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ABSTRACT

The field of regulatory genomics today is charac-
terized by the generation of high-throughput data
sets that capture genome-wide transcription factor
(TF) binding, histone modifications, or DNAseI
hypersensitive regions across many cell types and
conditions. In this context, a critical question is how
to make optimal use of these publicly available
datasets when studying transcriptional regulation.
Here, we address this question in Drosophila
melanogaster for which a large number of
high-throughput regulatory datasets are available.
We developed i-cisTarget (where the ‘i’ stands for
integrative), for the first time enabling the discovery
of different types of enriched ‘regulatory features’ in
a set of co-regulated sequences in one analysis,
being either TF motifs or ‘in vivo’ chromatin
features, or combinations thereof. We have
validated our approach on 15 co-expressed gene
sets, 21 ChIP data sets, 628 curated gene sets and
multiple individual case studies, and show that
meaningful regulatory features can be confidently
discovered; that bona fide enhancers can be
identified, both by in vivo events and by TF motifs;
and that combinations of in vivo events and
TF motifs further increase the performance of
enhancer prediction.

INTRODUCTION

Understanding the principles of transcriptional regulation
remains one of the greatest challenges in functional
genomics, despite years of intensive investigations.

Spectacular advances in experimental technologies, such
as ChIP-seq (1), FAIRE-seq (2) and RNA-seq (3)
represent obvious breakthroughs in this field, as they
allow interrogating regulatory activity at the genome-wide
scale, and are becoming available to most research groups
(4,5). However, interpretation of these genome-wide
datasets, as well as their integration into a unified model
of cis-regulation that includes computational motif predic-
tions remains challenging for many biologists, given the
amount of information and the lack of appropriate tools.
Two typical situations are often encountered in genomics
studies. First, given a set of co-expressed genes, an imme-
diate question is whether these genes share regulatory
motifs and, if so, which transcription factors (TFs) may
co-regulate these genes, or a significant subset thereof.
Secondly, given a set of genomic loci identified through
DNase-Seq, FAIRE-seq, or ChIP-Seq, motif discovery
can be applied in a similar fashion as to co-expressed
gene sets, with the aim to confirm the presence of the
targeted TF (for ChIP-seq against TFs), uncover novel
co-factors, but also disentangle the noisy input set into
direct target regions of different TFs. Many tools have
been developed in recent years to predict enriched motifs
in a set of co-expressed genes [e.g. using proximal
promoter sequences such as Clover (6), oPOSSUM (7),
PASTAA (8) and PSCAN (9); or to discover de novo
motifs, such as oligo-analysis (10), MEME (11) and
MotifSampler (12)]. With the increased use of ChIP-Seq,
several of these methods have been adjusted to also
analyse ChIP peak datasets (e.g. oPOSSUM), and
several new methods have appeared, such as peak-motifs
(13) and MEME-ChIP (14).
However, with the increasing amount of genome-wide

data being generated, another question could be whether
some previously identified events (such as DNA binding
or histone modifications through ChIP, or DNAse
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hypersensitive sites, collectively referred to as ‘in vivo
events’ or iVE in the rest of this article), possibly in a
different biological context, are found enriched in our
set of genes or genomic loci. For example, one could ask
whether genes found to be highly expressed during a
differentiation process through RNA-seq are enriched in
ChIP-seq peaks for a particular TF, identified in an
independent study; or, whether open chromatin regions
isolated using FAIRE-seq are enriched in particular
histone modifications, identified in ChIP-seq experiments.
In addition, besides individual enriched motifs or iVEs, it
often appears that a particular combination of these
features drives the activity of regulatory regions, as was
shown in many recent studies (15–17). Hence, while
enrichment in a particular motif indicates that a region
is potentially targeted by a TF, its combination with a
particular histone modification indicates that the regions
are actually active in the condition investigated. Given
their coverage in terms of conditions investigated,
large-scale consortia such as ENCODE (18), modEncode
(4), or the Berkeley Drosophila Transcriptional Network
Project (BDTNP) (19) provide a unique opportunity to
address these questions. Hundreds of datasets,
investigating histone modifications, chromatin states,
chromatin-binding protein and TF-binding events for
many cell-lines or developmental stages make it more
and more likely that an independent dataset will
show an enrichment for some features present in these
large-scale repositories.
Here we present a novel method, called i-cisTarget

(integrative cisTarget), with the aim to tackle these two
challenges: (i) identifying enriched regulatory features,
as motifs or iVEs, in a set of co-expressed genes or
related genomic loci; (ii) using these features to predict
cis-regulatory modules (CRMs), either around the set of
genes provided, or among the genomic loci submitted,
and infer regulatory networks. We have implemented
i-cisTarget for Drosophila, as a proof-of-concept, but
also because Drosophila is one of the mostly used
multi-cellular model organisms to study transcriptional
regulation and the cis-regulatory code during develop-
ment, given its relatively compact genome, the genetic
tools to manipulate gene regulatory networks, and its suit-
ability for in vivo enhancer validations. Indeed, many of
the CRM prediction methods based on TF motif cluster-
ing and TF motif conservation have been originally
developed and validated in Drosophila, such as Cluster-
Buster (20), SWAN (21), Stubb (22), StubbMS (23),
Ahab (24), cisDecoder (25) and e-cisAnalyst (26). In
i-cisTarget we use an approach based on whole-genome
rankings, combined with recovery statistics (27). This
approach has been proven to be very powerful for motif
discovery, both in Drosophila (28,29) and in the human
genome (30,31). Here we modify this methodology to
calculate enrichment for iVEs, motif features, motif
combinations, iVE combinations and mixed motif/iVE
combinations (hence ‘regulatory features’ in general).
Importantly, i-cisTarget allows for the analysis of both
genomic loci (e.g. ChIP peak datasets) and co-expressed
gene sets (e.g. from microarrays and RNA-Seq).

Methods that incorporate iVEs for CRM prediction
have been recently developed, such as CENTIPEDE
(32), CHROMIA (33), PriorsEditor (34) or
CRMDecoder (35) but these methods focus on genome-
wide CRM prediction using user-selected ‘tracks’ with
iVEs. CRMDecoder does extract enriched iVEs from
a training set of CRMs, before applying these to
whole-genome scoring (i.e. supervised CRM discovery),
but this method is not designed to work on gene sets,
nor does it use TF motifs to predict TF target CRMs
and regulatory networks.

Given that CRM prediction is greatly aided by iVEs
(36,37), a key challenge is to develop methods that
identify the most informative iVEs using the results from
high-throughput experiments as input. In addition to
feature discovery, an important challenge is to use these
features in the next step to identify direct target CRMs of
TFs and to map gene regulatory networks. In this article,
we present a new method, called i-cisTarget, to tackle this
challenge. We first describe the methodology used in
i-cisTarget, and then show the results of several large-scale
validation experiments and its application to large bench-
mark datasets that we assembled for this study, including
ChIP data and co-expressed gene sets. We assess the
performance of i-cisTarget in terms of motif and iVE
enrichment, the prediction of CRMs, and the prediction
of target genes. Finally, we compare the features and
the performance of i-cisTarget to other available
computational methods for cis-regulatory sequence
analysis.

