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ABSTRACT

Recent comprehensive assessments of RNA-seq
technology support its utility in quantifying gene
expression in various samples. The next step of
rigorously quantifying differences between sam-
ple groups, however, still lacks well-defined best
practices. Although a number of advanced statis-
tical methods have been developed, several stud-
ies demonstrate that their performance depends
strongly on the data under analysis, which compro-
mises practical utility in real biomedical studies. As
a solution, we propose to use a data-adaptive proce-
dure that selects an optimal statistic capable of max-
imizing reproducibility of detections. After demon-
strating its improved sensitivity and specificity in a
controlled spike-in study, the utility of the procedure
is confirmed in a real biomedical study by identifying
prognostic markers for clear cell renal cell carcinoma
(ccRCC). In addition to identifying several genes pre-
viously associated with ccRCC prognosis, several
potential new biomarkers among genes regulating
cell growth, metabolism and solute transport were
detected.

INTRODUCTION

The recent comprehensive assessments of the RNA-seq
technology provide important guidelines to produce high-
quality RNA-seq data sets (1-4). The overall results from
these community efforts demonstrate reproducibility of
RNA-seq platforms and data analysis strategies for quan-
tifying gene expression levels. Although these evaluations
involved controlled experiments that are rather far from
actual clinical applications, they strongly support that the

RNA-seq technology can produce data that is of sufficient
quality to many biomedical applications.

In addition to producing accurate estimates of gene ex-
pression levels, the utility of the RNA-seq technology de-
pends on the availability of rigorous tools for downstream
analysis of these data such as quantifying differences be-
tween sample groups. This part still lacks well-defined best
practices. Although a number of advanced statistical meth-
ods have been developed (e.g. edgeR (5,6), DESeq (7), bay-
Seq (8), Cuftdiff2 (9)), several studies demonstrate that their
performance depends strongly on the data under analysis
and there is no ‘one fits all method’ that would always per-
form well (10-12). This compromises practical utility in real
biomedical and clinical studies that aim to identify reli-
able biomarkers for diagnosis, prognosis or treatment of pa-
tients.

To address the challenge of selecting a suitable statistic,
we propose to use a data-adaptive procedure, named ROTS
(Reproducibility Optimized Test Statistic). It determines an
optimal test statistic directly from the data by maximizing
the reproducibility of the detections across bootstrap sam-
ples (refer to MATERIALS AND METHODS for details).
The utility of reproducibility optimization in microarray
studies of gene expression has been demonstrated (13,14).
In this study the reproducibility optimization is shown to
significantly improve the reliability of differential expres-
sion detection in RNA-seq data for the first time. An R-
package implementing ROTS is available at http://www.btk.
fi/research/research-groups/elo/software/rots/.

MATERIALS AND METHODS
Data sets

Spike-in data set. The spike-in data set was generated by
Rapaport et al. (11) and the expression files were down-
loaded from GEO with the accession number GSE49712.
The selected samples were part of SEQC (MAQC-III)
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project extracting from Stratagene Universal Human Refer-
ence RNA (UHRR) and Ambion Human Brain Reference
RNA (UBRR). The samples were divided into two distinct
experimental groups 4 and B with five technical replicates
per group. All the replicates were enriched with 92 synthetic
polyadenylated oligonucleotides introduced by the External
RNA Control Consortium (ERCC) (15) to validate the dif-
ferential expression findings. The ERCC spike-in controls
were spiked to have 0.5-, 0.67-, 1- or 4-fold changes between
the mixture groups 4 and B. All the samples were sequenced
using [llumina HiSeq2000 platform and produced paired-
end reads of length 100 bp. The reads were mapped and as-
sembled using TopHat (v.2.0.3) (16) and UCSC hgl9 as the
genome reference. HTSeq (v.0.5.p3) was applied for gene ex-
pression abundance estimation (17).

