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ABSTRACT

MicroRNAs (miRNAs) are �22-nt long, non-coding
RNAs that regulate gene silencing. It is known that
many human miRNAs are deregulated in numerous
types of tumors. Here we report the sequencing of
small RNAs (17–25 nt) from 23 breast, bladder, colon
and lung tumor samples using high throughput
sequencing. We identified 49 novel miRNA and
miR-sized small RNAs. We further validated the ex-
pression of 10 novel small RNAs in 31 different types
of blood, normal and tumor tissue samples using
two independent platforms, namely microarray and
RT–PCR. Some of the novel sequences show a large
difference in expression between tumor and tumor-
adjacent tissues, between different tumor stages, or
between different tumor types. We also report the
identification of novel small RNA classes in human:
highly expressed small RNA derived from Y-RNA
and endogenous siRNA. Finally, we identified
dozens of new miRNA sequence variants that
demonstrate the existence of miRNA-related SNP
or post-transcriptional modifications. Our work
extends the current knowledge of the tumor small
RNA transcriptome and provides novel candidates
for molecular biomarkers and drug targets.

INTRODUCTION

MicroRNAs (miRNAs) are �22-nt long non-coding RNA
species that negatively regulate gene expression. In recent
years the role miRNAs play in cancer has been extensively
explored and these non-coding genes were implicated in
numerous types of cancer as either oncogenes or
tumor-suppressor genes (1). miRNAs are already used as
diagnostic biomarkers in clinical assays designed for

several types of cancer, such as lung cancer and cancer
of unknown primary (2,3).

Next generation sequencing methods, also known
as ‘deep sequencing’, have been widely used in recent
years. These high throughput and highly sensitive
sequencing methods include Roche Applied Sciences
(454) GS, Illumina’s Solexa 1G sequencer, and Applied
Biosystem’s SOLiD system. Deep sequencing can be
used for the discovery of novel miRNA species and
other small RNAs that are missed by traditional sequenc-
ing of small RNA libraries. HumanmiRNAs were previ-
ously identified using deep sequencing (4–8). However, the
miRNA content of solid human tumors has only been
partially explored using these methods and yet-unknown
miRNAs and other small RNAs may be part of the tumor
transcriptome.

Here, we present deep sequencing analysis of miRNAs
from 23 solid tumor specimens of four different types:
breast, bladder, colon and lung. A computational
approach was used to identify known miRNA sequences,
miRNA sequence variants (isomiRs), and novel small
RNA species in these tumors. Forty-nine novel miRNA
and small RNA candidates were identified including
several novel miRNA sized RNA sequences: a human en-
dogenous siRNA candidate and highly abundant 22–25 bp
small RNAs derived from Y RNA. We also provide
sequencing evidence for the existence of the recently
identified humanmiRNA–offset RNAs (MORs) in
human tumors. Subsequently, 31 normal and tumor
samples from various tissue types were hybridized to a
miRNA-microarray containing the novel miRNAs.
Some of the novel miRNAs are abundantly expressed in
different types of tumors and others are expressed differ-
ently between tumor and non-tumor samples, between dif-
ferent tumor stages or between different types of tumors.
In addition, using RT–PCR as a third platform we con-
firmed the expression of five of the novel small RNAs in
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normal human serum. We identified numerous, abundant,
new isomiRs (sequence variants of miRNAs) that may be
related to carcinogenesis and may be derived from DNA
alterations (SNPs or cancer-related mutations) or
post-transcriptional modifications. These new cancer
miRNA candidates can potentially be used as diagnostic
biomarkers or therapeutic targets in different types of
cancer.

MATERIALS AND METHODS

RNA isolation and enrichment phase

Total RNA was extracted twice from each sample of 23
human formalin-fixed paraffin-embedded (FFPE) samples
derived from cancerous tissue. RNA was isolated using 10
10-mm-thick tissue sections using the miRdicatorTM ex-
traction protocol developed at Rosetta Genomics.
Briefly, the sample was incubated repeatedly in xylene at
57�C to remove excess paraffin, followed by washing in
ethanol. Proteins were degraded by incubation in protein-
ase K solution at 45�C for a few hours. The RNA was
extracted with acid phenol:chloroform followed by
ethanol precipitation and DNAse digestion. Total RNA
quantity and quality were checked by spectrophotometry
(Nanodrop ND-1000). Pools of samples of the small RNA
fraction (�200 nt and lower) within the total RNA were
labeled and hybridized on arrays. After ensuring the
presence and expression of more than 100 miRNAs per
cancerous tissue pool, tissues were pooled together, result-
ing in a bladder+breast tumor pool and a colon+lung
pool. Array expression (Supplementary Figure S1)
revealed the presence of 157 miRNAs from bladder
cancer FFPEs, 260 miRNAs from breast cancer FFPEs,
135 miRNAs from lung cancer FFPEs, and 239 miRNAs
from colon cancer FFPEs. Total RNA (75mg) of seven
different colon cancer FFPEs were pooled together with
75 mg of six different lung cancer FFPEs, while 75 mg total
RNA of five different bladder cancer FFPEs were pooled
together with 75 mg of five different breast cancer FFPEs.

Cloning linker attachment phase

The 30 and 50 cloning linkers (30 Linker: 50-rAppCTGTAG
GCACCATCAAT/3ddC/-30; 50 Linker: 50-TGGAATrUr
CrUrCrGrGrGrCrArCrCrArArGrGrU-30) were ligated
to purified small RNA species in preparation for cDNA
synthesis and amplification, using miRCatTMmiRNA
Cloning Kit according to the user manual, as described
below.