MATERIALS AND METHODS

Partitioning the non-coding genome

Our analyses rely on a partition of the non-coding regions
of the genome into non-overlapping regions. This
partitioning is based on the PhastCons score (38)
(Supplementary Figure S1, black track). We use the
PhastCons WIG files indicating, for each nucleotide of
the genome, its PhastCons score between 0 and 1. This
score is averaged over a sliding window of 100 bp, and
regions of at least 100 bp with an averaged PhastCons
score >0.1 are extracted. This yields a set of disjoint
regions (Supplementary Figure S1, orange track), with
gaps between them. Suppose we have two regions ri and
rj, and we call Gij the gap between them. We now extend
the regions ri and rj on both ends, up to the midpoint of
Gij. The extended regions are now called Ri and Rj. The
full set of {Ri} represents a partitioning of the whole
genome (Supplementary Figure S1, light orange track).
Since we are interested in regulatory features outside
coding regions, we now subtract all coding regions from
our set {Ri}; this subtracting is done at the nucleotide
level, i.e. certain regions will be shortened, while others
fully included in coding regions will be fully removed
(Supplementary Figure S1, yellow track). Additionally,
regions containing a binding site for a class I insulator
are split at the binding site (Supplementary Figure S1,
green track). The exon subtraction and insulator splitting
might produce small regions at the 50/30 edges of genes or
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near insulator-binding sites; in order to avoid the presence
of these small regions, we scan all resulting regions and
merge regions <500 bp with surrounding regions until the
resulting merged region is >500 bp. Note that we merge
regions with the smallest of its surrounding regions first.
The complete procedure yields 136 353 regions (referred to
as 136K regions) of average size 790 bp (median 751 bp)
that cover the entire non-coding part of the Drosophila
melanogaster genome (Supplementary Figure S1, red
track). Using all 900 CRMs and reporter constructs in
the RedFly 3.0 database, we determined that on average,
85% of their sequence is covered by a single region of our
136K partition. This proportion reaches 90% if we restrict
this analysis to the 103 CRMs referenced as ‘minimal
CRMs’ in the database, i.e. those that have been experi-
mentally shown to be of minimal size. In addition, the
majority of these minimal CRMs (all except three) do
not show insulator sites. Thus, the genomic regions
correspond well to CRMs and candidate CRMs.

Scoring with position weight matrices

The entire 136K region collection is scored for the
presence of (conserved) homotypic clusters of binding
sites modelled by a position weight matrix (PWM) as
described previously (28). Briefly, Cluster-Buster (20) is
used for the detection of these motif clusters. Cluster dis-
covery is performed for the complete library of PWMs,
resulting in a score-based ranking of the 136K regions for
each motif in the collection. To improve the specificity of
the predicted motif clusters, sequence conservation is also
taken into account. Orthologous regions in 11 related
Drosophila species are scored for the presence of these
clusters, namely D. simulans, D. yakuba, D. virilis,
D. erecta, D. pseudoobscura, D. persimilis, D. ananassae,
D. sechellia, D. grimshawi, D. mojavensis and D. willistoni.
To find the corresponding regions in these species, the
UCSC liftOver procedure from the Kent tools suite (39)
is used. LiftOver utilizes a pre-computed genome location
transformation between different genome assemblies and
species, using the chain files obtained from pair-wise
whole genome alignments (40). We allow for non-unique
mapping of a reference region to a related genome, taking
only the region with the highest motif score into account
for the final integration.

Combining the rankings across species via order statis-
tics (OS) culminates in a single ranking for each motif in
the collection. OS is a probabilistic method to evaluate the
probability (q-value) of observing a particular configur-
ation of ranks across the different related species by
chance (41,42). This results in a q-value for each region
based on the species specific ranks and thus effectively
integrates all comparative genomics information in a
single ranking for each PWM in our library, thereby
allowing for motif movement within each region.

Scoring with iVEs

The definition of regions bound by TFs or marked by
histone modifications from ChIP data depends on the
peak calling algorithm used; many have been defined,
but their level of agreement depend on the type of data

considered, and the validity of the control model used.
In order to remain as unbiased as possible, we decided
to rely on continuous normalized density distributions
(reads or tilling array intensities) rather than discrete inter-
vals to score genomic regions. Normalized density distri-
butions for ChIP-seq and ChIP–chip data are downloaded
from the modEncode, BDTNP and Furlong Lab website
in .wig or .sgr format, and converted to BedGraph format
(note that this conversion is merely a format conversion,
and does not correspond to a definition of ChIP peaks);
each of the 136K regions is intersected with each of these
continuous density profiles for each iVE using the
BedTools (43), and the average per base score for each
region and each profile is computed. Based on this score
an overall ranking of all regions in the non-coding genome
is derived. In this way, a collection of 420 iVEs was
compiled (see main text, Supplementary Table S1 and
Supplementary Materials and Methods section).

Mapping gene signatures and ChIP peak locations to
the genome partitioning

For each D. melanogaster gene annotated in FlyBase
release 5.37, a candidate regulatory region was defined.
Based on these regulatory regions associated with
a gene, the corresponding regions of the 136K genome
partition are obtained using BedTools (43). By default
this regulatory region is composed of the 5-kb upstream
region, limited by the nearest upstream gene, the 50-UTR
and the first intron. We do not consider coding exons of
input genes (genes in the co-expressed gene set) to be can-
didate CRMs, therefore coding exons that reside in these
putative regulatory regions are removed. Indeed, to our
knowledge the known enhancers that overlap with coding
exons are located in neighbouring genes, and not in
the transcribed gene itself (44). We refer to a particular
definition of candidate regulatory regions for a gene as a
demarcation. Multiple other demarcations were
assembled; including a demarcation defined not only
based on the 5-kb upstream region, but extended with
the full transcript of a gene excluding the coding exons.
In addition, a demarcation that extends the aforemen-
tioned demarcation by a 5-kb downstream region limited
by the nearest downstream gene and a demarcation that
combines a 10-kb upstream region with the full transcript
and the 10-kb downstream region were also created.
All these demarcations are available via the web interface
and the effect on the performance was investigated on a
benchmark of genesets (Supplementary Figure S2). For all
the analyses performed in this article, we used demarca-
tions based on the Release 5.12 (October 2008) FlyBase
gene annotation. These candidate regulatory regions are
initially determined for genes annotated with FBgn iden-
tifiers. Via conversion tables available from FlyBase that
map between different gene nomenclatures, demarcations
for genes defined by annotation IDs (i.e. CG numbers)
and symbols were also derived, enabling the analysis of
gene signatures supplied in these different gene nomencla-
tures. To determine the regions of the genome partition
that correspond to an input set of ChIP peak genomic
locations, we use BedTools. Only the regions that have
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a minimal overlap of 40% with a ChIP peak or a
candidate regulatory region are retained. The overlap
fraction is defined as the number of nucleotides that
overlap between region and ChIP peak or regulatory
region divided by the number of nucleotides in the
genome partition region.

Enrichment analysis via cumulative recovery curves

Enrichment is calculated using cumulative recovery curves
as described before (28). Briefly, given a set of candidate
(or ‘foreground’) regions, corresponding to the regulatory
regions associated with a set of co-expressed genes or with
the genomic locations of a collection of ChIP peaks, those
features are identified for which the top fraction of
their associated 136K regions ranking is enriched for
these candidate regions. To this end, the recovery of
these regions based on the ranking associated with each
feature in our collection is assessed by calculating the cu-
mulative recovery of these regions with increasing region
rank. Of special interest is the early retrieval of foreground
regions, therefore the area under the curve (AUC) for the
top ranked regions is used as a metric to quantify the
enrichment of these regions at the top of a ranking.
The threshold that defines the ‘top’ is a parameter for
the user and is set at 1% by default.
The distribution of this AUC metric for all features

provides a method to define exceptionally good
recovery, as the normalized enrichment score [NES=
(AUC�AUCmean)/AUCstd)]. The NES is computed
for each feature, and only features associated with a
recovery above a certain threshold are considered as
enriched features. In the online i-cisTarget application,
the threshold can be chosen by the user, and is set to
NES� 2.5 by default. In the analysis of ChIP peak data
sets, the motif signal is usually much stronger than in
co-expressed gene sets, allowing for a more stringent
setting of the threshold for ChIP (e.g. NES� 4) to
increase the specificity. Because features compiled from
different sources may have different AUC distributions,
we group these features in different databases. This
allows for database-specific enrichment analysis. Note
that the calculation of the feature rankings is performed
only once and reused for multiple recovery analyses on
different region sets. This effectively reduces the compu-
tational burden for the calculation of recovery curves,
making i-cisTarget an on-the-fly analysis tool.