TCGA clear cell renal cell carcinoma (¢ccRCC) data set.
The ccRCC data set was published by The Cancer Genome
Atlas (TCGA) (18). All the biospecimens were collected
from patients with ccRCC diagnosis and kidney as primary
site before any treatment procedures. The mRNA expres-
sion files were downloaded from the TCGA website with I1-
luminaHiSeq_RNASeqV?2 platform code (see https://tcga-
data.nci.nih.gov/tcga/). The demographics data and clini-
cal features were available in the supplementary tables of
the original study (18). In total, 448 patients had mRNA
expression data available in TCGA, among which 442 pa-
tients had the necessary clinical values available and were
used in the analysis.

ccRCC validation data set. The ccRCC prognostic find-
ings were validated in an independent RNA-seq data set
published by Sato et al. (19). The mRNA libraries had
been sequenced into 100 bp paired-end reads using Illu-
mina HiSeq2000 platform. The alignment files were down-
loaded from European Genome-phenome Archive (EGA)
using the accession number EGAS00001000509 (Data Set
ID: EGADO00001000597). The expression levels were es-
timated using HTSeq (v.0.6.1) package and UCSC hgl9
genome reference. The clinical features were obtained from
the original publication (19). Those 93 samples which in-
cluded complete clinical data were used in the analysis.

Preprocessing procedures: TMM normalization and Voom
transformation

The necessity of normalization has been proved in RNA-
seq studies (20,21). Accordingly, the Trimmed mean of
M values (TMM) method implemented in Bioconductor
edgeR package was used to normalize the expression lev-
els. The Voom transformation implemented in Bioconduc-
tor Limma package was applied to transform the expression
levels suitable for further differential expression testing, fol-
lowing the recommendation by Law et al. (22).

ROTS differential expression testing

Making a priori assumptions about data set distributions
contradicts the observed biological variation in real RNA-
seq experiments. To eliminate biases, we propose to learn
an appropriate test statistic directly from the data, building
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on our data-adaptive reproducibility optimization proce-
dure ROTS (Reproducibility Optimized Test Statistic) (13).
The input of ROTS is a count matrix with genomic features
as rows and samples as columns. Genomic feature can re-
fer to a gene, a transcript or an exon but it is called gene
throughout this manuscript for convenience. The aim of
ROTS is to rank the genes according to their differential
expression. For each data set, the ranking statistic is deter-
mined by maximizing the reproducibility of the gene rank-
ings in bootstrapped data sets.

Let us denote by x}; the normalized read count of gene

g in sample i from conditionj. The mean and variance of
gene g within each condition is defined as

. n; . 2 1 n;j . . 2
J — [ 7\ — J 5
= Zi:l x); and (s])" = - E i=1 (xgl xg> ,

where n; is the number of samples in condition j. The
gene rankings are estimated using a family of modified ¢-
statistics:

Xl —x2
da(g)=—|g g‘, ay €0, 00), ap €{0,1}.
o1 + oS,

Here, o) and «; are common to all genes and

Sg = (i + l) (1’11 - 1) (‘Yé)2 + (n2 - 1) (S§)2

ni ny ny+n,—2

is the pooled standard error of gene g across the conditions.
Specific choices of the parameters o determine the ROTS
statistic. For instance, the special case of @; = 0 and o =
1 corresponds to the ordinary z-statistic. The other special
cases include signal log-ratio («; = | and o, = 0) or SAM-
statistic (23) (ax = 1 and «; a percentile of the standard de-
viations). In ROTS the parameters « are not predefined but
they are determined by a reproducibility optimization pro-
cedure. The aim is to ensure appropriate accuracy of vari-
ance estimation, which is considered as the main challenge
in RNA-seq data analysis.

The optimization of d, (g) is based on maximizing its
reproducibility through bootstraps. Pairs of bootstrapped
data sets D! and Dj are sampled from the source data
set D preserving the same sample size and sample labels
(sampling with replacement within the groups). The repro-
ducibility is then computed as the average overlap of the k
most top ranked genes ordered by applying the test statistic
dy across B pairs of bootstrap data:

1 B
Re(d) = 7 D R (do).-
b=1

For the optimization, a z-type statistic is used defined as

Rk (dot) B IQ (th)
Sk (dot) ’

where the denominator is the standard deviation of the
bootstrap distribution of Ry (d,) and @ (dy) represents the
null reproducibility in B random permutations across the
whole data set. Specifically, ROTS maximizes the repro-
ducibility statistic Z (d,) over a dense lattice of parameters

Z (da) =
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o where oy > 0 and «; € {0, 1} and various numbers of top
ranked genes between 5 and G, where G denotes the total
number of genes in the experiment.