Amplification

Reverse transcription of the linkered RNA species was
carried out followed by PCR amplification. Primer se-
quences were as follows:

RT: 50-GATTGATGGTGCCTACAG -30 (Tm: 50.2
�C)

Fwd tag1 primer: (454 fwd1 –BL1 mm)
50 GCCTCCCTCGCGCCATCAGcagtTGTAATTCTCG

GTCACCAA 30

Rev tag1 primer: (454-Rev1-BL1)

50 GCCTTGCCAGCCCGCTCAGcatgATTGACGGTG
CCTACAG 30

Fwd tag2 primer: (454 fwd2 –BL1 mm)
50 GCCTCCCTCaCGCCATCAGtagtTGTAATTCTCG
GTCACCAA 30

Rev tag2 primer: (454-Rev2-BL1)
50 GCCTTGCCAGCCCGCTCAGtagtATTGACGGTG
CCTACAG 30

Small RNA enrichment

The libraries were built using the MirCat kit, with several
modifications, as described below. Enrichment of small
RNA was carried out by recovering the small RNA
fraction (17–25 nt), identified by internal size markers,
from a slice of a 12% denaturing (7M Urea) polyacryl-
amide gel. The synthetic RNA size markers run in the lane
adjacent to the cancer samples were 15 nt (50-GCAAAGC
ACACGGCC-30), 22 nt (50-UAUGUAUCGAAUUUAA
GCUCAA-30) and 38 nt (50-GCAAGGAUGACACGCA
AAUUCGUGAAGCGUUCCAUAUU-30).
Cleaning the desired RNA from the gel was carried out

by GeBAflex-tube-midi column (GeBAflex-tube Gel ext &
Dialysis Kit Midi, Manufactured by DNR http://www
.dnr-is.com/Product.asp?Par=2.215.219&id=228) using
an electric current of 300V for 40min until the nucleic
acid exited from the gel slice, followed by applying
reverse polarity of the current for 120 s. This step
releases the nucleic acid from the membrane. Isolated
RNA was precipitated by adding 8 ml of glycogen, a
one-tenth volume of NaOAc 3M, pH 5.2, and three
volumes of cold 100% ETOH, with vortexing after each
addition. The isolated RNA was precipitated overnight at
�20�C, centrifuged for 1 h at 4�C at 14 000 rpm, followed
by washing with 1ml cold 85% ETOH and subsequent
centrifugation for 5min at 14 000 rpm.

RNA linkering

Following recovery of the enriched small RNA fraction
from the acrylamide gel slice, the small RNAs were ligated
with a 30 and a 50 linker in two separate reactions. First, 30

ligation was performed in which the 30 linker was ligated
to the small RNAs using T4 RNA ligase in the absence of
ATP in order to avoid circularization of the RNA frag-
ments, as described in (9). The ligated product was
purified by recovering the desired band, identified using
size markers, from a slice of a 12% denaturing (7M Urea)
polyacrylamide gel. Two synthetic RNAs (24 and 38 nt,
described previously) and two synthetic RNA transcripts
(53 and 83 bp) were run adjacent to the cancer samples.
Purification and precipitation were carried out as
described previously.
The 50 linker is ligated to the 30 linkered small RNAs

in the presence of 1.0mM ATP, followed by recovering
the desired band from a slice of a 12% denaturing
(7M Urea) polyacrylamide gel with the same size
markers. Purification and precipitation done as described
before.
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Reverse transcription

The 50 and 30 ligated RNAs contained both RNA and
DNA regions which were converted to DNA using
reverse transcriptase with RT primer, according to
MirCat protocol (http://eu.idtdna.com/CATALOG/
smallRNAcloning/page1.aspx?display=mircatkit).

PCR amplification

The PCR amplification step was carried out using primers
different from those provided by the MirCat kit since the
primers provided cause strong self- and heterodimers.
PCR was carried out using PfuUltra high fidelity DNA
polymerase (Stratagene #600380) and pairs of longer
PCR primers (40–42-mers) containing sequences comple-
mentary to the linkers, tag sequences (small letters) and
sequences which were suitable for the 454 platform
(underlined). Tag1-flagged colon and lung library and
Tag2-flagged breast and bladder library followed by 454
sequences that will convert the small RNA libraries made
to ones that can be directly sequenced on the 454
platform.
Samples from five PCR reactions were pooled, extracted

with phenol:chloroform, followed by recovery of the
desired band from slices of an 8% native polyacrylamide
gel. The resulting library was sent for sequencing on the
454 platform.

Computational analysis of deep sequencing

The deep sequencing process yielded over 200 000 se-
quences from both libraries. Adaptors were removed
using a Perl script allowing internal polyN sequences
within the adaptors and one mismatch. About 1000 se-
quences were removed since they were too short after
adaptor removal (<10 bp). The sequences were mapped
to the human genome (UCSC hg18 build) using BLAST,
allowing maximum 3bp mismatched to the genome and
maximum insertion/deletion (indels) of 3 bp. For each
aligned sequence the highest scoring hit was retrieved.
All sequences with position overlap were clustered
together using a Perl script. We assigned each genomic
cluster of sequences the most abundant sequence in this
cluster and demanded that for candidate miRNAs, the
most abundant sequence was mapped precisely to the
genome (not allowing any mismatches/indels). The next
step was to annotate known sequences. The following
datasets were used for this task: RNA genes, sno/
miRNA, RefSeq genes and RepeatMasker tables were
downloaded from the UCSC table browser (10), and
known miRNA precursors were downloaded from
miRBase (11) in order to mark whether the sequence is
part of a non-coding gene, a snoRNA, a protein-coding
gene exon, a genomic repeat, or a known miRNA precur-
sor, respectively. The sequences of the novel miRNA can-
didates were extended by several hundred base pairs
within their chromosomes in order to predict possible
miRNA precursors. An extended sequence was intended
to predict the folding of a pri-miRNA that contains a
hairpin-folded pre-miRNA. The candidate pri-miRNAs
were folded using the Vienna package (12) or mfold (13)

programs. All hairpin structures that had at least 6 bp,
were at least 55 nt long and had a loop not longer than
20 nt were extracted from the minimum free energy fold of
the predicted pri-miRNA (excluding overlapping
hairpins). Each hairpin was assigned a hairpin score
(Palgrade) and conservation score as described before
(14). Predicted miRNA precursors have either
Palgrade> 0 meaning it has structural and sequence char-
acteristics of known miRNA) or have absolute value of
conservation score> 0.9 (conserved in mammals). These
criteria have a sensitivity of 86% for known miRNA pre-
cursors from miRBase 13.0. In addition, only sequences
with 10 or less genomic copies, with a length of 17–25 bp
and a GC content in known miRNA range (15–90%) were
chosen as miRNA candidates. Most (75%) miRbase miRs
detected in this analysis were detected three or more times.
Therefore we consider sequences counted three times or
more to have a good chance of being functional. All se-
quences were deposited in the GEO, accession GSE20418.