Validation of motif feature enrichment

To assess the performance of i-cisTarget several bench-
marks were created for which the responsible motif
(or multiple motifs) for each gene signature and ChIP
peak set in the benchmark is known, i.e. 15 gene signa-
tures curated from the literature and 40 ChIP datasets
(see ‘Results’ and ‘Discussion’ section). To compensate
for the redundancy in the large PWM collection used by
i-cisTarget, the enriched features for each benchmark set
are clustered via STAMP (see section on PWM library
and motif clustering in the Supplementary Materials and
Methods) and the enriched cluster of motifs are ranked
based on their best ranked motif. The metric used to

quantify the performance of i-cisTarget is the best,
i.e. lowest, rank of the motif cluster that contains at
least one known motif.

Candidate enhancer prediction

i-cisTarget not only predicts the features enriched in a set
of co-regulated genes or ChIP peaks. Using the recovery
curve for an enriched feature, a list of candidate enhancers
for that feature is also provided. These candidate enhan-
cers are defined as a subset of the ‘foreground’ regions,
i.e. the fraction of the 136K regions that map to the
ChIP peaks or the putative regulatory regions associated
with the set of co-regulated genes. More precisely, the
maximum deviation of the recovery curve associated
with an enriched feature from the average recovery over
the entire feature database plus two standard deviations is
taken as a threshold on the foreground regions, ranked
based on the 136K regions ranking linked with that
particular feature. Additionally, the enhancers that are
not part of the foreground set but are nonetheless highly
ranked for an enriched feature can also be retrieved.
This extends the set of predicted target enhancers
beyond the initial foreground set.

Fine-tuning the analysis by combining enriched features

The ranking-based framework allows for the creation
of new features based on existing ones. Because every
available feature is represented as a ranking of
non-overlapping regions covering the complete
non-coding genome of Drosophila, they can be combined
via OS (see section on Scoring with PWMs). From a subset
of the enriched in vivo and motif features in a i-cisTarget
analysis new combinations can be created, either as
pairwise combinations, or by collapsing more than two
features into a single feature. These newly created
features can be assigned to any feature database used
in the initial analysis for assessment of their enrichment.

Validation of candidate enhancer prediction

To validate the enhancers predicted by i-cisTarget, we
calculate the positive predictive value (PPV, also referred
to as precision) and true positive rate (TPR, also called
sensitivity or recall) based on a set of known true enhan-
cers. True enhancers are defined as the subset of the 136K
regions that overlap with the true binding regions for
a TF, which are derived from a ChIP based in vivo assay
or from a database compiling known CRMs such as the
RedFly database.

These metrics can be summarized in the F1 measure,
the harmonic mean of PPV and TPR: F1-measure=
2* [(TPR*PPV)/(TPR+PPV)]. A perfect prediction,
i.e. only true enhancers are discovered and also all of
them, corresponds to a value of 1. If all predicted
enhancers are unknown, the F1-measure is 0.

Prediction of HSF and Mef2-binding sites

For HSF, we used the binding locations determined in (44)
consisting of 708 unbound HSF motifs. For MEF2, we
predicted TFBS using the available MEF2 in TRANSAC
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(V$MEF2_02, V$MEF2_03) using Matrix-Scan from the
RSA-tools suite (45). We used a threshold of 9 on the
TFBS score, and removed all sites that overlap a MEF2
ChIP–chip peak within 100 bp, resulting in 4557 predicted,
unbound MEF2 sites.

Comparison with other tools

The Linux executable was downloaded and installed
for CRMDecoder (35); 370 bed files where downloaded
from (i) the modEncode website and (ii) the BDTNP
website (DNAseI hypersensitive sites only).

Availability

i-cisTarget is available via an easy to use web interface
(http://med.kuleuven.be/lcb/i-cisTarget), providing access
to a ‘version 1.0’ database of 4238 motif features and the
420 iVEs used in this article, and to an updated ‘version
2.0’ database with 6383 PWMs and 536 iVEs. All types of
analysis can be performed via this interface, including
combining enriched features, using the optimal targets of
an enriched feature as input set for another analysis (serial
i-cisTarget analysis), and retrieving genome-wide CRM
predictions. Additionally, a UCSC custom track with

the predicted motifs and CRMs for enriched PWM
features can be calculated.

Supplementary materials and methods

The Supplementary Materials and Methods contain
further information about: Collections of motifs and
iVEs used; PWM library and motif clustering; support
for both gene signatures and genomic loci; extending less
abundant feature databases for enrichment analysis;
Combining gene sets and genomic loci for validation
purposes; and Analysis of FlyBase TermLink sets.

RESULTS

A new genome-wide scoring and enrichment scheme

Figure 1 shows the components of i-cisTarget. The user
input to i-cisTarget is a set of gene identifiers, for example
a set of co-expressed genes, or a set of genomic loci
(e.g. ChIP peaks) in a bed file. The output is a list of
enriched features, either motifs or iVEs, and for each of
these features, a list of highly enriched regions for this
particular feature, representing potential CRMs. The
input set is mapped to a database of 136353 predefined

Figure 1. Flowchart of i-cisTarget. The 136K regions are scored in batch (i.e. offline) with collections of PWMs and iVEs, yielding PWM and iVE
rankings respectively. An input set of genes or genomic loci is mapped to the 136K set to obtain a set of foreground sequences. The enrichment of
the foreground sequences is calculated in all rankings using recovery curves and statistics. Top ranking regions for enriched features represent
candidate CRMs.
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genomic regions—called the 136K set—that covers the
entire non-coding genome (see ‘Materials and Methods’
section Partitioning the non coding genome and
Supplementary Figure S1). The subset of genomic
regions that overlaps with the input set determines the
foreground set (see ‘Materials and Methods’ section
Mapping gene signatures and Supplementary Figure S3
for details on how the optimal overlap is determined).
Next, the enrichment of the foreground set for regulatory
features is tested, relative to the entire 136K set. To allow
for complex scoring methods including Hidden Markov
Models, for cross-species conservation of motif occur-
rences, and for including thousands of features, we have
separated the actual scoring and ranking of the 136K set
from the enrichment calculation (Figure 1). Offline, the
136K set is scored for clustered and conserved occurrences
of motifs, using thousands of PWMs and for average peak
intensities using hundreds of iVE data sets (Table 1,
Supplementary Table S1 and Supplementary Materials
and Methods). Online, we determine the AUC of the
cumulative recovery curve of the candidate regions along
the ranked list of all 136K regions (see ‘Materials and
Methods’ section Enrichment via cumulative recovery
curves), and convert the AUC scores into normalized
enrichment scores (NES) (see Supplementary Figure S4
for an example analysis). We observed that different
feature types can result in different AUC distributions,
and therefore use as a default setting in i-cisTarget to
normalize the AUC scores separately for each feature
collection. This way, the NES scores become comparable,
and different feature types can be presented in one output
table (Supplementary Figure S4).

Identification of regulators and functional regions
on datasets of genomic loci

We have applied i-cisTarget to several ChIP–chip and
ChIP-Seq experiments (Supplementary Table S1).

We have first evaluated the ability of i-cisTarget to find
enrichment for the expected motifs, on a collection of
ChIP datasets for which the targeted TF is known: 25
ChIP-seq datasets for 22 TFs from the BDTNP consor-
tium, 15 ChIP–chip dataset for five TFs from E. Furlong’s
lab (46), and one additional ChIP-seq dataset from
Guertin et al. (44). These sets are tested for motif
enrichment using version 1.0 of the PWM library
(Table 1).