The output of ROTS is the optimized Z-score, repro-
ducibility and ROTS-statistic for each gene together with
false discovery rate (FDR) estimate to assess the signifi-
cance of differential expression. In RNA-seq studies, small
numbers of replicate samples and large biological variation
remain the main challenges which call the efficiency of sta-
tistical methods under question. With ROTS, the optimized
Z-score and reproducibility are the main indicators to de-
cide the success of differential expression detection. As a
rule of thumb, reproducibility Z-scores below 2 indicate
that the data or the statistics are not sufficient for reliable
detection.

Other differential expression analysis tools

All the statistical analyses in this manuscript were per-
formed using R version 3.0.2. For comparing ROTS with
other available methods, we used edgeR (version 3.2.4),
DESeq (version 1.12.1), DESeq2 (version 1.0.19), Cuftd-
iff 2.0.2, Limma (version 3.16.7), baySeq (version 1.12.0),
NOISeq (version 2.12.0) and PoissonSeq (version 1.1.2).

c¢cRCC prognosis analysis

Unsupervised clustering was performed by applying the
R hclust function using the Ward method and Manhat-
tan distances. The patient-specific risk scores were calcu-
lated similarly as by Shaughnessy et al. (24). Specifically,
the risk scores were defined as the difference between the
log,-transformed expression levels of the up- and down-
regulated genes in the prognostic signature of 152 ROTS
detections. Next, the scores were clustered into four groups
using K-means clustering method. Finally, the Kaplan—
Meier analysis was performed to compare the survival of
the ccRCC patients in the four risk categories. The signif-
icance of the differences between the categories was tested
using the log rank test.

RESULTS AND DISCUSSION

ROTS outstanding performance: highest accuracy and lowest
false discovery rate

The improved sensitivity and specificity of ROTS over state-
of-the-art methods was demonstrated in a controlled spike-
in study. Spike-in data sets are benchmarks to investigate the
strengths and weaknesses of new computational methods.
The spiked data set presented by Rapaport et al. (11), pre-
viously used to evaluate different methods for RNA-seq dif-
ferential expression analysis, was analyzed using ROTS and
a number of state-of-the-art methods of the field, includ-
ing edgeR (5,6), DESeq (7), DESeq2 (25), Limma (26,27),
Cuftdiff2 (9), PoissonSeq (28), NOISeq (29) and baySeq (8).
This data set includes technical replicates of human whole
body (n = 5) and human brain samples (n = 5) spiked
with 92 synthetic oligonucleotides provided by the Exter-
nal RNA Controls Consortium (ERCC) (refer to MATE-
RIALS AND METHODS for details). The pre-determined
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fold-changes of the synthetic RNAs (4, 1, 0.67 and 0.5) en-
able measurement of true positive (sensitivity) and true neg-
ative detection rates (specificity) of different gene ranking
methods.

The Receiver Operating Characteristic (ROC) analysis
showed how ROTS outperforms the other methods in terms
of sensitivity and specificity (Figure 1A; area under the
curve AUC = 0.941; DeLong’s test P < 0.01 compared to all
other methods except for baySeq for which P = 0.077). The
second best method was baySeq (AUC = 0.891), whereas
NOISeq showed the lowest AUC value (AUC = 0.704). This
comparison was repeated for smaller sample sizes (N = 2, 3
and 4) with selected methods (edgeR, DESeq, Limma and
ROTS). Again ROTS performed significantly better than
the other methods with sample sizes larger than 2 (Wilcoxon
rank sum test P-value < 0.06; see Supplementary Figure
S1). To further investigate the ability of the methods to
control type I error rate (i.e. to avoid false positive detec-
tions) the approach of the original paper (11) was followed.
Specifically, the false discovery rate (FDR) values of the
spiked controls (fold-change 1) were examined. They rep-
resent non-differentially expressed genes whose FDR val-
ues should be high. Strikingly, ROTS showed an outstand-
ing outcome in this comparison (Figure 1B). Among the 23
non-differentially expressed RNA controls, ROTS detected
only one false positive at FDR < 0.05, whereas most of the
other methods detected at least ten false positives. Poisson-
Seq presented the worst performance in this comparison
with as many as 18 false positive detections. NOISeq was
not included in this step as it does not report FDR values
for the technical replicates. Our results in the spike-in data
set strongly support the significant advantage of ROTS over
the current widely used statistical methods.

