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ABSTRACT

Significant efforts have been invested into un-
derstanding and predicting the molecular conse-
quences of mutations in protein coding regions, how-
ever nearly all approaches have been developed us-
ing globular, soluble proteins. These methods have
been shown to poorly translate to studying the ef-
fects of mutations in membrane proteins. To fill
this gap, here we report, mCSM-membrane, a user-
friendly web server that can be used to analyse the
impacts of mutations on membrane protein stability
and the likelihood of them being disease associated.
mCSM-membrane derives from our well-established
mutation modelling approach that uses graph-based
signatures to model protein geometry and physico-
chemical properties for supervised learning. Our sta-
bility predictor achieved correlations of up to 0.72
and 0.67 (on cross validation and blind tests, respec-
tively), while our pathogenicity predictor achieved
a Matthew’s Correlation Coefficient (MCC) of up to
0.77 and 0.73, outperforming previously described
methods in both predicting changes in stability and
in identifying pathogenic variants. nCSM-membrane
will be an invaluable and dedicated resource for in-
vestigating the effects of single-point mutations on
membrane proteins through a freely available, user
friendly web server at http://biosig.unimelb.edu.au/
mcsm_membrane.

INTRODUCTION

Integral membrane proteins play an essential role as the
gateway to the cell, mediating transport, signalling and ad-
hesion amongst many other functions. Mutations in mem-
brane proteins are associated with a wide variety of com-
mon diseases, including heart disease, and consequently

have been the site of action for over 50% of small molecule
drugs (1). While they represent 20-30% of the genes in the
human genome (2-4), they can be challenging to exper-
imentally characterise as they tend to be unstable when
extracted from the lipid bilayer. Consequently, less than
0.5% of experimentally determined structures are of inte-
gral membrane proteins.

There is therefore an increasing demand for methods ca-
pable of identifying mutations that might improve stabil-
ity, to facilitate structural and functional characterization,
and to identify novel disease-causing variants. Increasing
computational power offers new opportunities to address
these challenges, however most tools have been built using
experimental information on predominantly globular, solu-
ble proteins, and that have been shown to poorly translate
to predicting the effects of mutations in membrane proteins
(5).

The need for methods tailored for investigating mutation
effects on transmembrane proteins becomes evident when
considering the differences in residue environment in com-
parison with globular proteins. While many studies involv-
ing globular proteins have shown that solvent accessibil-
ity and residue depth correlates with mutation effects (6),
for example buried and deep residues tend to be more con-
served and mutations tend to have larger effects in stability,
these might not be applicable for integral membrane pro-
teins. To circumvent this, sophisticated ways to describe and
represent residue environments are necessary.

We have previously tackled this task by developing the
concept of graph-based signatures and showed they can
provide powerful insights into understanding and predict-
ing the effects of mutations on protein structures, including
how mutations alter protein stability (6-8), dynamics (8), in-
teractions with other molecules (7-14) and their relation to
emergence of genetic diseases (15-27) and drug resistance
(10,19,28-38).

Here we introduce mCSM-membrane, a web server that
adapts and optimizes our well-established mCSM graph-
based signatures framework in order to provide improved
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predictive performance of the molecular consequences of
mutations in membrane proteins.

MATERIALS AND METHODS
Data sets

The general workflow of mCSM-membrane is shown in
Figure 1. mCSM-membrane was trained using two sep-
arate data sets of experimentally characterized mutations
in transmembrane proteins, for which 3D structures were
available.

The first data set contained experimentally measured ef-
fects of mutations on protein stability. This was obtained
from (5) and encompasses 223 single-point missense mu-
tations on 7 different proteins with experimental crystal
structures available in the Protein Data Bank. The mu-
tation effects were obtained in terms of the difference in
Gibbs free energy of folding (AAG = AGwr — AGymT, In
Kcal/mol), with negative values denoting destabilising mu-
tations and positive values denoting stabilising mutations,
consistent with previously published methods. As discussed
in previous works (8,10,13,14), the original data set was bi-
ased towards destabilising mutations (Supplementary Fig-
ure S1), which tend to affect machine learning methods.
To circumvent this sampling limitation, we have modelled
the hypothetic reverse mutations via comparative homol-
ogy modelling and assigned the same AAG value as the
forward mutation, with the opposite signal, in other words:
AAGwT_MmT = -AAGyT_ wt. Only reverse mutations with
a measured effect in stability <2 kcal/mol were consid-
ered, in order to avoid situations where the reverse muta-
tion could potentially compromise protein folding. Struc-
tures for reverse mutations were generated using the mu-
tate function within Modeller (39) followed by refinement.
A total of 181 reverse mutations were modelled, leading to
a final data set of 404 mutations with associated stability ef-
fects (Supplementary Figure S1). Forward and reverse mu-
tations pairs were kept together either in training or test
sets. This was further divided into training (342 missense
mutations occurring in 4 proteins, PDB IDs 2XOV, 1PY6,
3GP6 and 1QD6; 156 decreasing stability (AAG < —0.4
kcal/mol), 56 neutral, 130 increasing stability (AAG > 0.4
kcal/mol) and independent blind test (62 mutations occur-
ring in the remaining three proteins, PDB IDs 1QJP, 2K73
and 1AFO, 28 decreasing stability, 14 neutral, 20 increasing
stability). Training and test sets used in mCSM-membrane
were non-redundant in terms of protein identity (<16% se-
quence identity — Supplementary Table S1) The proteins
were also assessed in terms of their structural similarity us-
ing TMAlign and shared no more than 64% similarity.