For the BDTNP dataset, i-cisTarget can identify the
correct motif in 18 out of the 25 cases (the TF MED is
chipped at three different stages and HB at two different
stages), and in 11out of 25 cases this motif is among the
three top motifs (Figure 2A, see section Validation of motif
feature enrichment in ‘Material and Methods’ section for
the details). For the Daughterless dataset, the motif is
found with a NES of 3.9, which is just below our stringent
threshold of 4. The more difficult cases are D, DL, GT,
MED, TLL and BAP, for which the expected motif is not
found as significantly enriched. De novo motif discovery
also fails to find these motifs, indicating that these datasets
the expected motif is indeed not enriched among these
ChIP peaks (data not shown). For the mesodermal
dataset, which contains ChIP–chip results for MEF2,
BIN, BAP, TIN and TWI, the correct motif is among
the top three scoring motifs in all cases, except for the
MEF2_4h-6h and the BAP datasets. Finally, we
confirmed the good performances in motif-enrichment
on the ChIP-seq dataset of Guertin et al. (44), consisting
of 422 regions bound by heat-shock factor (HSF) in S2
cells, in which the HSF motif (M01244-V-HSF2_02, first
motif) reaches an impressive NES of 26.1. The heatmap
thus highlights the high sensitivity of our motif enrichment
approach, as well as its specificity, given that most cells
are empty in the heatmap, except for some known
co-factors: Bagpipe and Biniou in the visceral mesoderm
(47); or Knirps and Hunchback in the blastoderm (19).
Furthermore, the NES score not only provides a qualita-
tive indication of possible binding of the corresponding
TF, but it also provides quantitative information on the
amount of binding, as can be seen on the example of the
Zelda motif. The 15 mesodermal datasets have various
NES scores which seem to be higher for early datasets.
Using a published ChIP-seq dataset on Zelda (48), we
show that the amount a actual overlap of Zelda-binding
events with the 15 mesodermal datasets is highly
correlated to the NES score of the corresponding
Zelda motif (Supplementary Figure S5).

We next turned to iVE enrichment. We used as a first
test the same HSF dataset mentioned previously (44), and
a control set of 708 control regions that contain predicted
HSF-binding sites but with no evidence of HSF binding in
the ChIP data, taken from (44). Running i-cisTarget
on both datasets using PWMs and iVEs yields the HSF
motif as the feature with the highest NES in both datasets
(respectively 26.1 and 23). This comes as no surprise, given
that the control set was based on the presence of a high
affinity TFBS. Therefore, the motif alone cannot distin-
guish bound from unbound regions. Turning to iVEs,
19 have a NES> 4 in the bound set, versus 6 in the
unbound control dataset (Figure 2B). Among the

Table 1. Available features in i-cisTargeta

Version 1.0
(used in the text)

Version 2.0
(available online)

Motifs 3731 PWMs: 6383 PWMs:
1. JASPAR (74) Updated databases used
2. TRANSFAC (78) in version 1.0+
3. FlyFactorSurvey (77) 1. YeTFaSCo (82)
4. Tiffin (75) 2. hPDI (81)
5. Elemento et al. (76)
6. Stark et al. (79)
7. SelexConsensus (75)

In vivo
events

420 iVEs: 536 iVEs:
1. modENCODE (4) Updated databases used in
2. BDTNP (80) version 1.0, now categorized as:
3. Furlong laboratory

(46)
1. TF binding

(109 data sets)
4. chromatin states (4) 2. non-TF-binding

(216 data sets)
3. histone modifications

(211 data sets).

aComplete description of the available features can be found in
Supplementary Materials and Methods.
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enriched features in the positive dataset most are related to
open and active chromatin: GAF/Trl binding, enrichment
of DNAseI hypersensitive sites (DHS) in S2 cells, or
presence of H3K27ac marks in S2 cells. Note that 5 of
the 19 enriched marks are specific to S2 cells, correspond-
ing to the cell line used for the ChIP-seq assay. On the
other hand, the five enriched marks in the unbound set
correspond to features for early embryonic stages (E0-4h
caudal) and are not related to HSF binding or typical
regulatory properties of S2 cells. The only high scoring
feature in this set is CBP binding at pupal stage, which
might indicate that some of the predicted TBFS could be
bona fide binding sites at later stages or in different con-
ditions. Indeed, 27 of the 708 HSF-unbound regions
intersect with HSF-binding events in Kc167 cells (49).

To verify whether this works for other factors too, we
have repeated the same analysis for MEF2, a TF primarily
involved in myogenesis. We used MEF2 ChIP–chip data
(46) at all timepoints as a positive set, and generated
unbound regions by selecting the 4500 top-scoring
MEF2-binding sites obtained using the Matrix-Scan
method from RSAT (50) with the TRANSFAC MEF2
matrix. Note that the positive and control sets were size
matched. Performing the analysis on iVEs yields analo-
gous results as seen for the HSF case. Namely, features
related to open/active chromatin (e.g. DHS, GAF binding
and CBP binding) have very high enrichment scores in the
positive set (Figure 2C). On the other hand, the unbound
set shows much fewer enriched features, mostly related to

repressive marks, like insulators [e.g. Su(HW), mod2.2] or
heterochromatin (HP2), corroborating that these MEF2
sites are not bound in vivo. In both cases (HSF and
MEF2), we verified that sets of random regions of
similar sizes do not show any enriched features with an
NES> 4. In conclusion, relevant motifs and iVEs can be
identified from ChIP peak data sets using i-cisTarget.

Identification of regulators and functional CRMs on
co-expressed gene sets

We constructed a benchmark dataset of co-expressed gene
signatures obtained by microarray experiments [some
were described in (28) and we have added several more
data sets, see Supplementary Table S1]. The gene signa-
tures were chosen in such as way that they are likely
enriched for direct target genes of a particular TF, either
because a gain-of-function or loss-of-function experiment
for that TF was performed, or because the gene-expres-
sion data were obtained in purified cells, such as the
proneural cluster (PNC) dataset (51), where the master
regulators are known [Su(H) and Achaete/Scute for
neuronal specification in the PNC (51)]. Across the bench-
mark we successfully identified the correct motif for 10 out
of the 12 expected TFs (Figure 3A; Supplementary
Note S1 discusses the two failures, marked as black
squares in Figure 3A).
Our new approach of mapping a set of co-expressed

genes to a set of predefined genomic regions (see
‘Materials and Methods’ section) performs equally well,

Figure 2. Motif and iVE discovery in sets of genomic loci. (A) Heatmaps displaying the motifs discovered in various ChIP datasets; red indicates
that the motif ranks among the top three motifs, pink that the motif has an enrichment score above the NES threshold (NES� 4), and black
indicates that the expected motif is not found. The grey square for da indicates that the DA motif is found with a NES of 3.9, just below our
stringent threshold of 4. Note that the absence of the dl motif in the BDTNP DL dataset is likely due to an incorrect dataset (see text). (B, C)
Scatterplot of NES scores for top rankings iVEs in set of bound versus unbound regions for heat-shock factor (B) and MEF2 (C). iVE directly
related to the condition of the dataset (S2 cell for HSF; embryonic for MEF2) are represented by green triangles.
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if not better, compared to ‘gene-based’ approaches
(28,30,31) (Supplementary Figure S6). However, the
region-based approach now also allows identifying
enriched iVEs on gene sets, besides PWMs. We ran
i-cisTarget on the Zelda LOF and the PNC gene sets
from the benchmark, this time using both the 3731
PWMs and 420 iVE features. Remarkably, in both
cases, by normalizing each type of regulatory features
separately, the final ranking of regulatory features
contains a mixture of PWM and iVEs among the top
ranked features. On the Zelda LOF dataset, the top two
motif clusters are the Zelda/VFL motif (best representa-
tive motif: elemento-CAGGTAG; NES=15.5) and the
BCD motif (best representative: selexconsensus-oc,
NES=5.17); indeed, the fact that an independent
bicoid-related iVE is found highly enriched (BDTNP-
BCD; NES=4.36) confirms that the motif cluster is
likely representing BCD, rather than OC or GSC.
Moreover, several enriched iVEs are pointing at Caudal
(modEncode-MAT_GFP_7T-E-0-4h, BDTNP-cad) as
an important co-factor of Zelda, while another enriched
iVE from a different datasource is early Twist
(Furlong-TWI-2-4h; NES=5.10). Interestingly, these
TFs have recently been shown to be key players in the
maternal to zygotic activation, together with Zelda and
STAT92E, which is also found among the enriched iVEs
(modEncode-MAT_Stat92E_E0-12h; NES=3.01) (52).
Finally, several features related to H3K27me3, a
polycomb-related repressive mark, are found enriched, in
accordance with the tight early transcriptional control
through PcG complexes.
On the PNC data set the enriched PWMs represent