ROTS defines prognostic signature of renal cell cancer using
two independent data sets

The efficiency of ROTS was then investigated in real pa-
tient data involving large biological heterogeneity to take
a step toward clinical applications of RNA-seq. The aim
was to identify prognostic markers for clear cell renal cell
carcinoma (ccRCC), which is an important clinical prob-
lem. The ccRCC accounts for the majority of cases of kid-
ney cancer (30). The clinical course of ccRCC is heteroge-
neous as is the mutational profile. Current prognostic post-
nephrectomy markers (e.g. UICC and SSIGN) are based on
clinicopathological features such as grade and TNM classi-
fication, but ccRCC lacks widely accepted genetic markers
for prognosis (31,32). In addition to understanding ccRCC
molecular characteristics, accurate biomarkers are required
to stratify the disease for selecting patients for adjuvant tri-
als and close surveillance. Recent data from two large pub-
lished ccRCC studies (18,19), which included both RNA-
seq measurements as well as corresponding clinical infor-
mation, were analyzed. Data from the study by The Cancer
Genome Atlas (TCGA) (18) was utilized to detect candi-
date markers associated with patient outcome (poor or bet-
ter prognosis) and the findings were verified in a completely
independent data by Sato et al. (19) (referred to as valida-
tion data in the following).
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Figure 1. Efficient detection of spiked material. (A) Receiver Operating Characteristic (ROC) curves of the different statistical methods in the spike-in data
together with the areas under the curves (AUC). (B) False discovery rate (FDR) values of the non-differentially expressed spiked controls. The gray dots

correspond to false positive detections at FDR < 0.05.

In the TCGA data, ROTS detected 2208 differentially ex-
pressed genes at FDR < 0.05 between 40 patients (~10%)
with the longest survival time (>60 months) and 40 pa-
tients with the shortest survival time (<12 months); see Sup-
plementary Table S1 for the characteristics of the groups.
The ROTS reproducibility values indicated appropriate re-
producibility of the results (R = 0.57, Z = 5.27). To focus
on the most promising candidate markers for ccRCC prog-
nosis, those 152 genes that showed log, fold-change above
1.6 (~3-fold change) and average expression above the low-
est 30% were retained for subsequent analysis, similarly as
in the RNA-seq assessment studies (1,3-4) (Supplementary
Table S2). For comparison, Limma detected 130 genes with
the same criteria, all of which were among the ROTS de-
tections. The genes detected exclusively by ROTS included,
forinstance, EPO, REN, FABPI and IGFBPI that are regu-
lated by the pVHL-HIF pathway, which is commonly over-
activated in ccRCC. This supports the potential relevance
of the additional ROTS findings.

To assess the utility of the 152 ROTS detections as prog-
nostic markers, a risk score was defined for each of the 442
patients in the complete TCGA data in terms of signal log-
ratio of the up-regulated versus the down-regulated genes
(24,33) (refer to MATERIALS AND METHODS for de-
tails). Investigation of the expression levels of the detected
genes revealed four clusters of ccRCC patients (Figure 2A).
Accordingly, four risk score categories were defined (Fig-
ure 2B). This revealed a highly significant association be-
tween the risk scores and the survival of the patients (Figure
2C; log rank test P < 10~'%). While the 5-year survival in the
best group (blue) was ~80%, it decreased below 20% in the
worst survival group (red); in the two intermediate groups
the 5-year survival was 50-60%. This supports the prognos-

tic value of the detected genes beyond the 80 samples used
for detecting the markers.

