at position 35. To get more information
on the catalyst acting at position 35 in tRNAs in P. abyssi
and S. solfataricus, we compared the activity of P. abyssi
and S. solfataricus extracts on WT and A36G variants of
the P. abyssi tRNATyr(GUA) and S. solfataricus pre-
tRNATyr(GUA), respectively.
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MATERIALS AND METHODS

DNA constructs for the production of aPus7 proteins
and their variants

The DNA fragments coding the WT aPus7 proteins from
P. abyssi and S. solfataricus were obtained by PCR ampli-
fication using genomic DNAs from these two species. The
forward and reverse primers used for amplification gener-
ated a NheI and BamHI restriction site, respectively. After
digestion with NheI and BamHI, the amplified DNA
was inserted into plasmid pET28b digested by the same
nucleases. The variants aPus7 proteins were produced by
site-directed mutagenesis (QuickChange kit, Stratagene,
USA). The sequences of the oligonucleotides used for
the PCR amplifications and site-directed mutagenesis are
available on request.

Purification of recombinant proteins

Wild-type and variant aPus7 proteins were produced in
E. coli as His6-tagged protein fusions and purified by affin-
ity chromatography on Ni–NTA agarose (Qiagen,
France). Induction of protein production was done by
addition of 1mM IPTG in the LB media supplemented
by 50 mg/ml of kanamycin. Cell pellets were suspended in
Lysis buffer (20mM Tris–HCl, pH 7.7; 300mM NaCl;
1mM DTT; 10mM Imidazole) and sonicated. After
removal of cell debris, the resulting cell-free extracts
were directly loaded onto Ni–NTA agarose. After a wash-
ing step with 20mM imidazole in Lysis buffer, His6-tagged
proteins were eluted in Lysis buffer containing 250mM of
imidazole. Purified proteins were stored at room temper-
ature in the elution buffer supplemented with 10%
glycerol, or at –808C by adjusting the glycerol concentra-
tion to 50%.
The P. abyssi aCBF5, aNOP10, aGAR1 and L7Ae were

produced as GST fusion proteins as previously described
(7). They were stored at –808C in the following buffer,
50mM Tris–HCl pH 7.0, 150mM NaCl, 1mM EDTA,
1mM DTT, 10% glycerol.

In vitro transcription of tRNAs, H/ACA sRNA and the
sRNP target RNA

Wild-type and mutated tRNAAsp(GUC) and
tRNATyr(GUA) from P. abyssi and WT and mutated
tRNAAsp(GUC) and pre-tRNATyr(GUA) from S. solfa-
taricus as well as the Sso1H/ACA sRNA from S. solfatar-
icus were produced by in vitro transcription of linearized
plasmids. The DNA templates coding for those tRNAs
and sRNA were amplified by PCR using genomic DNAs
of the P. abyssi strain GE5 or the S. solfataricus strain P2.
Forward primers used for amplification bear the sequence
for a T7 RNA polymerase promoter. Amplified products
were cloned in plasmid pUC18 using its SmaI restriction
site. Linearization was performed with the BstNI restric-
tion enzyme. tRNAAsp(GUC) and tRNATyr(GUA) var-
iants were produced by site-directed mutagenesis
(QuickChange kit, Stratagene, USA). All in vitro pro-
duced RNA transcripts were purified by electrophoresis
on an 8M urea 8% polyacrylamide gel. For the

pseudouridylation assays, the corresponding RNA tran-
scripts were uniformly labelled with [a–32P]ATP or other
[a–32P]NTPs. Conditions for transcription and labelling
were described previously (46).

Preparation of cellular extracts

About 1010 cells from P. abyssi or S. solfataricus grown to
exponential phase and centrifuged, were re-suspended in
the extraction buffer (25mM Tris–HCl, pH 7,5; 25mM
KCl; 5mM MgCl2; 10% Glycerol; 2mM DTT). The
cells were sonicated for 5min followed by centrifugation
at 10 000 g. The concentration of glycerol was adjusted to
20% for storage at –208C.

In vitro pseudouridylation assay

The tRNA:�35-synthase activity of purified recombinant
aPus7 enzymes or H/ACA sRNP complexes was measured
by the nearest-neighbour approach in the conditions
described previously (7,46). The sRNA guided activity of
reconstituted H/ACA sRNPs was tested by mixing of �4
pmol of Sso1 sRNA with �150 fmol of the [a-32P]ATP-
labelled tRNA in buffer D (20mM HEPES, pH 7.9,
150mM KCl; 1.5mM MgCl2; 0.2mM EDTA) along
with aCBF5, aNOP10, aGAR1 and L7Ae proteins at a
200 nM concentration (7). The non-RNA-guided reaction
of aPus7 enzymes on tRNA was tested on �50 fmol of
[a-32P]ATP-labelled tRNAs in buffer Psi (100mM Tris–
HCl, pH 8.0; 100mM AcNH4; 5mM MgCl2; 2mM
DTT; 100 mM EDTA). The activity assays with cell-free
extracts were performed with the same amount of labelled
tRNA in buffer D in the presence of a similar amount of
P. abyssi and S. solfataricus cellular extracts. For both the
sRNA-guided and non RNA-guided reactions, samples
were incubated at 558C, 658C or 808C and the reaction
was started by addition of the proteins (200 nM each).
Activity assays with cellular extracts were carried out at
658C. Then, the RNAs were extracted and digested by
RNAse T2. The resulting 30-phosphate-mononucleotides
were fractionated by 2D thin-layer cellulose chromatogra-
phy (47). The radioactivity in the spots was quantified
using the ImageQuant software after exposure of a Phos-
phorimager screen. The amount of � residue formed was
determined taking into account the total number of U
residues in the tRNA.