Microarray design

Custom microarrays (Biochips) were manufactured by
Agilent Technologies (http://www.agilent.com) by in situ
synthesizing DNA oligonucleotide probes to 949 known
miRNAs and 876 sequences from deep sequencing,
printed in triplicate. Out of 49, 44 novel miRNA and
small RNAs were used in the microarray (five sequences
were identified as novel miRNAs/small RNAs after the
design of the microarray). Sequences from deep
sequencing were characterized by:

(i) Mapping to the human genome.
(ii) Being part of a predicted hairpin (folded by Vienna/

MFold).
(iii) Not being part of an annotated sequence (known

miRNA, small RNA, coding exon).
(iv) Having <10 genomic occurrences.
(v) MiRNA-sized (17–25 bp).
(vi) 10%<%GC content< 90%.

Each probe comprised an antisense sequence of the
relevant sequence, followed by a tail sequence (GCAAT
GCTAGCTATTGCTTGCTATTAAAAA), and was
trimmed to the length of 45 nt. Seventeen negative
control probes were designed using the sense sequences
of different miRNAs. Two groups of positive control
probes were designed to hybridize to the array: (i) synthet-
ic small RNA that were spiked to the sample RNA before
labeling to verify the labeling efficiency, and (ii) probes for
abundant small nuclear RNAs that were spotted on the
array to verify RNA quality.

Microarray hybridization

The microarray was hybridized to 38 different samples
(Supplementary Table S9). The samples were from 17 dif-
ferent tissue types and blood samples and were divided to
normal (n=8), tumor (n=15), tumor adjacent (n=5)
and metastasis indications (n=8).

A total of 2–2.5 mg of total RNA was labeled by ligation
of an RNA-linker, p-rCrU-Cy/dye (Eurogentec S.A.; Cy3
or Cy5), to the 30 end. Synthetic small RNA was spiked
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into the RNA before labeling to verify the labeling effi-
ciency. Slides were incubated with the labeled RNA for
12–16 h at 55�C and then washed according to Agilent GE
washes. Arrays were scanned using Agilent DNA
Microarray Scanner Bundle (Agilent Technologies,
Santa Clara, CA) at a resolution of 5 mm, dual pass at
100 and 10% PMT power. Array images were analyzed
using Agilent Feature Extraction software.

Array signal calculation and normalization

Array images were analyzed using the Feature Extraction
software (FE) 9.5.1 (Agilent, Santa Clara, CA). Triplicate
spots were combined to produce one signal for each probe
by taking the logarithmic mean of reliable spots. All data
were log-transformed (natural base) and the analysis was
performed in log-space. A reference data vector for nor-
malization R was calculated by taking the median expres-
sion level of a subset of all probes (all miRNAs in
miRBase 10) across samples. For each sample data
vector S, a second degree polynomial F was found so as
to provide the best fit between the sample data and the
reference data, such that R&F(S). For each probe in the
sample (element Si in the vector S), the normalized value
(in log-space) Mi was calculated from the initial value Si
by transforming it with the polynomial function F, so that
Mi=F(Si). P-values were calculated using a two-sided
t-test on the log-transformed normalized fluorescence
signal. The fold-difference (ratio of the median normalized
fluorescence) was calculated for each miRNA. The signal
of a sequence is defined as differential between sample ‘A’
and sample ‘B’ if the fold change between the signal in
sample A and sample B is either larger than the 95th per-
centile of fold changes of all sequences expressed in both
samples, or >8. Results of all microarray experiments
were deposited in Gene Expression Omnibus GSE20418.

Expression detection by qRT–PCR

RNA was subjected to a polyadenylation reaction as
described previously (15). Briefly, RNA was incubated in
the presence of poly (A) polymerase (PAP; Takara-
2180A), MnCl2 and ATP for 1 h at 37�C. Then, using an
oligodT primer harboring a consensus sequence, reverse
transcription was performed on total RNA using
SuperScript II RT (Invitrogen). Next, the cDNA was
amplified by real time PCR; this reaction contained
amiRNA-specific forward primer, and universal
TaqMan probe complementary to the 30 end of the
oligodT plus part of the tail, and a universal reverse
primer complementary to the consensus 30 sequence of
the oligodT tail. For each miR, expression signals were
calculated by the formula 42 –Ct(miR-X).

Dual-luciferase reporter assay

Dual-luciferase assay was conducted using psiCHECK-2
dual luciferase plasmid (Promega) harboring the relevant
sequencing in its 30UTR (GeneScript). Hep3B cells were
plated at a density of 4000 cells per well, on white collagen
coated plates (with a transparent bottom). Cells were
transfected the next day with plasmid baring the relevant
30UTR, and with or without antisense oligo for the

relevant small RNA sequence. Transfection was carried
out using 0.3 ml Lipofectamine 2000/well (Invitrogen,
Cat# 11668027). Luminescence was assayed 24 h after
Transfection, using the Dual Luciferase reporter assay
kit (Promega, Cat#E1961). Luminescence was read on
Luminoskan Ascent (Thermo). Firefly luciferase from
the same plasmid was used for normalization of transfec-
tion efficiency. A plasmid vector without 30UTR alteration
in the renilla 30UTR was used as a reference for constitu-
tive luciferase expression. Results were shown as the ratio
between the various treatments and cells transfected with
an empty vector.