To avoid over-fitting to a single study, further validation
of the markers and risk score model was carried out in
a completely independent data set of 100 ccRCC patients
(19). The signal log-ratios of the detected genes between
the best and poorest survival patients were highly corre-
lated across the TCGA and validation data when patients
with comparable survival times (<12 months, >60 months)
were considered (Figure 2D; Pearson correlation 0.796, P
< 1071). Over 90% of the detected 152 genes showed a
concordant change to the same direction in both data sets
(Supplementary Table S2, Supplementary Figures S2 and
S3). Importantly, a highly significant association between
the risk scores and survival verified the risk score model de-
veloped using the TCGA data (Figure 2E; log rank test P <
10~%). These results confirm the capability of ROTS to ro-
bustly identify reproducible candidate markers well as the
potential of the risk score model to identify especially poor
prognosis ccRCC patients.

Biological and technical evaluation of detected prognostic
biomarkers and utilized method

Analysis of the detected genes using the Ingenuity Path-
way Analysis (IPA) tool suggests three major functional
groups: molecular transport, small molecule biochemistry,
and amino acid and lipid metabolism (Supplementary Ta-
ble S3; P < 0.05). Categorization of the genes into five main
biological function groups and four additional biochemical
function groups implies major involvement of metabolism
(~18% of the genes), particularly glucose metabolism, as
found also in the original TCGA study (Figure 3A, Sup-
plementary Table S4). Several previously reported markers
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Figure 2. Novel prognostic markers for ccRCC. (A) Unsupervised clustering of the patients (columns) across the genes detected as differentially expressed
by ROTS (rows). (B) Distribution of the risk scores across the patients in the TCGA data. The red vertical lines show the cutoffs used to define the four
risk categories (—5.10, —2.17, 0.94). The risk categories significantly overlapped with the similarly colored clusters in panel A (69, 92, 78 and 92 percent of
overlap with C1, C2, C3 and C4 survival groups respectively; Fisher’s exact test P-value < 0.01). (C) Kaplan—Meier curves comparing the survival of the
ccRCC patients in the four risk categories in the TCGA data. The numbers in parentheses indicate the numbers of patients in the different risk categories.
The colors correspond to the colors in panels A and B. (D) Correlation of the signal log-ratios of the differentially expressed genes (red triangles) between
the best and poorest survival patients in the TCGA (x-axis) and validation data (y-axis). Patients with comparable survival times (<12 months, >60
months) were considered in the analysis. A highly significant Pearson correlation of 0.796 was observed (P < 1071%). (E) Kaplan—Meier curves comparing
the survival of the ccRCC patients in the four risk categories in the validation data. The highly significant association between the risk score categories and

survival verify the risk score model developed using the TCGA data.

were confirmed such as the key glucose metabolism regu-
lators ALDOB, G6PC and PKLR (Figure 3B). Addition-
ally, several new metabolism regulating markers were de-
tected that have been missed by previous large-scale studies.
These include, for instance, the glucose transporter/sensor
SLC2A2, and the central gluconeogenesis regulator PCK/
(Figure 3B).

The largest proportion (~26%) of the prognostic genes
were from the cellular transporter and solute carrier groups
(Figure 3A). The solute carrier family genes were highly en-

riched; 26 (~9%) out of ~300 family members were among
the prognostic genes (Fisher’s exact test P < 0.05). Some of
them, such as members of solute carrier family 16, were de-
tected by the TCGA study. Additionally, ROTS detected 19
previously undetected solute carrier genes, including for ex-
ample SLC38A5, which transports glutamate, an essential
nitrogen donor for cancer cells to build amino acids and to
maintain mTOR activity (Figure 3B).

The better prognosis genes included most of the detected
glucose metabolism and organic anion/cation transporters.
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Figure 3. Biological insights from ccRCC prognostic markers. (A) Functional groups of the differentially expressed genes detected by ROTS. (B) Examples
of the detected differentially expressed genes. The boxes show the median and the interquartile range (IQR) of the expression levels of the poor and better
prognosis patients in the TCGA and validation data, the whiskers indicate their range and the points correspond to extreme observations with values
greater than 1.5 times the IQR. The boxplots for all the differentially expressed genes are shown in Supplementary Figures S2 and S3. (C) Venn diagram
summarizing the overlap between the prognostic genes reported by the previous studies (18,36) and ROTS (see Supplementary Table S2 for detailed

information).