Mapping of pseudouridylation sites in tRNAs

Pseudouridine mapping in RNAs was done using modifi-
cation by N-cyclohexyl-N0-(2-morpholinoethyl)-carbodii-
mide metho-p-toluolsulfonate (CMCT) followed by an
alkaline treatment for specific modification of � residues
(48). Modifications were performed with 0.5 mg of in vitro
transcribed S. solfataricus pre-tRNATyr. The modified
residues were identified by primer extension with reverse
transcriptase using the AMV RT (QBiogene, USA) in the
conditions previously described (49). The 50-labelled
primer used was complementary to the 14 nts at the
30-end of the tRNA. RNA sequencing was done in parallel
using 4 mg of in vitro transcribed RNA.
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RESULTS

Some archaeal H/ACA sRNAs are predicted to guide
) formation in tRNAs

By applying the computational method that we recently
developed for the search of H/ACA sRNA genes in
archaeal genomes (45), we found five putative H/ACA
sRNA motifs, which might direct U to � conversion at
position 35 in pre-tRNAsTyr(GUA) that contain an intron
(Figure 1A). One of these unusual H/ACA motifs was
detected in a species of the Desulfurococcales order,
Aeropyrum pernix (sRNA Ape7), the four other ones
were found in four species of the Sulfolobales order,
namely S. solfataricus (sRNA Sso1), Sulfolobus tokodaii
(sRNA Sto1), Sulfolobus acidocaldarius (sRNA Sac1) and
Metallosphaera sedula (sRNA Mse2). These five putative
H/ACA motifs fitted to the rules established based on our
recent exhaustive analysis of the P. abyssi H/ACA sRNAs
(45): they all contain a K-turn structure which is linked to
the pseudouridylation pocket by a 5- or 6-bp long helix 2.
They also contain the conserved ACA trinucleotide at the
30-end of the stem–loop structure (Figure 1A). Interest-
ingly, each DNA sequences coding the Sso1, Sto1 and
Sac1H/ACA motifs is directly flanked by a DNA
sequence corresponding to a C/D box motif. In S. solfa-
taricus this C/D motif corresponds to the already
characterized Sso-159C/D box sRNA (50). The yet
uncharacterized C/D motifs detected in S. tokodaii and
S. acidocaldarius were denoted Sto-sR4 and Sac-sR39,
respectively. By using a DNA probe complementary to
the Sso1H/ACA motif, we verified the presence of
the Sso1H/ACA sRNA in total RNA extracted from
S. solfataricus cells. The northern blot analysis
(Figure 1B) revealed the presence of a long form of the
RNA that likely contains both the H/ACA and the C/D
motifs, and a short form likely corresponding to the
H/ACA motif alone. Therefore, the Sso1H/ACA sRNA
is expressed in S. solfataricus.

The predicted RNA base-pair interactions between the
five putative H/ACA motifs detected and their predicted
pre-tRNATyr(GUA) targets involved both the anticodon
stem–loops and the intron sequences (Figure 1C). These
putative interactions fitted to the criteria that we recently
established for efficient H/ACA sRNA–target RNA inter-
action (45). Indeed, as found in Pyrococcus species or in
Thermococcus kodakarensis, the distance between the tar-
geted U residue and the ACA motif is of 14 nt and a stable
base-pair interaction is formed between the 30-guide
sequence and the target RNA (Figure 1C). Noticeably,
the predicted interactions of the pre-tRNAsTyr(GUA)
with the 30 guide sequences of the Sac1 and the
Mse2H/ACA motifs are exceptionally long as compared
to the previously characterized interactions (7,8,11,50–52).

Based on computational analysis using the RNAMOT
program (45), no other possible target sites in rRNAs or
tRNAs were found for the Mse2, Sso1, Sto1 and Sac1
H/ACA motifs. However, the Ape7 motif might guide
pseudouridylation at position 2444 in 23S rRNA, as pre-
viously found for the P. abyssi Pab91H/ACA sRNA (7).
Therefore, we concluded that the Mse2, Sso1, Sto1
and Sac1H/ACA motifs likely guide pseudouridylation

in pre-tRNATyr(GUA) and this may also be the case for
the Ape7H/ACA motif.

The reconstituted H/ACA Sso1 sRNP catalyses)35
formation in pre-tRNATyr transcripts

For an experimental confirmation of the pseudouridyla-
tion guiding capability of the identified H/ACA motifs, we
used the in vitro reconstitution assay established for
archaeal H/ACA sRNPs (46). Taking into account the
strong sequence conservation of both the H/ACA sRNP
proteins and the H/ACA sRNA characteristic features in
archaea, we hypothesized that an H/ACA sRNP reconsti-
tuted by using the Sso1H/ACA RNA and recombinant
P. abyssi H/ACA sRNP proteins produced in E. coli may
be active. EMSA experiments, indeed confirmed the
association of an Sso1H/ACA RNA transcript with the
recombinant P. abyssi L7Ae (L), aCBF5 (C), aNOP10 (N)
and aGAR1 (G) proteins. The association patterns
were similar to those previously obtained for the
P. abyssi Pab91 sRNA (7) (data not shown). Therefore,
as the target U residue in the S. solfataricus (Sso)
pre-tRNATyr(GUA) was followed by an A residue
(Figure 2A), we tested the activity of the reconstituted
particles by the nearest neighbour approach, using an
[a-32P]ATP-labelled Sso pre-tRNATyr(GUA) transcript
(46). Digestion by RNase T2 allowed the detection of
�p residues released from �A dinucleotide sequences.
As a control, an assay was also performed in the absence
of Sso1 RNA (Figure 2B). Fractionation by 2D thin-layer
chromatography of the resulting 30-phosphate mononu-
cleotides showed that, in spite of the presence of
several UA dinucleotides in the Sso pre-tRNATyr(GUA),
the ratio of U to � conversion in this RNA in the presence
of the reconstituted sRNP was close to 1mole/mole of
RNA (Figure 2B). In addition, no modification was
obtained in the absence of Sso1 RNA. These data were
in agreement with the expected U to � conversion at posi-
tion 35 in the transcript. To complete the demonstration,
we repeated the experiment on an Sso pre-tRNATyr(GUA)
with a U to C mutation at position 35. As expected, no U
to � conversion was detected in this RNA (Figure 2B).
We also verified that the U to � conversion in the WT Sso
pre-tRNATyr(GUA) occurred at position 35 by CMCT–
RT analysis. This is illustrated by detection of an RT-stop
at position 36 in the primer extension analysis (Figure 2C).
Therefore, we concluded that in association with P. abyssi
H/ACA sRNP proteins, the Sso1H/ACA RNA is capable
to guide U to � conversion at position 35 in an in vitro
transcribed pre-tRNATyr(GUA).