the characteristic TFs involved in PNCs [Su(H) and

Achaete/Scute] and several other relevant TFs (Pointed
and Grainyhead) (Supplementary Figure S7; the entire
i-cisTarget results are available from our website).
Among the most enriched iVEs from BDTNP on the
PNC set are BDTNP-da (NES=6.74), derived from
ChIP against the proneural partner Daughterless (DA)
and BDTNP-MED (NES=4.95), derived from ChIP
against Medea, which is an effector of the dpp-signalling
pathway. This is an interesting finding in the light of the
recent discovery that SMAD proteins, the vertebrate
homologues of Medea, co-operatively bind to CRMs
with cell-type specific master regulators, such as Myod1
in myotubes, Oct4 in ESCs and PU.1 in pro-B cells (53).
Our finding of DA-ChIP and MED-ChIP co-operation in
proneural clusters cells suggests that Smad/Medea
co-operativity with a master TF may be a conserved
phenomenon. Finally, several iVEs from modENCODE
are among the top features, including the H3K27me3
ChIP data and POLII binding. Although polII binding
is historically linked with proximal promoters, several
recent lines of evidence indicate it can be generally
associated with CRMs, even with distal CRMs (16,54,55)

To confirm that i-cisTarget identifies meaningful iVEs
from gene sets, we selected cases for which both gene-
expression data and sets of genomic loci are available,
and compared the enrichment scores of features on both
types of datasets. These are the Zelda and MEF2 cases,
having a LOF gene set (56,57), as well as a ChIP datasets
of binding locations (46,48,57) This is an interesting
configuration, which allows us to tackle the question of
regulatory feature enrichment from two independent
perspectives, in particular for iVEs; indeed, if the
enriched iVEs identified in gene sets are truly related to

Figure 3. Motif and iVE discovery in gene sets. (A) Heatmaps displaying the motifs discovered in various gene sets datasets; red indicates that the
motif ranks among the top three motifs, pink that the motif has an enrichment score above the NES threshold (NES� 2.5), and black indicates that
the expected motif is not found. (B, C) Scatterplot of NES scores for gene sets related to a mutant condition of a TF, and the corresponding
ChIP dataset for this TF; the red dashed line indicates the NES threshold of 2.5 for the gene set.
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CRMs regulating these genes, then the same iVEs should
also be enriched in the corresponding ChIP datasets or
CRMs. If not, then the identified iVEs might rather be
related to specific regions of the 136K regions overlapping
the genes (e.g. promoters, TSS, introns) other than
enhancer regions. The result of the comparative
i-cisTarget analysis (see ‘Material and Methods’ section
Combining gene sets and genomic loci for validation
purposes) is striking (Figure 3B–C): apart from a few
exceptions, the majority of enriched iVEs detected in the
gene sets are also enriched in the corresponding CRM set.
This is particularly true for iVEs that are directly related
to the biological context investigated (embryonic features
for the Mef2 case, S2-related features for the Zelda case).
This indicates that, starting from a set of co-expressed
genes, i-cisTarget is able to highlight the iVEs that
are related to their co-regulation by common TFs. This
confirms the validity and robustness of our feature enrich-
ment approach in detecting specific features (motifs and

iVEs) from a gene set that are relevant for the actual
CRMs regulating these genes.

i-cisTarget accurately predicts candidate CRMs
from gene sets
Each enriched feature selects a subset of highly ranked
regions from the input set. We reasoned that these are
candidate CRMs regulating the set of input genes, and
verified this on the two test cases presented above; we
first used the Zelda ChIP-seq mentioned previously as
an independent validation for the CRM predictions on
the Zelda LOF gene set. The optimal threshold
determined by i-cisTarget leads to 72 direct target CRM
predictions for the CAGGTA motif, of which 62 (86%)
intersect a Zelda ChIP peak (Figure 4A). This represents
a 3.6-fold increase of the precision rate (i.e. positive
predictive value or PPV) compared to the input (198 of
the 831 input regions, or 24%, overlap with a Zelda ChIP
peak) and clearly illustrates the high precision of the target

Figure 4. Assessment of CRM prediction performance. Scatterplots showing the precision/recall performances of CRM prediction for the zelda gene
set (A) and the proneural gene set (C); precision/recall can be summarized into a F1-score, which is shown as histograms for both datasets (B, D).
Feature combinations are represented in red, iVEs in green and motifs in blue. Feature sources are abbreviated as ME for modEncode, B for
BDTNP.
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CRM predictions based on predefined genomic regions.
We performed this analysis also on enriched iVEs, and
on combinations of PWMs and iVEs (see ‘Materials and
Methods’ section Fine-tuning the analysis by combining
enriched features). i-cisTarget is based on ranking statistics
and therefore allows to combine features from the same or
across databases using OS, without the need to re-score
a genomic sequence and to re-normalize scores across
different feature types (41). We assessed whether the
combination of motifs with iVEs can increase the PPV
on CRM detection. Indeed, several of these combinations
lead to significant increases in the precision and/or recall
of the prediction (Figure 4A), as well as the F1-score
(Figure 4B; see ‘Materials and Methods’ section
Validation of candidate enhancer predictions): BDTNP-
CAD combined with the CAGGTAG motif reaches
a PPV of 98% (87/89) and a TPR of 43% (87/198), thus
outperforming each of the individual features. The highest
recall (54%) is obtained for the combination of
BDTNP-TLL with CAGGTAG.
In the analysis of the PNC gene set, we have no

ChIP data for Su(H) or the proneural factor to indicate
the true CRMs. Here, we used all annotated CRMs
from RedFly as true CRMs, in total 82 CRMs
overlapping with 85 regions (min. 40% overlap), of
which many are active in the PNC (e.g. enhancers in the
E(spl) complex or the Achaete–Scute complex). Here
we assess whether, starting from the co-expressed genes,
the true CRMs can be identified, by following the
highly ranked genomic regions for a particular enriched
feature.
Indeed, we observe a significant enrichment in true

positive CRMs in the top ranking regions of enriched
features. The best individual feature is BDTNP-DA,
corresponding to the best NES score in i-cisTarget
(PPV=22.4%, as compared to the 85 positive regions
versus the 1476 input regions, corresponding to 6%,
Figure 4C). Note that BDTNP-MED shows a similar
result, corroborating our hypothesis that the DA and
MED TFs co-operatively bind to proneural enhancers.
The low PPV values are due to the small number of
validated CRMs in RedFly, and is likely largely
underestimated. Interestingly, we found that again the
combination of two features, particularly a PWM and
an iVE, outperforms individual features in terms of
precision/recall. The best feature combinations, in terms
of the F1 score increase compared to the input, are the
SU(H) PWM combined with either DA or MED ChIP
data (Figure 4D). Four of the target predictions for
[E-box, BDTNP-DA] are shown as example in
Supplementary Figure S7 as UCSC Genome Browser
images.
In conclusion, the analysis on co-expressed genes

results in meaningful regulatory features, both PWM
features and iVEs. Using any of these top-enriched
features, or combinations thereof, leads to the prediction
of direct target genes (a subset of the set of input genes)
and target CRMs, operating in the gene-regulatory
network (GRN) underlying the biological process under
study.