RESULTS

Deep sequencing of small RNAs from solid tumor samples

In order to identify new cancer-related miRNAs, 23
formalin-fixed paraffin-embedded (FFPE) samples of
primary solid tumors were obtained from the following
tumor tissues: breast (n=5), bladder (n=5), colon
(n=7) and lung (n=6) (samples are described in
Supplementary Table S1). Total RNA enriched of small
RNA was extracted, RNA quality was examined by hy-
bridization to a custom miRNA microarray.
Tissue-specific miRNAs of the tissues sampled were
clearly expressed in the microarray experiment, supporting
the high quality of the RNA (Supplementary Figure S1).
Next, the RNA samples from breast and bladder were
pooled together, and RNA samples from colon and lung
were pooled together. Small RNA (17–25 nt) was
separated and small RNA libraries were prepared and
sequenced using 454 Life Sciences technology.
The sequencing process yielded 141 023 sequences from

the bladder+breast tumor pool and 90 986 sequences from
the colon+lung pool. After combining identical sequences,
27 968 unique sequences remained, 81% of which are 18-
to 26-bp long, demonstrating that the libraries are highly
enriched in small RNAs. This small RNA size fraction
accounts for 93% of all redundant sequences. Sequences
were mapped to the human genome using the Blast
program (16), allowing up to three mismatched base
pairs and indels of up to 3 bp. This process yielded
723 485 genomic loci of mapped sequences. Eighty-three
percent of the unique sequences were mapped to the
human genome using these criteria and 59% of the
unique sequences were mapped with maximum 1nt
mismatch. We postulate that some mismatches, mainly
in the 50 and 30 edges of the sequences, could result from
inaccurate removal of the sequence-flanking adaptors.
Subsequently, 565 224 clusters of sequences with
genomic position overlap were created. For example, if
sequence X was mapped to positions 1-20 within the
plus strand of chromosome 1 and a sequence Y was
mapped to positions 15–35 on the same chromosome
and strand, then the two sequences were unified in the
same genomic cluster of chromosome 1, plus strand, pos-
itions 1–35. The clusters of sequences represent segments
of expressed genes. The statistics of the sequencing and
genome mapping procedures are summarized in Table 1.
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Expression and sequence variability of known miRNAs

We first mapped the sequenced reads to known miRNAs
from miRBase database (11) according to genomic
position overlap, inclusion of sequenced reads in mature
miRNA sequences or inclusion of mature miRNA se-
quences in the sequenced reads. The small RNA libraries
were found to be enriched with human miRNAs. Known
miRNAs occupy 61% (140 255/230 740) of the total small
RNA reads. Out of 885, 387 (44%) human miRNAs were
sequenced in at least one read in the different tumor
libraries. However, the expression of known miRNAs is
very heterogeneous, ranging from 1 read to 25 780 reads.
The 10 most abundantly expressed miRNAs in both
tumor libraries, are presented in Table 2. Most of these
miRNAs were indeed expected to be highly expressed in
the tumor tissues screened. hsa-miR-21 is a well known
oncogene that is expected to be abundant in solid tumors.
We also observed high expression of the miR-141-200
family that is known to be expressed in epithelial tumors
similarly to the tumors we screened (3). In addition, we
sequenced dozens of rare miRNAs that were only found to
be lowly expressed in specific tissues and lack independent
validation in other tissues or by other methods. These rare
miRNAs include miRNAs that were identified specifically
in chronic lymphocytic leukemia cells (17), embryonic
stem cells (5,7), colorectal cancer cells (18), or cervical
cancer cells (19), detailed in Supplementary Table S2.
The expression of these rare miRNAs in tumor tissues
enhances their reliability as true miRNAs.
Most miRNAs were sequenced in several sequence

variants that were previously referred to as isomiRs (7).
The different isomiRs were predominantly variable in the
30 end of the mature miRNA sequence, a region which is
less precisely defined than the miRNA 50 end (20).
Although we expected to find different isomiRs for most
miRNAs, we found two surprising phenomena. First, for
74 known miRNAs the most abundant isomiR in our
cancer tissue survey was much more abundant (at least
20%) than the reference miRNA sequence from
miRBase database (Supplementary Table S3). This
suggests that the relative abundance of isomiRs may be
inherently different between normal tissue and tumors.
Second, 59 known miRNAs had an abundant isomiR
with at least one mismatch to the human genome
sequence, suggestive of the discovery of novel miRNA-
related SNPs/cancer mutations or post-transcriptional

modification of the miRNAs (Supplementary Table S4).
All these isomiRs were expressed in at least the same
number of reads as the miRBase isomiR and seven of
these miRNAs were supported by at least 10 reads.
Examples are shown in Figure 1. Most of the sequence
modifications (69%) occurred in the 30-end of the
miRNA and involved either DNA base modification, 30

uridylation (Figure 1A and B) or 30 adenylation (Figure
1C and D). 30 additions of G or C were completely absent
in our data. The high abundance and the specificity of the
30 terminal single nucleotide insertions suggest that these
are regulated post-transcriptional modifications and not
DNA-level changes (SNPs/mutations), which are
expected to occur in a more random manner.
Interestingly, the common 30 uridylation of hsa-miR-143
(Figure 1A) and the common 30 adenylation of
hsa-miR-100 (Figure 1C) were also identified by other in-
dependent methods of small RNA library preparation and
sequencing (7,18,21) supporting the idea that these modi-
fications are the result of meaningful cellular processes
and not merely a technical artifact. The 30 adenylation/
uridylation described is unlikely to be the result of incor-
rect adaptor removal, as the 30 adaptors that were used
start with cytosine. We also noted several sequence modi-
fications that occur internally within the miRNA sequence
(Figure 1E). These isomiRs demonstrated primarily (77%)
C!T or A!T nucleotide modifications, again suggest-
ing involvement of post-transcriptional RNA editing by
cytidine deaminase or ADAR enzymes, respectively,

Table 1. Statistics of sequencing and genome mapping procedures

Total reads (redundant sequences): 141 023 (bladder+breast),
90 986 (colon+lung)

Unique sequences in both libraries: 27 986
Unique short (18–26 bp) sequences in both libraries: 22 648
Unique sequences in both libraries mapped to the genome with up to three mismatches/indels
(% of total unique sequences)

23 271 (83%)

Unique sequences in both libraries mapped to the genome with up to one mismatch and no indels
(% of total unique sequences)

16 564 (59%)

Unique sequences in both libraries mapped to the genome in exact match (% of total unique sequences) 10 182 (36%)
Genomic loci of mapped sequences (up to 3 mismatches/indels) 723 485
Genomic loci clusters of mapped sequences (up to 3 mismatches/indels) 565 224

Table 2. Highly expressed miRNAs in the two deep sequencing

libraries

miRNA name No. of reads
in bladder+breast
tumor library

No. of reads
in colon+lung
tumor library

hsa-miR-200c 20 259 5480
hsa-miR-200b 9493 6059
hsa-miR-143 4642 3961
hsa-miR-21 3337 3835
hsa-miR-200a 4246 2845
hsa-miR-23a 3545 3010
hsa-miR-26a 3328 2456
hsa-miR-29b 1867 1369
hsa-miR-23b 2030 1075
hsa-miR-141 2207 715
Total 54 954 30 805
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contrary to DNA level changes. We cannot exclude the
possibility that the rare sequence modifications, sequenced
only in few reads, are sequencing errors.