Archaeal species with a putative tRNA-specific guide
sRNA show sequence variations in the Pus7-like enzyme

As mentioned in the introduction, U to � conversion
at position 35 in pre-tRNATyr(GUA) is catalysed by
the Pus7 stand-alone enzyme in yeast (36). By genomic
sequence analysis we found putative genes for aPus7-like
enzymes in the archaeal species whose genomes were com-
pletely sequenced. When the amino acid sequences of the
highly conserved motifs I, II and III of RNA:�-synthases
were aligned for all the putative aPus7-like proteins
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Figure 1. Putative H/ACA sRNA guides for �35 modification in pre-tRNATyr(GUA) found in Sulfolobales species and in A. pernix. (A) Structures
of the putative H/ACA sRNAs involved in �35 formation in the pre-tRNATyr(GUA) of A. pernix, M. sedula, S. solfataricus, S. tokodaii and
S. acidocaldarius. Characteristic K-turns and H/ACA sequences are boxed. The identity of the C/D box sRNAs present at the 30 extremities of the
Sso1 (Sso-159), Sto1 (sR4) and Sac1 (sR39) H/ACA sRNAs are indicated. (B) Northern blot analysis of Sso1 sRNA expression in S. solfataricus.
Total RNA was fractionated by electrophoresis in an 8% polyacrylamide gel containing 8M urea, transferred to Nylon membrane (Hybond N+,
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(Figure 3A), we found a strong conservation of these
motifs in the archaeal Pus7-like enzymes, except for the
enzymes of the four Sulfolobales and the A. pernix species
that contain putative tRNA-specific H/ACA sRNAs.
These sequence divergences concern motifs II and III.
Motif II contains the catalytic Asp residue (53)
(Figure 3A and B). It also contains a conserved pair of
Arg-His residues (54). The catalytic Asp residue is found
in motifs II of the four Sulfolobales species and A. pernix,
but the Arg-His pair (R78-H79 in P. abyssi) is replaced by
an Ala(or Thr)-Asn (or Cys) pair (A90/N91 in S. solfatar-
icus) (Figure 3A and B). Substitution of the Arg-His pair
in motif II by other residues is also observed in a few other
archaeal species that do not contain a tRNA specific
H/ACA sRNA. However, in these species the highly con-
served amino acids of motif IIIa are present, especially the
conserved basic residue (N. maritimus and C. symbosium)

which is replaced by an isoleucine in the four Sulfolobales
species studied (Ile in S. solfataricus) and in A. pernix
(Figure 3A). Furthermore, other amino acid substitutions
are also observed in motifs II and IIIa of these five species.
Altogether, these observations suggested an altered
activity or specificity of the aPus7-like enzymes in S. sol-
fataricus, S. tokodaii, S. acidocaldarius, M. sedula and
A. pernix.

A pre-tRNA
Tyr

(GUA):)35-synthase activity is present
in S. solfataricus cellular extracts

As no �35 had yet been detected in archaeal pre-
tRNATyr(GUA) or tRNATyr(GUA), the first question
was to know whether such modification can occur in
archaea. We failed to analyse directly the cellular Sso
tRNATyr(GUA) by CMCT treatment in total RNA,
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Figure 2. In vitro Sso1 sRNA-guided �35 formation in the Sso pre-tRNATyr(GUA). (A) 2D structure of the S. solfataricus pre-tRNATyr(GUA). The
targeted U35 residue is circled. The sequence of the intron present in the anticodon loop is represented by small letters. (B) In vitro reconstitution of
the Sso1H/ACA sRNP and test of its activity at position �35 in Sso pre-tRNATyr(GUA). [a-32P]ATP-labelled pre-tRNATyr (GUA) or its U35C
variant was incubated for 90min at 658C in the presence of the L7Ae, CBF5, NOP10 and GAR1 recombinant proteins each at a 200 nM concen-
tration (LCNG), in the presence (Sso/LCNG) or the absence (LCNG) of the Sso1H/ACA sRNA. Modified transcripts were then digested by RNase
T2 and the resulting 30-NMPs were analysed by 2D TLC (47). Positions corresponding to the pseudouridine spot are circled on the autoradiograms.
The 30-NMP composition of the RNase T2 digest, as well as the molar amount of � residue formed by mole of RNA are also indicated on the 2D
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allowing the reconstitution of an active Sso1H/ACA sRNPs (Sso1/LCNG). The modified RNA was treated by CMCT, for 2, 10 and 20min with
(+) or without (–) subsequent alkaline treatment (OH�) and analysed by primer extension. A control experiment was performed in the absence of
CMCT treatment. Lanes U, G, C and A correspond to the sequencing ladders obtained with the same oligonucleotide. An arrow shows the position
of the RT stop corresponding to �35.
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because of the difficulty to find an efficient and specific
primer for extension analysis. Therefore, we tested
whether a pre-tRNATyr(GUA):�35-synthase activity
exists in S. solfataricus extracts. To this end, the in vitro
transcribed Sso pre-tRNATyr(GUA) and its U35C variant,
both labelled by [a-32P] ATP incorporation, were incu-
bated for 90min at 658C in a S. solfataricus cellular
extract. Then, by using the same approaches as above,
namely RNase T2 digestion followed by 2D thin-layer
chromatography, we detected the formation of 0.60mol
of � residue per mole of RNA in the WT pre-tRNA,
whereas no modification was detected in the U35C pre-
tRNA variant (Figure 4, top panels). Formation of a �
residue at position 35 in the WT Sso pre-tRNATyr sub-
strate in the Sso extract was also verified by CMCT-RT
analysis (data not shown). Importantly, when using this
extract, no � formation was detected in the heterologous
P. abyssi (Pab) tRNATyr(GUA), which is naturally synthe-
sized without intron (Figure 4). In contrast, when the
same kind of experiment was performed using a
P. abyssi cellular extract and the in vitro transcribed WT
or U35C variant Pab tRNATyr(GUA), 0.77mol of �

residues was formed per mole of WT Pab
tRNATyr(GUA) and this amount was reduced to
0.42mol of �/mol of RNA after U35C substitution
(Figure 4, bottom panels). Presence of spots correspond-
ing to several modified residues others than � residues, in
particular m1G37, Cm56, m1I57 and m1A58 were detected
in these experiments performed with total cellular extracts.
This was an indication for the high quality of these
extracts in terms of RNA modification activities. Hence,
taken together, the data demonstrated that a specific
pre-tRNATyr(GUA):�35-synthase activity exists in
S. solfataricus, while in P. abyssi cells, at least one or
more RNA:�-synthases capable to modify tRNATyr at
position 35 and at one or more positions are present
(one of the possible additional modified position in this
tRNA was position 13). Although we did not prove
directly the presence of �35 residues in tRNAsTyr

extracted from P. abyssi and S. solfataricus, we demon-
strated the presence of catalysts able to achieve this
modification in cellular extracts from these two species.
This was a strong indication for the presence of a
tRNA:�35-synthase activity in these two species.
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Figure 3. Presence of unusual Pus7-like enzymes in Sulfolobales species and A. pernix. (A) Multiple sequence alignment of Pus7 proteins from
various archaeal species. Only the regions of motif IIIa, and motif II which contains the catalytic D residue, are shown. Different colours are used to
highlight each of the conserved residues in motifs IIIa and II. The names of the organisms are indicated on the left, red arrows show species that
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In contrast to Pab Pus7-like, the Sso Pus7-like fails
to form)35 in the Sso pre-tRNATyr (GUA) in vitro

As mentioned above, the Sso Pus7-like enzyme contains
the catalytic Asp residue in motif II. Therefore, despite the
amino acid substitutions found in this motif and motif
IIIa, we could not exclude the possibility that it carries
the pre-tRNATyr(GUA):�35-synthase activity which was
detected in the extract. To test for this possibility, the
recombinant S. solfataricus (Sso) Pus7-like enzyme and,
as a control the P. abyssi (Pab) Pus7-like enzyme, were
produced in E. coli as His6-tagged fusions and purified.
The activity of the two recombinant proteins were tested
on in vitro transcribed Sso pre-tRNATyr(GUA) and Pab
tRNATyr(GUA) (Figure 5A) that were both labelled by
incorporation of [a-32P]ATP. In order to preserve the
tRNA and pre-tRNA 2D and 3D structures, enzymatic
activities were first tested by incubation for 1 h at 558C
of the RNA substrates with the recombinant enzymes
(conditions are given in ‘Materials and methods’ secion).
When the Sso Pus7-like recombinant enzyme was
used, no � formation was detected, as well in the Sso
pre-tRNATyr(GUA) as in the Pab tRNATyr(GUA)
(Figure 5B). In contrast, the Pab Pus7-like recombinant
enzyme formed average amounts of 1.47 and 1.91mol of
� residue per mole of Sso pre-tRNATyr and Pab tRNATyr,
respectively (mean values of three distinct experiments).
When a U to C substitution was generated at position
35 in these RNAs, the above average values were reduced
to 0.71 and 0.97, respectively, indicating that modification
did occur at position 35 and also at one or more positions
(Figure 5B).

As both P. abyssi and S. solfataricus grow at high tem-
peratures (988C and 808C, respectively), we tested whether
the activity of the P. abyssi enzyme was stable at 808C.
However, after 1 h of incubation at this temperature the

tRNA and pre-tRNA structures were likely unfolded, we
were aware that this unfolding will probably modify the
Pab Pus7 RNA:�-synthase specificity. Indeed, 3.47mol of
�/mol of Sso pre-tRNATyr(GUA) were formed in these
conditions (Figure 5B). The five UA dinucleotides in this
RNA were probably all modified to some extent in the
absence of RNA 3D and 2D structures. In contrast,
even at this high temperature no modification was
formed in this tRNA when using the Sso Pus7-like recom-
binant enzyme (Figure 5B).
Altogether, the data revealed the absence of activity of

the Sso Pus7-like recombinant enzyme at position 35 in
the Sso pre-tRNATyr(GUA). More generally, this enzyme
was not active on any of the UA dinucleotides in this pre-
tRNA at any of the conditions tested. In contrast, our
data demonstrated the capability of the Pab Pus7-like
recombinant enzyme to modify position 35 in both
intron-containing and intron-less tRNAsTyr. In addition,
upon unfolding of the RNA structure this enzyme could
modify a large number of sites in RNAs.