The second data set was selected in order to train
a structure-based model for predicting disease-associated
mutations tailored for transmembrane proteins and was
collected from (40). It comprises 539 single-point missense
mutations in 62 different proteins, labelled either as be-
nign or pathogenic, from the UniProtKB/Swiss-Prot vari-
ant database (41) This dataset was also further divided in
training set (485 mutations, 347 pathogenic, 138 benign)
and independent blind test (54 mutations, 38 pathogenic,
16 benign) for validation purposes, consistent with the data

set defined by the BORODA-TM method for comparison
purposes. Seven mutations described in the original data
set, on two different residues of protein 4ZWJ could not
be mapped to the structure available and therefore were re-
moved from the training set. These compose non-redundant
datasets, with sequence identity levels less than 50% and less
than 75% structural similarity (calculated using TMalign).

The data sets used to develop mCSM-membrane are
available to download at http://biosig.unimelb.edu.au/
mcsm_membrane/data.

Modelling effects of mutations

Single-point mutations can lead to a range of structural
and functional changes. To try to encapsulate and explore
the effects of single-point mutations on membrane proteins,
we used two classes of structural features, in addition to
sequence-based calculations.

Graph-based structural signatures

One of the core components of mCSM-membrane is our
well-established approach of using the concept of graph-
based structural signatures (mCSM) to represent the en-
vironment of the wild-type residue (7) and describe both
its geometry and physicochemical properties. Our approach
aims to model wild-type residue environments as graphs,
where atoms are represented as nodes (labelled based on
their properties, i.e. pharmacophores) and their interactions
as edges. By varying a distance cut off, different graphs are
induced and cumulative distributions of distances for dif-
ferent pharmacophore/interactions generated, composing
a concise and effective representation of the residue envi-
ronment. This information is then used as evidence to train
and test predictive methods using supervised learning.

Molecular interactions

To capture information on whether, and how, a single-point
mutation disrupted the intricate molecular interaction net-
work, intra-molecular interactions were calculated using
Arpeggio (42).

Pharmacophore modelling and sequence-based features

The effect of the mutation on the residue environment
is modeled using a pharmacophore representation for
residues as previously described (7). Sequence-based fea-
tures describing protein properties and amino acid com-
position were also calculated using the BioPython python
library (43). These include AAindex amino acid mutation
matrices and indexes representing physicochemical prop-
erties (44) and ProtParam, for calculating general protein
sequence properties, including amino acid composition,
molecular weight, isoelectric point, and hydropathicity (45).

Differently from globular proteins, neither residue depth,
nor solvent accessibility, showed a significant correlation
with stability effects (r = 0.07 and r = 0.09, respectively.
Supplementary Figure S2).
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Figure 1. mCSM-membrane workflow. The first methodological step on mCSM-membrane was data collection. Experimentally validated effects of mu-
tations on protein stability and pathogenicity were obtained for transmembrane proteins with available structures. During feature engineering, three main
classes of features are generated: (i) graph-based signatures of the wild-type residue environment, (ii) a pharmacophore modelling of mutation effects
(together with sequence-based properties) and (iii) the inter-residue interactions established. These are then used as evidence to train and test supervised
learning algorithms. Random Forest for classification and Extra Trees for regression were the best performing and, therefore, selected methods.

WEB SERVER

We have implemented mCSM-membrane as a user-friendly
and freely available web server (http://biosig.unimelb.edu.
au/mecsm_membrane/). The Bootstrap framework version
3.3.7 was used to develop the server front end, while the
back-end was built in Python using the Flask framework
version 1.0.2. The server is hosted on a Linux server run-
ning Apache 2.

Input

mCSM-membrane can be used in two different ways: to ei-
ther assess the effects of mutations on membrane protein
stability, or to assess their pathogenicity (Supplementary
Figure S3). For user-specified variations two options are
available. The ‘Single Mutation” option requires users to
provide a PDB file or PDB accession code of the structure of
the protein, the point mutation specified as a string contain-
ing the wild-type residue one-letter code, its corresponding
residue number (consistent with the provided structure) and
the mutant residue one-letter code. Alternatively, the ‘Mu-
tation List’ option allows users to upload a list of muta-
tions in a file for batch processing. For both options, users
are also required to specify the chain identifier in which the
wild-type residues are located as well as the Uniprot acces-
sion code for the protein of interest or provide its sequence

in FASTA format. For homo-oligomers, mCSM-membrane
will only consider the mutation in the provided chain, how-
ever the overall environment (oligomer) will be considered
for feature generation.