i-cisTarget allows fast analysis of hundreds of data sets
and predicts tissue-specific gene regulatory networks

i-cisTarget can analyse a set of genes, or a set of genomic
loci (even thousands of regions) in a few seconds. We have
therefore implemented a batch analysis function in the
online i-cisTarget application, allowing to perform one
analysis with hundreds of data sets (using the GMT file
format, see Supplementary Materials and Methods). To
illustrate the potential of this feature, we analysed a large
compendium of 628 sets of genes that are co-expressed in
the same cell type or anatomical structure in the fly (based
on immunohistochemistry or in situ hybridization) (58).
Despite the sparse knowledge of validated tissue-specific
co-localization, we identified in 290 sets an enriched motif
for at least one TF that is co-localized in the same tissue.
Moreover, in 188 sets, the number of tissue-specific TFs
for which the motif is enriched, was significantly higher
than expected by chance (Data not shown). This means
that for these 188 sets the predicted TF-target relations are
of high confidence and can be used to draw regulatory
subnetworks that connect the co-expressed genes. As
an example, we present the i-cisTarget analyses for
four of these sets, namely ‘adult mushroom body’
(FBbt:00003684), ‘Kenyon cells’ (Fbbt:00003686; a child
term of adult mushroom body), ‘Pericardial cells’
(FBbt:00005058) and ‘Cardioblast’ (FBbt:00001666).
First, on a set of 48 genes expressed in the mushroom
body and a set of 15 genes expressed in the encompassed
Kenyon cells, we identified the motifs of three TFs that
have a known role in these cells, namely Eyeless, MEF2
and ECR (59,60,83). Hence, of the six TFs annotated as
expressed in these cells, three are predicted as master regu-
lators by i-cisTarget. This leads to several new interesting,
high-confidence target gene predictions from which we
derived a predicted GRN (Figure 5A). These predictions
provide new insight into the role of the master regulator in
the Drosophila brain, Eyeless, for which we predict
multiple target genes like fru, Fas2, hh, Appl, tll and
Mef2. The prediction that EY could drive the hedgehog
pathway during development of the mushroom body by
directly controlling hh at the transcriptional level bares
similarities to eyeless being upstream of the hedgehog
pathway during retinal determination, where the
hedgehog pathway drives the movement of the morpho-
genetic furrow, downstream of eyeless (61). It is remark-
able that the few TFs annotated with these FBbt terms are
so highly interconnected. The same is true for the TFs
involved in heart development, as shown in the networks
drawn for pericardial cells and cardioblast (Figure 5B–C).
These two networks show similarity and differences
between cardioblasts and pericardial cells in terms of
TF-target interactions. tinman and Mef2 are expressed in
both cell types, and the IVEs and/or motifs for both TFs
are found for both sets, while the other TFs are specific for
one cell type (hth, Doc2 and Antp are expressed only in
cardioblasts where their motifs are found enriched).
Surprisingly, in the heart cases only the corresponding
iVE for MEF2 (MEF2 ChIP data) is found enriched,
while in the mushroom body data set both the MEF2
motif and the iVE were found. It is possible that
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MEF2-binding sites in cardiac cells are not well repre-
sented by the available MEF2 PWMs in our library.
Among the predicted target genes, some are already
known [e.g. doc and Mef2 are known TIN targets in the
cardioblast network (62)], some are present in the DroID
interaction database (plain or arrowed edges) and some
are new predictions (dashed edges). In conclusion,
meaningful gene regulatory networks can be drawn
from i-cisTarget analyses on FBbt and other sets of
co-expressed genes, yielding new hypotheses on direct
regulatory interactions.

Comparison with previous methods

In Table 2, we have selected a number of previously pub-
lished tools, representing a broad spectrum of approaches
in the domain of cis-regulatory analysis. While we have
tried to make this selection as unbiased as possible, it is
by far not exhaustive, and some tools are representatives
of a whole class of comparable tools (in their scope, but
not necessarily in their performance). For example,

peak-motif was chosen as a representative tool for many
motif-discovery tools in ChIP datasets. Several important
distinctions can be made between these tools; for example,
some tools are designed for feature extraction from a set
of regions or genes [Clover (6), peak-motifs (13),
Cistrome/SeqPos (63)], while other tools focus on CRM
predictions using a learning approach based on mixture
models [CENTIPEDE (32), Chromia (33)] or a statistical
criterion based on local motif clustering [Cluster-Buster
(20)]. Another distinction that can be made is the type
of features considered. Some tools are only based on
motif discovery or enrichment, while more recent ones
take advantage of chromatin features like histone modifi-
cation or chromatin structure. We have shown that
i-cisTarget combines these different aspects: it includes
both motifs and iVEs, extracts enriched features in a
given dataset and predicts potential CRMs based on
these identified features. In our opinion, the closest
matching tool is CRMDecoder (35), which also provides
feature extraction and CRM prediction abilities, and can
incorporate any type of chromatin feature or annotations

Figure 5. Direct TF-target regulatory interactions derived from FBbt gene sets. GRNs derived from i-cisTarget predictions on different TermLink
gene sets. (A) Genes expressed in the Mushroom body (MB) and in Kenyon cells yield enriched motifs for three out of the six TFs annotated to be
expressed in these cells, namely ey, EcR and Mef2. The network shows target genes of these three TFs in the MB and in Kenyon cells (genes
expressed in Keynon cells are represented as darker nodes). (B–C) Similar analysis for genes expressed in cardioblasts (B) and pericardial cells (C).
These networks show clear differences between cardioblasts and pericardial cells in terms of TF-target interactions. Tinman and MEF2 are involved
in both networks (these TFs are expressed in both cell types, and the iVE and/or motifs are found for both sets), while the other TFs are specific for
one cell type (hth, Doc2 and Antp are expressed in cardioblasts where their motifs are found enriched). For all these networks, TFs are represented
by diamonds and have a thick edge when their motifs and/or iVE have been found enriched by i-cisTarget. Arrows represent an interaction that
could be positive or negative. Colours represent the type of feature found representative by i-cisTarget, blue for a motif, green for an iVE (ChIP data
set for that TF) and red for both at the same time. The type of edge represents whether it is a new TF–gene interaction prediction (dashed), a known
‘TF–gene’ interaction [from DroID (73)], or a known ‘genetic interaction’ (DroID).
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in bed format, provided by the user. Two noticeable
differences with i-cistarget are: (i) CRMDecoder does
not include TF motifs for CRM predictions; and (ii)
CRMDecoder only analyses sets of genomic loci and not
co-expressed gene sets. We thus restricted the comparison
of both tools to genomic loci, using iVEs extracted from
modEncode, including DHS data from the BDTNP
project. Since CRMDecoder does not take motifs into
account, we applied it to the HSF and MEF2 datasets
described previously consisting of truly bound regions,
pooled with unbound regions containing the motif,
asking to what extend these two classes of regions could
be discriminated by iVEs.

On the MEF2 dataset, which consists of 8009 bound and
7045 unbound regions (called ‘training set’), CRMDecoder
selects 210 significant features, and identifies 3622 CRMs
of which 1933 intersect with 6761 regions in the training
set; 5306 of these 6761 regions are MEF2-bound regions
(PPV=79%). i-cisTarget on the other hand selects 19 sig-
nificantly enriched iVEs with NES score> 4. The top
ranking iVE (BDTNP-DHS-stg11) selects 1841 regions
that intersect 3313 regions of the training set, and 3119
of these are MEF2-bound regions (PPV=94%).

On the HSF dataset consisting of 422 bound and 708
unbound regions, CRMDecoder identified DHS in Kc167
and S2 cells and Adult male and female CBP as the top
ranking features (highest CCD score) is a list of 76 signifi-
cant features (out of 369 features). Using these significant
features, CRMDecoder predicted 2553 CRMs of which
324 overlap 388 of the training regions. Of these 388
regions, 307 are bound by HSF in vivo, hence a PPV of
79%. On the same dataset, i-cistarget identified 17 iVE
with a NES score >4, among which Adult and Pupae
CBP (rank 1,2,3), Kc167 and S2 DHS, as well as PolII.
The top ranking feature (AdultMale CBP) selects 238 high
ranking regions, which overlap 238 of the training regions,
with 201 of these being bound, thus a PPV of 84%. While
the PPVs of both tools are comparable in the latter case, it
is important to note that i-cisTarget achieves this result
using one single feature. Taking advantage of the ability of
our tool to easily combine features, we can combine
AdultMale_CBP with hypersensitive regions in S2 cells;
this combination now achieves a PPV of 90%, hence a
significant increase over the single feature. This compara-
tive study shows that i-cisTarget is the only method that
combines iVE discovery, motif discovery and CRM
prediction and that i-cisTarget outperforms existing
tools when overlapping functionalities are compared.