Like eukaryal enzymes the Pab Pus7-like recombinant
enzyme modifies tRNAs at both positions 13 and 35

As the yeast Pus7 enzyme catalyzes �13 formation in some
cytoplasmic tRNAs, in particular the tRNAAsp(GUC), we
tested whether the Sso and Pab Pus7-like enzymes can
catalyse �13 formation in the in vitro transcribed Sso
tRNAAsp(GUC), Pab tRNAAsp(GUC) and the Pab
tRNATyr(GUA) that all contain a U residue at position
13 (Figure 5A). Here again, in order to preserve the
RNA structure, incubation of transcripts labelled by
[a-32P]ATP incorporation with the recombinant proteins
were performed at 558C. We found that the recombinant
Pab Pus7-like enzyme catalyses the formation of average
amounts of 1.08 and 1.15mol of �/mol of WT Pab
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pre-tRNATyr (GUA) and Pab tRNATyr(GUA) together with their U35C variants were incubated for 90min at 658C in the presence of a Sso or Pab
cellular extracts. Formation of residue �35 was tested as described in the legend to Figure 2B, by 2D-TLC analysis after digestion of the RNA by the
RNase T2. The molar amounts of � residue formed per mole of RNA are indicated on the autoradiograms of the five 2D-TLCs. Additional spots
visible on the 2D-TLC autoradiograms correspond to formation of methylated nucleotides naturally present in many archaeal tRNAs (m1G37,
Cm56, m1I57 and m1A58). Reproducible results were obtained in three independent experiments.
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tRNAAsp(GUC), Sso tRNAAsp(GUC), respectively
(Figure 5C). As shown above, 1.91mol of � were formed
per mole of Pab tRNATyr(GUA) (Figure 5B). U13C sub-
stitution in the Pab tRNAAsp(GUC) completely abolished
� formation in this tRNA (Figure 5C), while U13C sub-
stitution in the Pab tRNATyr(GUA) decreased � forma-
tion in this tRNA to 1.31mol/RNA mole (Figure S2),
showing that that the Pab Pus7-like recombinant enzyme
modifies these two tRNAs at position 13. Here again, no �
formation was detected in the three tested tRNAs when
using the recombinant Sso Pus7-like recombinant enzyme
at 558C (Figure 5C). When incubations were performed at
808C, the Pab enzyme formed more than 2mol of �/mol of
Sso tRNAAsp(GUC). Therefore, here again at this high
temperature each of the UA dinucleotides was probably
modified. Interestingly, at 808C, the Sso recombinant
enzyme modified at low yields each of the three tRNAs
that contain a U13 residue. However, we cannot conclude
that these in vitro data obtained at very high temperature
reflect the activity of this enzyme at position 13 in cellulo,
since in the above assays performed in Sso cellular extract
at 658C, no pseudouridylation in UA dinucleotides of the
Pab tRNATyr(GUA) was detected (Figure 4).

Taken together, these data demonstrated an activity of
the recombinant Pab Pus7-like enzyme at position 13 in
tRNAs and a low activity at high temperature of the
recombinant Sso Pus7-like enzyme on tRNAs containing
a U residue at position 13.

Modifications by the Pab Pus7-like enzyme mainly occurs
in UA dinucleotides

In yeast modification by Pus7p was found to occur in a
conserved sequence (Pu�4(G/c)�3U�2N�1�A+1Pu+2)
(36) including an A residue at position +1 as referred to
the modified residue. Above, we tested the activity of the
recombinant Pab Pus7-like enzyme at UA dinucleotides. It
was interesting to check whether this enzyme can modify
UU, UC or UG dinucleotides or has the same requirement
for a 30 A residue as the eukaryal enzyme. To answer
this question, the Pab tRNATyr(GUA) was labelled by
[a-32P]GTP, [a-32P]CTP or [a-32P]UTP incorporation.
No modification was detected when these NTPs were

used for RNA labelling (Figure 5D). Similarly, no � res-
idue was formed in an [a-32P]GTP-labelled Sso tRNATyr

(data not shown). Therefore, we concluded that the Pab
Pus7-like enzyme, like yeast Pus7p, has a marked prefer-
ence for UA dinucleotides as compared to UU, UC and
UG dinucleotides. Based on the numerous common prop-
erties found between the Pab Pus7-like enzyme and yeast
Pus7p, we will now denote this enzyme Pab aPus7.

Different properties of the tRNATyr:)35-synthase
in Sso and Pab cellular extracts

Based on the pre-tRNATyr(GUA) and
tRNATyr(GUA):�35-synthase activities that we found in
the P. abyssi and S. solfataricus extracts, respectively, and
on the in vitro properties of the reconstituted S. solfatar-
icus H/ACA sRNP and the recombinant Pab Pus7, we
assumed that the tRNATyr(GUA) from both S. solfatar-
icus and P. abyssi contains a �35 residue. To get addi-
tional support to the idea that P. abyssi likely require
aPus7 for �35 formation in tRNA, whereas S. solfataricus
may use an H/ACA sRNA-guided system, we took advan-
tage of the requirement of a 30 A residue for efficient U to
� conversion by Pab aPus7 and the absence of this
requirement for U to � conversion catalysed by H/ACA
sRNPs, which was also experimentally demonstrated
(data not shown). Indeed, based on the above character-
ized specificity of the Pab aPus7 enzyme, we expected that
an A36G substitution in the Pab tRNATyr(GUA) tran-
script would abolish the activity of this enzyme at position
35 in this tRNA. In contrast, the same A36G base
substitution was not expected to affect the activity of
the Sso1H/ACA sRNP at position 35 in the Sso pre-
tRNATyr(GUA) (residue A36 as well as the target U35
residue are not base-paired with the guide RNA, see
Figure 1). In order to release labelled �p from position
35 after RNase T2 digestion, the variant A36G Pab
tRNATyr(GUA) and A36G Sso pre-tRNATyr(GUA) tran-
scripts were labelled by [a-32P]GTP incorporation.
As expected (Figure 6A), despite the presence of four
UG dinucleotides in the A36G Pab tRNATyr transcript,
no � formation was detected after incubation of this
RNA, either with Pab aPus7 (558C) or with a Pab cellular
extract (658C). In contrast, formation of nearly 1mol
of �/mol of RNA was observed when using the recon-
stituted Sso1H/ACA sRNP in the presence of the Sso
A36G pre-tRNATyr (GUA) variant (658C). In addition,
similar levels of U to � conversions were detected
upon incubation of the [a-32P]ATP labelled Sso pre-
tRNATyr(GUA) or the [a-32P]GTP labelled Sso A36G
pre-tRNATyr(GUA) transcript in an Sso cellular extract
(658C) (Figure 6B).
Taken together these data were in agreement with the