Increased expression of six glycolytic genes were catego-
rized into good prognosis group (ALDHIL1, ALDOB,
G6PC, PCK1, PKLR, SLC2A2). The glycolytic genes are
direct transcriptional targets of HIF-la, which is known
to function as a tumor suppressor in kidney cancer in con-
trast to several other cancer types (34,35). The finding is in
line with previously reported metabolic shift in RCC and
increased feed of the TCA cycle in good prognosis group
(18). (Supplementary Figure S4). Network analysis of the
ROTS detections in the manually curated Ingenuity Knowl-
edge Base revealed several interactions between the bet-
ter prognosis genes linked to cellular metabolism (Supple-
mentary Figure S5). These observations are in line with
the earlier view (18). The poor prognosis genes were en-
riched in a variety of cell growth signaling molecules (e.g.
phosphatases), extracellular matrix and remodeling pro-
teins (collagens, metalloproteins) and acute phase/immune
response genes (CRP, SAA family) (Supplementary Figure
S4).

Comparison of the ROTS detections to two previous
studies (18,36) of prognostic markers for ccRCC revealed
a statistically significant but moderate overlap (Figure 3C
and Supplementary Table S2; Fisher’s exact test P < 0.05).
For instance, the overlapping genes included the ACE2 and
NPR3 that regulate blood pressure by the renin-angiotensin
system. Additionally, new genes within this pathway were
detected, including REN, the primary regulator of the path-
way secreted by kidney cells. To further validate the method
we studied the association of several known genes mutated
in RCC with our prognostic groups (Supplementary Figure
S6). In line with previous reports ROTS predicted PBRM 1
mutations to correlate well with good prognosis (P < 0.01)
(18,37). Also, BAP1 mutations revealed statistically signif-
icant correlation with poorer prognosis (P < 0.01). Several
other mutated genes were also tested for prognostic correla-
tion (e.g. TP53, CDKN2A and PIK3CA) but their mutation
rate was too low to reveal any significant correlation. More-
over, our algorithm predicted a strong trend toward better
prognosis in the VHL mutated group (P < 0.05). Although
studies attempting to correlate VHL mutation with patient

prognosis have been somewhat conflicting, correlation of
wild-type VHL with poor prognosis has been reported ear-
lier (38,39).

Taken together, our results demonstrate the utility of the
RNA-seq technology to detect reproducible markers when
an appropriate test statistic is applied. Systematic tools are
needed for unbiased and effective analysis of RNA-seq data
to fulfill the high promise posed by the technology. Instead
of developing new variants of different statistical tests, users
require practical tools to choose an optimal method for
their own data. The reproducibility optimization procedure
enables this. Additionally, it provides information about the
quality of the detections; low reproducibility values indicate
that the data or the test statistics are not sufficient for reli-
able detection.

The high validation percentage of the detected ccRCC
prognostic markers in independent data supports the gen-
eral potential of ROTS in clinical RNA-seq studies. Al-
though the main focus was on reliable marker detection, the
developed ccRCC risk score model illustrates the use of the
detections for disease signatures. The identified novel candi-
date genes serve as good starting points for further valida-
tion studies to confirm their utility in the clinic as support
tools to predict ccRCC prognosis or revealing novel poten-
tial targets for ccRCC treatment. Our results suggest that
ROTS enables stratification of patients in prognostic groups
that can help to select patients for future RCC adjuvant tri-
als and closer post-nephrectomy follow-up to timely reveal
metastatic disease. The identified markers imply high poten-
tial of genes regulating cell growth and metabolism but also
ion transport apart from glucose transport. It is also note-
worthy that four genes regulating blood pressure through
the renin-angiotensin system were identified as good prog-
nosis markers, as blood pressure is commonly elevated in
RCC patients and functions as a surrogate marker for tyro-
sine kinase inhibitor treatment efficacy.

AVAILABILITY

ROTS package is implemented with R and the source code
together with Windows and Mac OS binaries are freely
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available at http://www.btk.fi/research/research-groups/elo/
software/rots/. In order to make the study fully repro-
ducible, we provide all the codes to run the analyses in the
Supplementary Code, which provides detailed information
about the methods and parameters used in this study.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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