DISCUSSION

The last 15 years many bioinformatics methods and tools
have been developed for cis-regulatory sequence analysis
(64). Broadly, they can be divided in two categories. The
first category is methods for motif discovery on a set of
co-regulated sequences, such as MEME-like approaches
(dozens of methods and extensions exist). The second
category are methods for CRM prediction through
whole-genome scanning using one or more known
motifs as input, often using Hidden Markov Models and

sequence conservation cues [see (65) for a review]. A few
methods, such as phylCRM/Lever, ModuleMiner and
cisTargetX combine both approaches and show increased
motif discovery performance, even when very large
upstream regions and introns are included in the
analysis (28,30,31). The concept of these integrative
methods is to apply genome-wide CRM scoring, including
comparative genomics cues, for many different models
(e.g. PWMs), followed by the identification of those
particular models that yield the highest accuracy on a
set of co-expressed genes. In this work we have introduced
three important novelties into a new method, called
i-cisTarget. The first is the a priori determination of
136K regions to be scored, which leads to an increased
flexibility. In particular, this partitioning of the genome
allows to analyse both data sets of genomic loci (by select-
ing all 136K regions that overlap these loci) and
co-expressed gene sets (by selecting all 136K regions that
fall in the upstream and intronic space of all genes in the
set). In this study we obtained good results for a genome
segmentation using sequence conservation (phastCons)
combined with insulator sites, and excluding coding
exons. However, we envision that improvements can be
made on the genome segmentation, for example by
including coding exons (66) or using a segmentation that
is guided by the high-throughput data sets (i.e. the iVEs)
themselves. The latter can become practical as more and
more data sets are generated with overlapping results,
which may ultimately converge to a defined set of regula-
tory regions. The second novelty is the generalization of
regulatory feature discovery, with the possibility to
identify enriched motifs (as PWMs) but also enriched
iVEs such as ChIP-peaks, and active/repressive chromatin
marks. The third novelty is the ability to perform any
combination of regulatory features, even across different
types of features (e.g. a motif with a ChIP or DHS
feature).
Taken together, these features allow analysing most

kinds of high-throughput data available in Drosophila,
and to combine several analyses using the same tool for
different datasets. For example, it is possible to combine
the analysis of binding location data for a particular factor
(ChIP) with the analysis of the corresponding expression
data in mutant conditions for this factor, as we have
shown for MEF2 (57) and Zelda (48,56).
We have applied our tools on various datasets, distin-

guishing gene sets from sets of genomic loci. For gene sets,
we have shown that i-cisTarget identifies the enrichment of
the correct motif in most gene sets we investigated; failures
to do so might be explained by the specificity of the
binding motif to certain conditions or tissues. Enriched
iVEs can lead to interesting new hypotheses, such as the
co-operation between daughterless and Medea, inferred
from the PNC set analysis, that resembles the recent
discovery of Smad co-operation with master regulators
(53); or the prediction of new TF-target and TF-TF
interactions across cell types in Drosophila, as was
demonstrated for Kenyon cells, pericardial cells and
cardioblasts (Figure 5). Moreover, the discovered motifs
lead to CRM predictions in the 5 kb+50-UTR+first
intron of the input genes that have a high specificity to
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be regulatory regions, as was demonstrated on the zelda
LOF dataset (56) and the PNC dataset (51). A current
limitation of i-cisTarget, when analysing gene sets, is the
arbitrary assignment of genomic regions to the gene set.
Multiple demarcations are available at the i-cisTarget web
tool, for example [5-kb upstream limited to upstream
gene, 50-UTR, and first intron] or [10-kb upstream
limited, 50-UTR, all introns, 30-UTR and 10-kb down-
stream limited to downstream gene] (see ‘Materials and
Methods’ section). A future challenge remains identifying
very distal enhancers and enhancers overlapping the
coding sequence of nearby genes (66). A simple extension
of the sequence search space, including more sequence and
including intronic and exonic sequences from
neighbouring genes, will not solve the problem. Indeed,
when applying i-cisTarget to 100-kb upstream and down-
stream sequence of the TSS (this search space includes
100% of REDfly CRMs), without truncating this
sequence at neighbouring genes, the performance drops
dramatically (see Supplementary Figure S2).
We also used several ChIP datasets to investigate the

performance of i-cisTarget on sets of genomic loci. Here,
as for the gene sets, i-cisTarget performs very well in
recovering the expected motif from a comprehensive
library of motifs, but also highlights the involvements of
other factors, such as Zelda or Trl in embryonic datasets.
While motif discovery or enrichment is also performed by
several other tools (45,67), i-cisTarget adds the possibility
to search for additional iVEs. We have shown that a
TF-binding site (TFBS) does not necessarily correspond
to a binding event. While potential binding sites for HSF
or MEF2 cannot be distinguished from actual binding
events based on motif enrichment alone, adding iVEs
clearly selects marks typical for active chromatin as the
best discriminant between actually bound or unbound
sites. We emphasize that this result is obtained ab initio,
without any prior knowledge of which are the relevant
iVEs. Hence, additional signals are needed for a TF to
bind to a motif sequence, and these are often related to
marks of open or active chromatin: DNAse hypersensitive
sites, binding of pioneering factors such as Trl or Zelda,
whose role as a general precursor of chromatin opening
has only very recently been hypothesized (48).
Interestingly, while in both HSF and Mef2 cases, the
bound motifs present an enrichment for active features
(GAF/Trl, CBP/p300, or DHS), the pattern of enriched
features for unbound motifs is quite different. Namely,
the unbound MEF2 motifs present an enrichment for
repressive chromatin marks [Su(HW) or heterochromatin
like features], while the unbound HSF motifs do not
present any of these marks, consistent with what was
reported in Guertin et al. (44). This might suggest a
distinct mechanism of negative regulation through chro-
matin conformation between developmental processes
and stress response pathways.
A feature of our approach that is not found in alterna-

tive studies is the ability to easily combine any number of
features to investigate the synergistic effect of different
features. Being based on ranks, using OS allows an
‘on-the-fly’ re-ranking of the 136K regions using particu-
lar combinations. We showed on the PNC and zelda gene

set that combinations of PWM and iVE yield higher
1%-AUCs meaning a much higher specificity in the high
ranking regions (Figure 4). This last result shows that
transcriptional regulation is not a linear process, in the
sense that the contributions of the combination of regula-
tory features is more than the addition of individual
contributions, revealing a synergistic mechanism of
action. Moreover, the fact that many different regulatory
features are found enriched in the datasets we have studied
previously confirms that transcriptional regulation is
intrinsically a highly combinatorial process.

These two aspects (combinations and synergy) have
already been extensively described before in the context
of the enhanceosome model of regulation (68,69). In par-
ticular, in Drosophila, analysis of a collection of curated
CRMs showed that they are typically characterized by
a combination of different TFBSs (70,71). This heterotypic
model has been shown to be the general rule, while
homotypic CRMs are generally restricted to early
embryogenesis (71).

However, these descriptions focused on combinatorial
regulation by TFs alone. Here, we have confirmed recent
evidence that this combinatorial regulation extends to
other kinds of regulatory features such as histone modifi-
cations, binding of chromatin-modifying proteins or tran-
scriptional co-factors such as CBP. Hence, we propose
that the notion of heterotypic model of regulation should
be extended to describe any combination of regulatory
features, including motifs and chromatin-related
features. Similarly to the CRM finding procedure consist-
ing of finding clusters of TFBS for different TFs (26),
we introduce and show that searching for ‘clusters’ of
regulatory features can improve the predictive power of
regulatory sequence analysis.

While our method currently applies to Drosophila, it can
in principle be extended to any other organism for which
large-scale collections of in vivo datasets are available, and
in particular to human. The much greater size of
non-coding regions in human, and the lower proportion
of functional DNA in the human genome (72), would
however require to pre-select candidate regulatory
regions, as using a full partition of the complete
non-coding genome would become computationally
untractable and would contain too high noise levels. We
are currently working on implementing i-cisTarget for
human, using the collection of ENCODE datasets.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1, Supplementary Figures 1–7,
Supplementary Materials and Methods and
Supplementary Note 1.
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Riddell,A. and Furlong,E.E.M. (2012) Tissue-specific analysis of
chromatin state identifies temporal signatures of enhancer activity
during embryonic development. Nat. Genet., 44, 148–56.