idea that in a P. abyssi cellular extract, Pab aPus7 may be
responsible for �35 formation in the Pab tRNATyr(GUA),
whereas in an S. solfataricus cellular extract, the Sso
H/ACA sRNP may catalyse �35 formation in the Sso
pre-tRNATyr(GUA). To try to get a more formal proof
of the H/ACA sRNP activity on the pre-tRNATyr in
S. solfataricus, we prepared Sso cellular extracts devoid
of RNAs by treatment with micrococcal nuclease.
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Figure 5. Continued.
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The activity of these extracts was tested on the Sso
pre-tRNATyr after nuclease inactivation using various
chelators of divalent cations. As expected, no residual
tRNATyr:�35-synthase activity was detected. However,
when the same experiment was performed as a control
using the P. abyssi cellular extract, we also detected a
strong decrease of tRNATyr:�35-synthase activity after
treatment. Most probably, the chelators used to inhibit
micrococcal nuclease affected enzyme activity and/or
RNA substrate structure. Therefore, in the absence of
a clear control we had no direct proof that the Sso
tRNATyr:�35-synthase activity detected in the extract
was strictly dependent on the H/ACA sRNA. However,
altogether, most of our in vitro observations are in agree-
ment with the fact that the deficiency that we observed
for the aPus7 tRNA:� synthase activity in S. solfataricus
might be compensated by the presence of a specific
H/ACA sRNA guide in this species.

Important roles of the conserved basic residue in motif
IIIa and the KR/RH pair in motif II of archaeal aPus7

We tested which of the observed amino acid substitutions
in motifs II and IIIa of Sso aPus7 might explain its lower
activity compared to Pab aPus7. In order to dissociate the
effect of amino acid substitutions in motif IIIa from amino
acid substitutions in motif II, the K27I substitution found
in motif IIIa of the Sso aPus7 was transferred into the
Pab aPus7 enzyme by site-directed mutagenesis (variant
Pab K19I). We also transferred the R90A/H91N sequence
found in motif II of Sso aPus7 in Pab aPus7 (variant
R78A/H79N). Finally, we produced a Pab aPus7 variant
mutated in both motifs (K19I+R78A/H79N). Conver-
sely, we tested whether we could restore some activity in
Sso aPus7 by individual I27K substitution in motif IIIa,
double A90R and N91H substitutions in motif II or by
combination of these three amino acid substitutions. Var-
iant Pab aPus7 and Sso aPus7 were produced as recombi-
nant proteins in E. coli and purified using their His6-tag
sequence. As WT Pab aPus7 modifies only position 13 in
Pab tRNAAsp, this substrate was used to test the activity
of the variant proteins. As above, each test of activity was
first done at 558C in order to preserve the RNA structure.
The mean values obtained in three independent experi-
ments are shown in Figure 7. Both the K19I and R78A/
H79N substitutions in Pab aPus7 decreased the activity at
position 13 in the Pab tRNAAsp at 558C (Figure 7A), and
combination of the three amino acid substitutions comple-
tely abolished this activity. Restoration of an RH pair in
motif II of Sso aPus7 had almost no effect on its activity
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tRNA 
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Figure 6. Formation of �35 in tRNATyr(GUA) is likely catalysed by
Pab aPus7 in P. abyssi, while the Sso1H/ACA sRNP might be the
catalysts in S. solfataricus. (A) Modification of the [a-32P]ATP-labelled
WT tRNATyr(GUA) and its [a-32P]GTP-labelled A36G variant by
recombinant Pab aPus7 and in a Pab cellular extract was tested by
the nearest neighbour approach. Incubations with the recombinant pro-
teins were performed for 90min at 558C and with the extract for 90min
at 658C. Additional spots on the TLC chromatograms corresponding to
the formation of m1G37, Cm56, m1I57 and m1A58 are indicated. The
molar amounts of � residue formed per mole of RNA are given. (B)
The activity at 658C of the reconstituted Sso1 sRNP (Sso1/LCNG) and
an Sso cellular extract was tested on the WT Sso pre-tRNATyr(GUA)
and its U36G variant. The Sso1H/ACA sRNP was reconstituted and
its activity was tested as described in the legend to Figure 2B.
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Figure 7. Test of the activity of Pab aPus7 and Sso aPus7 recombinant
WT or variant proteins on the [a-32P]ATP-labelled P. abyssi
tRNAAsp(GUC). Enzymatic tests were performed as described in the
legend to Figure 5, except that we used point-mutated variants of the
enzymes, Pab aPus7 K19I, R78A/H79N, and with the three R78A,
H79N and K19I mutations and Sso aPus7 I127K, A90R/N91H and
with the three I127K, A90R and N91H mutations. Incubations with the
enzymes were performed both at 558C (A) and at 808C (B) and the
molar amounts of � residue formed per mole of tRNAAsp are given in
a histogram. Error bars correspond to the standard deviations in three
independent experiments.
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at 558C, whereas restoration of the conserved basic residue
in motif IIIa (I27K variant) allowed a significant increase
of U to � conversion (Figure 7A). However, the combi-
nation of all three substitutions had no positive effect.
Interestingly, at 808C (Figure 7B), the individual K19I
or R78A/H79N substitutions in the Pab aPus7 had
almost no negative effect on its activity towards the Pab
tRNATyr(GUA). However, their combination nearly abol-
ished this activity. As described above (Figure 5C), the
WT Sso aPus7 showed some activity on the Pab
tRNAAsp(GUA) at 808C. The I27K substitution in this
enzyme noticeably increased this activity (0.71mol of
�/mol of tRNA, against 0.45 for the WT enzyme). How-
ever, here again the A78R and N79H substitutions had no
positive effect on this activity.

Therefore, both S. solfataricus and the R78/H79 pair in
motif II are important for activity of Pab aPus7 at position
13 in tRNAs and activity of Sso aPus7 can be increased by
introduction of the basic residue in motif IIIa. Taken
together, the data point out the strong functional impor-
tance of the basic residue in motif IIIa of aPus7 enzymes.