Identification of novel miRNAs and miRNA sized small
RNAs

Next, we set out to identify novel miRNAs expressed in
the tested cancer tissues. Our miRNA discovery pipeline
(Figure 2) led to the identification of four different groups
of novel miRNAs and miRNA sized small RNAs:
(i) miRNAs derived from known miRNA precursors,
(ii) miRNAs derived from novel miRNA precursors,
(iii) miRNA sized small RNAs derived from annotated
small RNA and genomic repeats, (iv) Endogenous
siRNA sequences. The first group (Supplementary Table
S5) mainly consisted of the complementary miRNA
(miRNA star) sequences of known human miRNAs.
These are �22 nt RNA species nearly complementary to
a known miRNA, which are located within the miRNA
precursor and which may have an inhibitory activity (22).
We identified 18 such novel miRNA star species. In
several cases, e.g. hsa-miR-1307-5p and hsa-miR-412-5p,
the novel complementary mature miRNA was more
abundant than the known miRNA, suggesting that the

miRNA identified here is the major active product of the
miRNA precursor, at least in the tested tumor samples. In
addition we identified seven cases of miRNA-offset RNAs
(MORs), a miRNA-like group that was recently
characterized (23). MORs are part of the miRNA precur-
sor and are processed from a �22 bp dsRNA region
directly upstream to the miRNA-miRNA star dsRNA
region (an example of a sequenced 50-MOR can be seen
in Figure 3A). All MORs sequenced in the human tumors
are highly conserved, derived exclusively from the 50 stem
of the miRNA precursor directly upstream to the 50

miRNA, and lowly expressed relative to the main
miRNA product of the precursor. These findings are in
accordance with previous results (24). The MORs
identified here tend to be located in a region of lower
dsRNA stability than the main miRNA-miRNA star
pair of the miRNA precursor (Supplementary Figure
S2). Therefore, the miRNA precursor of a MOR may
switch between different folded RNA structures, only
part of which accommodates the MOR in a dsRNA
region that would be processed by the canonical miRNA
pathway. This may explain the relatively low expression of
MORs in comparison to the main mature miRNAs of the
precursors. In the case of hsa-miR-410 and hsa-miR-326
we sequenced the 50 MORs, whereas the miRNA stars of
the precursors were not sequenced. Several of the new
miRNA star and MOR species identified here were
recently identified by an independent study (24),
however they do not yet appear in miRBase.
The second group contained completely novel miRNAs

from novel miRNA precursors. In this case we used only
reads that were exactly mapped to the genome. Reads that
were mapped to more than 10 loci were filtered out, since
human miRNAs rarely map to more than a few genomic
loci. Other reasons for which sequences were discarded
include their rare occurrence (i.e. very few reads), length
exceeding normal miRNA length and GC content (%GC)
higher than the %GC of known miRNAs. After filtering
out by these criteria, as well as filtering sequences located
within already annotated sequences (known miRNAs,
other small RNAs, transposons, coding exons), we pre-
dicted miRNA precursors by folding several hundred
base pairs flanking the final miRNA candidates using
RNAfold (25). In order to reduce the number of false
positive predictions, we kept only predicted miRNA pre-
cursors that were either evolutionarily conserved or had
structural features of known miRNAs. Such structural
features include limited lengths of bulges and loops and
low folding energy. A miRNA precursor score was
computed by integrating these parameters (14). This
process resulted in the identification of 20 novel
miRNAs (Supplementary Table S6). An example of a
novel miRNA precursor, which yields the mature
miRNA MID-20989, can be seen in Figure 3B. miRNA
MID-20989 is more abundant (16 reads) than
hsa-miR-338 (five reads), the product of hsa-mir-338,
which is located antisence to the MID-20989 precursor.
Although we filtered out sequences within annotated
small RNAs, we noticed that two new miRNAs that cor-
respond to a miRNA–miRNA star pair of the same
miRNA precursor (MID-16049 and MID-18078) are

DNA:CAGTGGTTTTACCCTATGGTAGG
Mirbase:CAGTGGTTTTACCCTATGGTAG

DNA:AACCCGTAGATCCGAACTTGTGG
Mirbase:AACCCGTAGATCCGAACTTGTG

DNA:TCTCCCAACCCTTGTACCAGTGC
Mirbase:TCTCCCAACCCTTGTACCAGTG

DNA:TGAGATGAAGCACTGTAGCTCA
Mirbase:TGAGATGAAGCACTGTAGCTC

DNA:TCACGTCCCTGTTCGGGCGCCA
Mirbase: TCCCTGTTCGGGCGCCA

(a)

(b)

(c)

(d)

(e)

Figure 1. IsomiRs that demonstrate existence of SNPs or post-
transcriptional modifications. For each presented miRNA, its main
isomiRs, responsible for at least 5% of all sequences in the tumor
libraries, were retrieved. These were aligned using ClustalW (51) and
the resulting alignment is visualized as position-specific scoring matrix
using WebLogo (52). The sequenced isomiRs of each miRNA are
compared to the human genome and the reference miRNA sequence
from miRBase database. (A) hsa-miR-143, (B) hsa-miR-140-5p,
(C) hsa-miR-100, (D) hsa-miR-150 and (E) hsa-miR-1274b.
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located within a HBII-82B snoRNA. Several miRNA
have previously been identified by other groups as
having been derived from snoRNAs (26–28), which
makes it plausible that these two sequences indeed
function as miRNAs.
The third group contained miRNA sized sequences