38. Siepel,A., Bejerano,G., Pedersen,J.S., Hinrichs,A.S., Hou,M.,
Rosenbloom,K., Clawson,H., Spieth,J., Hillier,L.W., Richards,S.
et al. (2005) Evolutionarily conserved elements in vertebrate,
insect, worm, and yeast genomes. Genome Res., 15, 1034–1050.

39. Rosenbloom,K., Taylor,J., Schaeffer,S., Kent,J., Haussler,D. and
Miller,W. (2008) Phylogenomic resources at the UCSC Genome
Browser. Meth. Mol. Biol., 422, 133–144.

40. Kent,W.J., Baertsch,R., Hinrichs,A., Miller,W. and Haussler,D.
(2003) Evolution’s cauldron: duplication, deletion, and
rearrangement in the mouse and human genomes. PNAS, 100,
11484–11489.

41. Aerts,S., Lambrechts,D., Maity,S., Van Loo,P., Coessens,B., De
Smet,F., Tranchevent,L.-C., De Moor,B., Marynen,P., Hassan,B.
et al. (2006) Gene prioritization through genomic data fusion.
Nat. Biotech., 24, 537–544.

42. Stuart,J.M., Segal,E., Koller,D. and Kim,S.K. (2003) A
gene-coexpression network for global discovery of conserved
genetic modules. Science, 302, 249–255.

43. Quinlan,A.R. and Hall,I.M. (2010) BEDTools: a flexible suite of
utilities for comparing genomic features. Bioinformatics, 26,
841–842.

44. Guertin,M.J. and Lis,J.T. (2010) Chromatin landscape
dictates HSF binding to target DNA elements. PLoS Genet., 6,
e1001114.

45. Thomas-Chollier,M., Defrance,M., Medina-Rivera,A., Sand,O.,
Herrmann,C., Thieffry,D. and van Helden,J. (2011) RSAT 2011:
regulatory sequence analysis tools. Nucleic Acids Res., 39,
W86–W91.

46. Zinzen,R.P., Girardot,C., Gagneur,J., Braun,M. and
Furlong,E.E.M. (2009) Combinatorial binding predicts
spatio-temporal cis-regulatory activity. Nature, 462, 65–70.

47. Jakobsen,J.S., Braun,M., Astorga,J., Gustafson,E.H.,
Sandmann,T., Karzynski,M., Carlsson,P. and Furlong,E.E.M.
(2007) Temporal ChIP-on-chip reveals Biniou as a universal
regulator of the visceral muscle transcriptional network. Gene
Dev., 21, 2448–2460.

48. Harrison,M.M., Li,X.-Y., Kaplan,T., Botchan,M.R. and
Eisen,M.B. (2011) Zelda binding in the early Drosophila
melanogaster embryo marks regions subsequently activated at the
maternal-to-zygotic transition. PLoS Genet., 7, e1002266.

49. Gonsalves,S.E., Moses,A.M., Razak,Z., Robert,F. and
Westwood,J.T. (2011) Whole-genome analysis reveals that active
heat shock factor binding sites are mostly associated with
non-heat shock genes in Drosophila melanogaster. PLoS One, 6,
e15934.

50. Turatsinze,J.-V., Thomas-Chollier,M., Defrance,M. and van
Helden,J. (2008) Using RSAT to scan genome sequences for
transcription factor binding sites and cis-regulatory modules. Nat.
Protoc., 3, 1578–1588.

51. Reeves,N. and Posakony,J.W. (2005) Genetic Programs Activated
by Proneural Proteins in the Developing Drosophila PNS. Dev.
Cell, 8, 413–425.

52. Tsurumi,A., Xia,F., Li,J., Larson,K., Lafrance,R. and Li,W.X.
(2011) stat is an essential activator of the zygotic genome in the
early Drosophila embryo. PLoS Genet., 7, e1002086.

53. Mullen,A.C., Orlando,D.A., Newman,J.J., Lovén,J., Kumar,R.M.,
Bilodeau,S., Reddy,J., Guenther,M.G., DeKoter,R.P. and
Young,R.A. (2011) Master transcription factors determine
cell-type-specific responses to TGF-b signaling. Cell, 147, 565–576.

54. Ørom,U.A., Derrien,T., Beringer,M., Gumireddy,K., Gardini,A.,
Bussotti,G., Lai,F., Zytnicki,M., Notredame,C., Huang,Q. et al.
(2010) Long noncoding RNAs with enhancer-like function in
human cells. Cell, 143, 46–58.

55. Hemberg,M. and Kreiman,G. (2011) Conservation of
transcription factor binding events predicts gene expression across
species. Nucleic Acids Res., 39, 7092–7102.

56. Liang,H.-L., Nien,C.-Y., Liu,H.-Y., Metzstein,M.M., Kirov,N.
and Rushlow,C. (2008) The zinc-finger protein Zelda is a key
activator of the early zygotic genome in Drosophila. Nature, 456,
400–403.

57. Sandmann,T., Jensen,L.J., Jakobsen,J.S., Karzynski,M.M.,
Eichenlaub,M.P., Bork,P. and Furlong,E.E.M. (2006) A temporal
map of transcription factor activity: Mef2 directly regulates target
genes at all stages of muscle development. Dev. Cell, 10, 797–807.

58. McQuilton,P., St Pierre,S.E. and Thurmond,J. (2012) FlyBase
101-the basics of navigating FlyBase. Nucleic Acids Res., 40,
D706–D714.

59. Noveen,A., Daniel,A. and Hartenstein,V. (2000) Early
development of the Drosophila mushroom body: the roles of
eyeless and dachshund. Development, 127, 3475–3488.

60. Watts,R.J., Hoopfer,E.D. and Luo,L. (2003) Axon pruning during
Drosophila metamorphosis: evidence for local degeneration and
requirement of the ubiquitin-proteasome system. Neuron, 38,
871–885.

61. Roignant,J.-Y. and Treisman,J.E. (2009) Pattern formation in the
Drosophila eye disc. Int. J. Dev. Biol., 53, 795–804.

62. Reim,I. and Frasch,M. (2010) Genetic and genomic dissection of
cardiogenesis in the Drosophila model. Pediatr Cardiol, 31, 325–334.

63. Liu,T., Ortiz,J.a, Taing,L., Meyer,C.A., Lee,B., Zhang,Y.,
Shin,H., Wong,S.S., Ma,J., Lei,Y. et al. (2011) Cistrome: an
integrative platform for transcriptional regulation studies. Genome
Biol., 12, R83.

64. Aerts,S. (2012) Computational strategies for the genome-wide
identification of cis-regulatory elements and transcriptional
targets. Curr. Top. Dev. Biol., 98, 121–145.

65. Van Loo,P., Marynen,P. and Loo,P.V. (2009) Computational
methods for the detection of cis-regulatory modules. Brief Bioinf.,
10, bbp025.

66. Birnbaum,R.Y., Clowney,E.J., Agamy,O., Kim,M.J., Zhao,J.,
Yamanaka,T., Pappalardo,Z., Clarke,S.L., Wenger,A.M.,
Nguyen,L. et al. (2012) Coding exons function as tissue-specific
enhancers of nearby genes. Genome Res., 22, 1059–1068.

67. Bailey,T.L. (2011) DREME: motif discovery in transcription
factor ChIP-seq data. Bioinformatics, 27, 1653–1659.

68. Merika,M. and Thanos,D. (2001) Enhanceosomes. Curr. Opin.
Genet. Dev., 11, 205–208.

69. Carey,M. (1998) The enhanceosome and transcriptional synergy.
Cell, 92, 5–8.

70. Kantorovitz,M.R., Kazemian,M., Kinston,S., Miranda-
saavedra,D., Zhu,Q., Robinson,G.E., Göttgens,B., Halfon,M.S.
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