DISCUSSION

In this work, we described for the first time a family of
H/ACA sRNAs that are likely dedicated to tRNA pseu-
douridylation and, in order to explain their presence, we
made the first detailed analysis of the activity of archaeal
Pus7-like enzymes.

Like the eukaryal enzymes, the P. abyssi aPus7 enzyme
is active at positions 13 and 35 in tRNAs

The archaeal aPus7 enzymes belong to the TruD family
of tRNA:�-synthases. Whereas E. coli TruD only modi-
fies position 13 in tRNAGlu (25), our in vitro data reveal
that, like its eukaryal counterpart (35,36), Pab aPus7
likely modifies tRNAs at positions 13 and 35 in cellulo.
Our data also suggest that this enzyme can modify some
other positions in archaeal tRNAs.

Consistent with our observations, 13 out of the 42
sequenced H. volcanii tRNAs contain a �13 residue (21).
Surprisingly, whereas both in plants and in yeast, the U35
to �35 conversion in tRNATyr(GUA) is strictly intron
dependent (42,43,55), here we observed the efficient �35
formation by both Pab aPus7 and a Pab cellular extract
in an intron-less Pab tRNATyr(GUA) transcript. This
strongly suggests that this modification can also occur
on an intronless tRNA in cellulo. Up to now, �35 forma-
tion in intronless tRNA was only observed in the mito-
chondrial tRNAAsn(GUU) from the starfish Asteria
amurensis (56). Recent data revealed that only half of
the archaeal tRNATyr(GUA) encoding genes contain an
intron (57,58). Based on the present data, this absence of
intron may have a limited influence on the presence of a
�35 residue in tRNAsTyr.

Modification by P. abyssi aPus7 preferentially occurs
at UA dinucleotides

Previous comparisons of the S. cerevisiae Pus7p RNA
substrates revealed that this enzyme modifies U residues

that belong to a highly conserved sequence (Pu�4(G/
c)�3U�2N�1�A+1Pu+2) (36). A similar consensus
sequence was also proposed to be required for �35 for-
mation in plant pre-tRNAsTyr(GUA) (43). In addition,
most of the tRNA sequences surrounding �35 residue in
plant and animal tRNAs fit to the above consensus. In
agreement with this observation, our data strongly suggest
that the presence of an A residue located 30 to the target
uridine is required for Pab aPus7 activity. In addition,
at the two positions where we observed an efficient
in vitro U to � conversion by Pab aPus7 at 558C, positions
13 in the Pab tRNAAsp(GUC) and positions 35 in the Pab
tRNATyr(GUA) and Sso pre-tRNATyr(GUA), respec-
tively, the modified sequence fits to the above consensus
(Figure 5A). However, by site-directed mutagenesis of
UA dinucleotides in the Pab tRNATyr (GUA), we demon-
strated that in addition to position 35 and 13 which are
modified at high yields, position 22 that does not fit to the
consensus sequence is partially modified at 558C by
the recombinant enzyme (about 0.22mol �/mol RNA)
(Figure S2). Therefore, the presence of the target U
residue in a (Pu�4(G/c)�3U�2N�1�A+1Pu+2) sequence
is not as strictly required for archaeal aPus7 as it is for
eukaryal Pus7. Only the presence of an A+1 residue may
be strictly required. Accordingly, the sequence alignment
of archaeal tRNAs known to contain a �13 residue (56)
shows that, whereas an A+1 residue is always conserved,
the U�2 residue, found in all substrates of eukaryal
Pus7-like enzymes, is found only in about one-third of
the modified archeal tRNAs. This may also explain why
when in vitro assays were performed in conditions where
tRNA structure was melted (808C), Pab aPus7 modified
almost all UA dinucleotides in the substrate. Recent
results obtained for the P. abyssi tRNA:m5C-methyltrans-
ferase Trm4 demonstrated that its interaction with a pro-
tein called Archease modulates both its solubility and its
substrate specificity in cellulo (59). Therefore, we cannot
exclude the possibility that in its cellular context the aPus7
specificity is maintained at the very high growth tempera-
ture of P. abyssi by interaction with cellular proteins.
Altogether, these observations suggest lower sequence
constraints for aPus7 activity as compared to eukaryal
enzymes.

Peculiar aPus7 proteins are found in some crenarchaeote
species

By sequence alignment of archaeal Pus7-like proteins with
yeast Pus7p and E. coli TruD, the Sulfolobales Pus7-like
enzymes were all found to display several amino acid sub-
stitutions in the highly conserved motifs IIIa and II.
According to the four available Sulfolobales genomic
sequences, this peculiar sequence of aPus7 seems to be
a general feature in this archaeal order. In contrast,
among the four species of the Desulfurococcales order,
whose complete genomic sequences are available, only
A. pernix was found to carry amino acid substitutions in
the aPus7 motif IIIa.
As expected by the location of motifs IIIa and II at the

active sites of RNA:�-synthases and their strong conser-
vation in these enzymes (60,61) alterations of these motifs
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in the Sulfolobales aPus7 proteins strongly decrease their
activity. Our data show that among the numerous amino
acid substitutions found in the Sulfolobales motifs IIIA
and II, replacement of the conserved basic residue in
motif IIIa by an Ile residue (Ile27 in Sso aPus7, Lys19 at
the corresponding position in Pab aPus7) has the strongest
negative effect on the activity. This strong effect can
be explained by the necessity for a salt bridge forma-
tion between this conserved lysine residue and the catalytic
aspartic acid residue (Asp77 in Pab aPus7) (Figure 3AB).
This interaction was predicted to facilitate the nucleophilic
attack by the COO� group of the Asp residue at position
C6 of the uridine base (53). The Ile27 residue in Sso aPus7
cannot form this salt bridge (Figure 3). This probably
explains the almost complete inactivity of Sso aPus7 at
558C. Our observation that the Sso aPus7 activity is mark-
edly increased when the conserved basic residue in motif
IIIa is restored reinforces this hypothesis.
Whereas, no activity of Sso aPus7 was detected at posi-