derived from annotated small RNAs and genomic
repeats. Several miRNAs (e.g. hsa-miR-28, hsa-miR-548
family) were previously described as having been derived
from such genetic elements (26–30). Sequences whose
length exceeded the conventional size of miRNAs (17–
25 bp) were discarded. MiRNA precursors were predicted
using RNAfold and mFold and the precursor score
described above. Finally, only sequences with at least 10
reads were taken, in order to ensure that the identified
novel miRNAs were likely to be consistent products of
enzymatic excision and not rare degradation products.
This strict criterion was used for this group only as these
derive from known RNA species that are often highly ex-
pressed and their degradation products are expected to be
found in the cell, therefore their re-annotation as miRNAs
needs stronger evidence. This process revealed three novel
miRNA sized sequences (Supplementary Table S7). One

of the candidates in this group, MID-24078, is derived
from a local hairpin-fold of an Alu repeat. The other
two (MID-19433, MID-19434) are, interestingly, derived
from Y RNAs. Y RNAs are relatively unexplored
non-coding RNA species that are implicated in chromo-
somal DNA replication (31) and RNA quality control
(32). MID-19434 is a 25-nt long RNA derived from a
�100-nt long hY3 RNA like sequence. MID-19434 was
highly expressed, with 200 sequenced reads, which is more
abundant than over 300 known miRNAs sequenced in the
tumor samples analyzed here. The predicted well-folded
precursor of this miRNA was precisely aligned to the
hY3 RNA (Figure 3C), suggesting that the Y RNA is
processed, possibly by Dicer, to yield a 25-bp mature
miRNA. MID-19433 is derived from hairpin-folded hY1
Y RNA. Following this finding, we went back to miRBase
and found that two relatively newly known miRNAs,
hsa-miR-1975 and hsa-miR-1979, which were also
sequenced in this study, are actually Y RNA-derived
miRNAs. We next set out to explore whether these Y
RNA-derived miRNA candidates had gene silencing
activity, similarly to known miRNAs. Therefore, we
designed a Luciferase assay experiment. This experiment

Accurate mapping: 547K sequences matched to 
the genome without mismatches 

Not repetitive: 5.4K sequences had less than 
10 genomic occurrences

Abundance: 1666 sequences had 
at least 3 reads in the cluster

Mature mir properties: 1275 sequences with 
15%<%GC<90% and 17<=length<=25

Unannotated sequence: 103 sequences not located within 
repeat/known miRNA/small RNA/coding exon

Precursor folding: 607 sequences could derive from a 
folded hairpin precursor longer than 55 bps

33 sequences had a conserved hairpin or a hairpin with 
structural features of known miRNAs

20 candidate miRNAs after removing redundancies

Completely novel miRNAsNovel miR*/MORs of 
known miRNAs

447 sequences were located 
within known miRNA 

precursor (mirBase 13.0) 

Accurate mapping: 419 sequences 
mapped to the genome exactly / 

maximum 1 mismatch and sequenced 
in more than 1 read.

25 sequences are 
miR*/miRNA-offset RNA of 

known miRNAs 

(no redundancies)

miRNAs derived from 
repeats/small RNAs

381K sequences were located
within repeat/small RNA not
annotated as a known miRNA

miRNA size: 195K sequences 
are 17-25 bps long

Precursor folding: 68K
sequences could derive from a 
folded hairpin precursor longer 

than 55 bps

1710 sequences had a hairpin with 
structural features of known 

miRNAs

20 sequences had a consistent 
abundant isomiR (>10 reads)

3 candidate miRNAs 
after removing 
redundancies

565K sequence clusters mapped to the human genome. 
Each cluster represented by its most abundant sequence.

1 Endogenous siRNA identified by sequence 
complementarity lacking miRNA precursor structure

Figure 2. miRNA and small RNA discovery pipeline. Four different groups of novel miRNA and small RNAs were identified: novel miRNAs/
miRNA-offset RNAs (MORs) derived from known miRNA precursors, novel miRNAs derived from novel miRNA precursors, miRNA sized small
RNA derived from annotated repeats/small RNAs, and endogenous siRNAs.
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aimed to verify reduced Luciferase activity of a transfected
Luciferase gene carrying a complete complementary
sequence to the Y RNA-derived miRNA candidates
within its 30 UTR. However, this experiment failed to
show gene silencing activity of the miRNA candidates
tested, at least in Hep3B cells that were endogenously ex-
pressing these sequences (Supplementary Figure S3). This
result challenges our hypothesis that the Y RNA derived
miRNA sized sequences (including hsa-miR-1975 and
hsa-miR-1979) are bona fide miRNAs. A plausible explan-
ation for the high abundance of these miRNA sized RNA
species is that these are the specific 20–25 bpY RNA
apoptotic degradation products that remain intact since
they are protected by the Ro60 protein (33). However,
the high abundance and sequence stability of these small
RNAs may suggest that these small RNAs may have a yet
unknown function.

Finally, we have also identified a candidate human
siRNA. Endogenous siRNA were recently described in
mouse oocytes (34), but have not yet been identified in
the human transcriptome. These are �21-bp long RNA
species that are processed from a dsRNA by Dicer and
assembled in the RNA induced silencing complex (RISC).
Figure 3D depicts the candidate human endogenous
siRNA we identified in the studied cancer libraries (see
also Supplementary Table S8). This is a �20-nt dsRNA
that could be derived from bi-directional transcription of
the same locus. Six sequenced reads are transcribed in the
same orientation as a mitochondrial tRNA as well as
a tRNA-derived pseudogene in several chromosomes,
which is the more likely source of the siRNA sequences.
Their transcription starts in the transcription start site of
the tRNA, suggesting that these sequences are processed
from the tRNA transcripts. Two antisense reads create

D

B

C

A

Figure 3. Novel types of small RNA identified in deep sequencing of tumors. (A) 50 miRNA-offset RNA from hsa-mir-20a. In parenthesis are
numbers of sequenced reads. (B) Antisense miRNA and miRNA star of hsa-miR-338. Red segments denote hsa-miR-338 precursor and mature
miRNAs (long segments are precursors); blue segments denote the antisense miRNA-338 precursor and mature miRNAs. Numbers beside the short
segments (mature miRNA) denote number of sequenced reads. The predicted folded hairpin of the antisense miRNA precursor is shown on the left
with the positions of the mature miRNAs marked by black lines. Nucleotides colored in red have a high probability to occupy the depicted fold,
green colored nucleotides have a low probability to be in the given fold. (C) miRNA sized Small RNA derived from Y-RNA. The entire Y RNA is
folded as a hairpin, similar to miRNA precursor (left). The sequenced small RNA is derived from the 50 arm of the hairpin. (D) Putative endogenous
siRNA derived from mitochondrial-derived pseudogene. Segments in blue derive from plus strand and start in the transcription start site of the
tRNA pseudogene. Segments in red derive from the minus strand. Numbers beside the segments denote number of sequenced reads. This figure is
based on the UCSC genome browser (53).
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a dsRNA with a short 50 overhang, as opposed to common
siRNA which are characterized by a 30 overhang.
The sense and antisense reads are mapped to nine different
genomic loci. Therefore, it is also possible that the com-
plementary sequences were derived from independent
single-stranded RNAs and not from a hybridized dsRNA.

Cross platform validation and differential expression of
novel miRNAs

In order to verify the expression of the novel miRNAs in
another independent platform, and to identify differential-
ly expressed miRNAs in specific tissues or tumors, we
designed a custom microarray. The microarray contained
probes designed for deep sequencing reads that passed
minimal criteria (see Materials and methods section),
including 44 of the novel miRNA and small RNAs
identified above. The microarray also contained probes
for known miRNAs. The microarray was hybridized to
38 different samples (Supplementary Table S9) from 17
different tissue types that included tumor, tumor
adjacent, normal and metastasis samples, as well as
blood samples. A total of 684 probes were expressed in
at least one sample, out of which 584 had %GC<0.75,
which would ensure more reliable hybridization, and 244
had a deep sequencing count of 2 or above (in the two
libraries combined). Table 3 shows the distribution of
miRNAs by each of the above criterion, for known
miRNAs, and miRNAs detected by deep sequencing.
Only 23% of the known miRNAs were detected in both
platforms, i.e. by the microarray and the deep sequencing.
Thus, although only a small fraction of the newly defined
miRNAs were detected by both platforms, a larger
fraction (roughly four times this fraction) could nonethe-
less be identified as true miRNAs.
The correlation between deep sequencing and micro-

array signals is significant for all sequence types, but is
much higher for known miRNAs (Table 4). Sequences
identified as novel miRNAs have a higher correlation

than the overall correlation of deep sequencing reads.
This strengthens the notion that many of these are
indeed true miRNAs.

The expression pattern of the newly identified miRNAs
in different tissues is shown in Figure 4. Some of the new
miRNAs are expressed in similar levels as miRNAs with a
known role in cancer, suggesting that some of the new
miRNAs may also play an important role in cancer. For
example, comparison of colon tumor versus adjacent
normal colon tissue (Figure 4A) supports the known
upregulation of hsa-miR-20a (35–37) and hsa-miR-17
(37) in colon cancer. In addition, nine new miRNAs
were expressed in both colon tumor and tumor-adjacent
colon tissues in high and comparable levels to known
miRNAs. Four of these were expressed at least 1.5-fold
higher in colon tumor. Figure 4B displays a comparison
between lung cancers versus nine non-lung tumor types.
hsa-miR-200c, hsa-miR-141 and hsa-miR-205 are miRNA
that are known biomarkers of epithelial tumors (3). A new
miRNA, MID-19667, which is the star sequence of
hsa-miR-663, demonstrates lung tumor tissue-specificity,
together with six additional novel miRNAs. Figure 4C
depicts a comparison between primary breast tumor and
breast metastasis to the lymph node. hsa-mir-130b is
known to be upregulated in breast metastasis (38). Three
novel miRNAs were expressed higher in non-metastatic
breast tumor. Finally, several novel miRNAs were abun-
dantly expressed across many tumor types (Figure 5).
MID-19433 and MID-19434 (the Y RNA derived small
RNAs) are, notably, expressed in comparable levels to the
expression of hsa-miR-21, a well-established oncomiR,
supporting their potential role as oncogenic small
RNAs. Five of the new miRNAs were also expressed in
the serum of healthy people (Figure 6) using a third
platform (RT–PCR). Four of the novel miRNAs and
miRNA sized small RNAs (MID-19433, MID-19434,
MID-17356 and MID-16489) were expressed in all three
platforms used.

Finally, we set out to identify the target genes of several
of the novel miRNAs. We used the TargetScan program
(39) in order to predict target genes. Since the novel
miRNAs were identified in tumor tissues, we hypothesized
that these may have a potential role in carcinogenesis.
Therefore, we crossed the predicted target genes with
cancer-related genes from the cancer gene census (40).
This analysis yielded a list of 16 402 predicted targets for
the 49 candidate miRNA and miRNA sized small RNAs
from deep sequencing (Supplementary Table S10). We
identified that some novel miRNAs have multiple
binding sites in known tumor suppressor genes or onco-
genes, e.g. TP53 (MID-22124, MID-16049, MID-18078
and MID-20830), NRAS (MID-16770) and KRAS
(MID-16489, MID-17963, MID-24263 and MID-32019).
All predicted targets, not only cancer related genes, are
shown in Supplementary Table S10.

DISCUSSION

In this study a large set of 23 human tissue samples from
four different tumor types was screened for small RNAs

Table 4. Correlation between deep sequencing and microarray

Pearson’s
correlation
coefficienta

P-value

Deep sequencing reads 0.39 <10�6

Novel miRNAs 0.44 0.00272
Known (miRBase) miRNAs 0.61 <10�6

aMedian microarray signal of tumor samples.

Table 3. Statistics for the different types of microarray probes

New
miRNAs

miRBase
miRNAs

Deep
sequencing
sequences

Total 44 852 815
Expressed (% of total) 12 (29%) 315 (37%) 114 (14%)
And GC<0.75 (% of total) 10 (23%) 301 (35%) 86 (10%)
And DS count �2 (% of total) 9 (20%) 194 (23%) 43 (3%)
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using deep sequencing. Nearly 400 known miRNAs were
detected and 49 novel miRNAs and miRNA sized small
RNA sequences were identified. Further support is
provided for the expression of 10 novel sequences in a
different platform (10 by microarray and five also by
RT–PCR) and in a broader range of blood, normal and
cancer tissues that were not surveyed by deep sequencing.
Some of the novel sequences are expressed differently
between different tissues, such as tumor and adjacent
normal tissue. Novel types of miRNA sized sequences
are reported here, revealing new small RNA groups,
including Y-RNA-derived small RNAs, and putative en-
dogenous siRNAs. In addition we identified a large variety
of new isomiRs, many of which demonstrate DNA change
(SNP/cancer-related mutation) or post-transcriptional
modification.