tion 35 in the Sso pre-tRNATyr(GUA), even at 808C, the
Sso aPus7 enzyme is not completely inactive since we
detected some activity at high temperature on some
tRNAs that contain a U residue at position 13. At high
temperature, due to the higher flexibility of the protein
backbone, other amino acids than the mutated ones may
contribute to Asp89 activation in the active site. We can
imagine that a low activity of Sso aPus7 at position 13 in
tRNAs may be sufficient to ensure a minimum level of
modification at this position in vivo. In contrast, Sso
aPus7 may be unable to ensure sufficient modification at
position 35 in tRNATyr, explaining why a specific H/ACA
sRNA dedicated to �35 formation in tRNATyr appeared
in Sulfolobales and A. pernix. The lower negative effect of
amino acid substitutions in motif II (RH/KR) on aPus7
activity compared to substitution of the basic conserved
amino acid in motif IIIa, is consistent with the absence of
�35-specific H/ACA sRNA in Desulfurococcales species
that display mutations in the aPus7 RH/KR conserved
pair in motif II.

The high functional importance of)35 in archaeal tRNATyr

may explain the requirement for an H/ACA sRNA in
Sulfolobales

The need for a guide RNA for �35 formation in
Sulfolobales tRNATyr may also be related to a high func-
tional importance of �35 in tRNATyr(GUA). As men-
tioned in the ‘Introduction’ section, residue �35
reinforces the stability of the anticodon stem–loop by
interaction with residue U33 (13). This structural stabili-
zation may increase the aminoacylation efficiency of
tRNATyr(GUA) by its cognate aminoacyl-tRNA synthe-
tase (16) and also increases the stability of the codon-
anticodon interaction during mRNA translation on the
ribosome (16,41). This was shown by extensive studies
on suppressor tRNATyr. For instance, the absence of
�35 in SUP6 tRNATyr(UUA) was found to decrease its
in vivo ability to read-through the ochre stop codon UAA
(42). Similarly, the presence of residue �35 increased
the tRNATyr suppression activity on ochre (UAA) and
amber (UAG) stop codons in the Tobacco Mosaic Virus

RNA (17). One can imagine that the stabilization of
codon–anticodon interactions is particularly important
for organisms growing at very high temperatures like the
hyperthermophilic Archaea. Therefore, it is reasonable to
expect an important role of residue �35 in the codon–
anticodon interaction during mRNA decoding in these
organisms.

Sulfolobales andA. pernix are the first organisms found
to contain H/ACARNA guides that may guide tRNA
modification

Up to now, in Bacteria as well as in Eukarya, all tRNA
post-transcriptional modifications were shown to be cata-
lysed by enzymes that do not require a guide RNA. In
contrast, an important implication of C/D box sRNAs
in tRNA 20-O-methylations was already demonstrated in
Archaea (44). The present study describes for the first time
H/ACA sRNAs that may direct pseudouridylation in
tRNAs. By using the computational approach that we
developed recently (45), we tested whether other H/ACA
sRNAs dedicated to tRNA modification may exist in 48
available complete archaeal genomic sequences. No other
tRNA-specific H/ACA sRNAs were found. Therefore, the
H/ACA sRNAs identified in Sulfolobales and A. pernix
may constitute a unique example of adaptive evolution: an
H/ACA sRNA that was probably initially dedicated
to rRNA modification may have been deviated from
its original target to complement the deficiency of a
tRNA:�35-synthase. The shift from a non-guided to a
guided post-transcriptional modification machinery was
already observed for 20-O-methylation at position 56 in
archaeal tRNAs. Formation of Cm56 in the tRNA
T�-loop is catalysed by the specific tRNA:20-O-methyl-
transferase (aTrm56) in Archaea (62). The aTrm56 protein
is missing in the crenarchaeote Pyrobaculum aerophilum,
in which the modification is achieved by an additional
C/D sRNP.

Links between tRNA and rRNAmodifications in
Sulfolobales andA. pernix

Interestingly, the Ape7 sRNA, in addition to guide tRNA
modification, has also conserved the possibility to guide �
formation at position 2444 in 23S rRNA (Figure 1). The U
residue at the equivalent position in P. abyssi 23S rRNA is
modified by the Pab91 sRNA (7). The Ape7 sRNA may
have gained an additional activity at position 35 of
the pre-tRNATyr(GUA) after deleterious mutations in
aPus7. In contrast, based on computational analysis, the
four Sulfolobales H/ACA sRNAs that guide tRNA mod-
ification are not expected to guide any modification
in rRNAs. Interestingly, both their 50- and 30- guide
sequences form unusually long interactions with the pre-
tRNATyr (GUA) (Figure 1) and some base compensatory
mutations are found between the guide and target RNAs
when base-pair interactions are compared in the four spe-
cies. A strong link still exists between these H/ACA
sRNAs and rRNA maturation, since the genes encoding
Sso1, Sto1 and Sac1H/ACA sRNAs also encode
C/D box sRNAs (Figure S1, Supplementary Data). Our
observation of a common transcript containing the
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H/ACA and C/D sRNAs is in agreement with the recent
finding that the Sso-159C/D sRNA is expressed as a
120-nt-long RNA (50). The Sso-159 sRNA was proposed
to guide 20-O-methylation at position U2621 in 23S
rRNA. The C/D motifs of the Sto1 sR4 and Sac1
sR39C/D box sRNAs can also guide 20-O-methylation
at the same positions in 23S rRNA (data not shown).
In addition, by computational approach, we could predict
that these 3C/D sRNAs may also guide 20-O-methylation
of 23S rRNA at positions 2645 and 2648 (S. solfataricus
numbering). Altogether, this study suggests that sRNA
sequences which have a capacity of rapid evolution may
represent a flexible adaptive reservoir for RNA modifica-
tion in archaea.
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