Deep sequencing is a useful tool that was previously
used to uncover unknown small RNA groups, such as
piRNAs, murine endogenous siRNAs, and mirtrons
(34,41–43). Here we report the identification of two
novel small RNA groups from human solid tumors. We
estimate that these novel sequences were ignored in former
deep sequencing analyses due to the following reasons: (i)
Low expression—the putative endogenous siRNA were
sequenced in <10 reads each. (ii) Location within
annotated sequences—as part of deep sequencing
analysis, annotated reads are as a rule filtered out in
order to identify new sequences. The endo-siRNA is
located within tRNA-derived pseudogene; Y-RNA
derived miRNAs are located within annotated small cyto-
plasmic Y-RNA. This former annotation may have caused
the overlooking of these sequences when analyzed by
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Figure 4. Microarray expression in different tissues. Normalized log-scale expression of various sequences printed on a custom made microarray.
Yellow circles indicate newly identified miRNAs, black dots indicate miRbase miRs, and plus signs (+) indicate all other deep sequencing detected
sequences. (A) Colon tumor versus colon tumor adjacent tissue from the same patient. Labeled miRNAs are known to be expressed or deregulated in
colon tumors (3,35–37,54). The newly identified miRNAs, marked in yellow, are expressed in levels similar to those of known relevant miRNAs. (B)
Median of two lung tumor samples versus median expression of other tumors, from the following tissues: bile duct, bladder, breast, colon, kidney,
liver, lung, ovary, pancreas and prostate. One lung tumor sample is from type non-small squamous, the other is a mix of various lung tumor types.
Labeled miRNAs are known to be expressed in epithelial tumors (3). A novel miRNA, MID-19667, is preferentially expressed in lung tumors. (C)
Breast primary tumor versus breast metastasis to the lymph node. Labeled miRNAs are known to be high in breast cancer or differential between
breast metastasis and primary tumors (38,55).
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others before. (iii) Deep sequencing of unexplored tumor
tissues. Relatively few human tumor tissues were deeply
sequenced till now. Specific expression of the identified
sequences in these tissues may suggest that the described
sequence novelties are related to carcinogenesis of solid
tissues, e.g. Y-RNA derived small RNAs may be the
result of aberrant processing of Y-RNA in cancerous
tissue. In addition we identified other recently identified
human miRNA sized species such as: MORs (24), anti-
sense transcribed miRNA (4), and snoRNA-derived
miRNA (26–28).
The two novel small RNAs that are most abundantly

expressed in different tumors in all platforms (high
throughput sequencing, microarray, and RT–PCR),
MID-19433 and MID-19434, are derived from small cyto-
plasmic Y RNA. However, the microarray and RT–PCR

cannot differentiate between intact Y RNA and small
RNA derived from Y RNA. Therefore, further validation
is needed in order to rule out the possibility that the bulk
of the signals recorded in these platforms are due to un-
processed Y RNAs. The potential importance of these two
novel miRNA sized sequences in tumorgenesis is
supported by a recent work reporting that the Y RNAs
hY1 and hY3, that are the unprocessed Y RNAs of MID-
19433 and MID-19434, respectively, are overexpressed in
carcinomas of the bladder, cervix, colon, kidney, lung and
prostate (44). Therefore, measuring the highly expressed
small RNAs from these Y RNAs can be used for molecu-
lar diagnostics of these cancers. The fact that these were
also detected in serum confers their potential usage in
non-invasive assays.

In this survey, we report the identification of dozens of
new highly abundant isomiRs, including some isomiRs
that demonstrate either existence of novel SNP or clear
RNA modification. Several small-scale variations in
miRNA genes were implicated before with carcinogenesis
of various tissues, such as breast cancer (45,46), pancreatic
cancer (47), lung cancer (48) and thyroid cancer (49).
Additional data of isomiRs expression in normal tissues
is needed in order to gain insight whether the novel
isomiRs are related to the carcinogenesis of solid
tumors. Some of the novel isomiRs were found to be sig-
nificantly more abundant in this study than their reference
miRNA sequences in miRBase database. Therefore, we
suggest that in these cases the reference miRNA
sequence should be considered for revision to the most
abundantly expressed isomiR described here.

Although the number of novel miRNAs identified in
this study is relatively high, it is important to note that
the novel miRNAs are expressed on average in much
lower levels than known miRNAs, with the exception of

Figure 5. Microarray expression of novel miRNAs and small RNAs, as well as the known oncomiR hsa-miR-21 in several tumor tissues. Expression
is normalized, and shown in log2 scale. Red and green denotes high and low expression level, respectively. Expression varies between different
tumors, some new miRNAs expression levels compare with hsa-miR-21, whereas others are expressed in lower levels.

Figure 6. RT–PCR expression of novel miRNAs and small RNAs, in
human serum. RNA was measured in sera of 19 normal humans and in
negative controls not containing RNA. Shown is the median of expres-
sion signals for each miRNA in all tested samples. Black bars show
expression in experimental samples and white bars show expression in
negative controls. hsa-miR-200b is given as reference since it is known
to be expressed in blood (56,57).
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the Y-RNA derived small RNAs that are abundantly ex-
pressed in both tissue pools. Our work joins recently pub-
lished works that reported a similar result regarding
scarcity of newly identified miRNAs, which calls for add-
itional verification in order to establish functional rele-
vance (50). The fact that miRNAs discovered in the last
two years using very sensitive methods are generally of
low expression or are tissue-specific, suggests that the
more abundant and non-specific miRNAs have mostly
been identified already. However, as this work demon-
strates, using a sensitive method of next generation
sequencing on RNA extracted from tumors, in addition
to careful computational analysis and followed by verifi-
cation experiments can identify yet unknown sequences
such as the new miRNAs, MORs, Y-RNA derived se-
quences and endogenous siRNAs presented in this
analysis. The identification of such tumor-specific small
RNAs, could lead to the development of new therapeutic
targets, which may be utilized as a treatment more specific
than the set of tools currently available.
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