In order to assist users to submit their jobs for predic-
tions, sample submission entries are available in both sub-
mission pages and a help page is also available via the top
navigation bar.

Output

For the Stability option, mCSM-membrane outputs
the predicted change in membrane protein stability (in
kcal/mol), while for the Pathogenicity option mCSM-
membrane outputs whether the mutation is predicted as
Benign or Pathogenic.

With the Single Mutation option, mCSM-membrane
outputs the prediction along with an interactive 3D viewer
showing the wildtype residue environment and a depiction
of the predicted transmembrane topology using Protter (46)
(Supplementary Figure S4). In addition, all non-covalent
interactions, generated using Arpeggio, made by the wild-
type residue are available for download as a Pymol session
file. For the Mutation List option, the results are summa-
rized in a downloadable table from which users can access
details for each single variant (Supplementary Figure S5).
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VALIDATION

Predicting effects of mutations on transmembrane protein
stability

In order to build a robust and reliable model for predict-
ing the effects of mutations on transmembrane stability,
mCSM-Membrane was trained using a stratified 10-fold
cross-validation approach with 10 bootstrap repetitions. Se-
lection of the blind test was repeated 10 times in a stratified
manner, with the model assessed on the remaining data us-
ing 10-fold cross-validation, in order to evaluate the robust-
ness of the model. Our method achieved an average Pear-
son, Spearman and Kendall correlations of 0.72, 0.72 and
0.53, respectively, with a standard deviation of 0.09 across
the 10 runs (Figure 2A). We then evaluated the ability of
the model to capture destabilizing and stabilizing muta-
tions, using a classification by regression approach. mCSM-
Membrane achieved a Mathew’s Correlation Coefficient of
0.65 and F1-score of 0.81, correctly capturing 82% of stabi-
lizing and 83% of destabilizing mutations. The effect of con-
sidering reverse mutations in the data set was also assessed.
When only forward mutations are considered (i.e. remov-
ing reverse mutations from training and test sets), perfor-
mance drops considerably, achieving a Pearson’s correlation
of 0.58 and a Mathew’s Correlation Coefficient of 0.79 and
Fl-score of 0.72, highlighting the importance of consider-
ing reverse mutations to balance the data set.

mCSM-Membrane was further evaluated using a blind
test set of 62 mutations across 3 proteins, not present in
our original training data sets. Our model achieved Pear-
son, Spearman and Kendall correlations of 0.67, 0.62 and
0.45 (Figure 2B), respectively, consistent with training per-
formance, providing confidence in the generalizability and
robustness of our model. Despite the low level of similar-
ity between proteins in training and test sets, and to elimi-
nate any potential selection bias while training and validat-
ing our method, we also evaluate the process of selecting
an independent test set in a bootstrapped manned 100x,
and evaluated the performance of the method on cross val-
idation and test set. mCSM-membrane achieved a correla-
tion of 0.68 (sd = 0.02) on 10-fold cross validation and 0.67
(sd = 0.07) on tests, demonstrating the robustness of the
method. Additionally, mCSM-Membrane was compared to
well established tools designed to predict the effects of mu-
tations on protein stability. mCSM-Membrane significantly
outperformed all tools tested (P < 0.05 by Fisher r-to-z
transformation test, Table 1). Consistent with previous re-
sults, the other stability predictive tools tested were only
weakly predictive across these mutations in transmembrane
proteins (Table 1).

Application to homology models

Experimentally solving structures of transmembrane pro-
teins is particularly challenging. The evolution of compar-
ative homology and threading algorithms, however, has al-
lowed for data augmentation for modelled structures at a
proteome-scale (47). To assess the performance of mCSM-
membrane on homology models, we have generated models
using templates with no more than 37% identity for three

Table 1. Comparative performance of mCSM-membrane across training
and test data sets with alternative stability predictors

Training Test
Pearson’s Pearson’s
Method correlation RMSE correlation RMSE
FoldX 0.48* 1.18 0.57 1.25
iMutant 0.27*% 1.29 0.37* 1.41
CUPSAT 0.01* 1.34 0.15% 1.50
AUTOMUTE (RepTree) 0.17* 1.32 0.05* 1.52
AUTODMUTE (SVM) 0.14* 1.33 0.04* 1.52
MAESTRO 0.20* 1.16 0.17* 1.09
SDM 0.01* 1.34 —0.14* 1.51
mCSM 0.21%* 1.31 0.59 1.23
DUET 0.18* 1.32 0.47* 1.34
Dynamut 0.31* 1.27 0.62 1.19
mCSM-membrane 0.72 0.93 0.67 1.13

*P-value < 0.05 by Fisher r-to-z transformation test compared to mCSM-
membrane

different proteins, originally selected as the blind test of our
stability predictor. Supplementary Table S2 shows the infor-
mation on templates used in this process.

Performance on blind test using the homology models
deteriorates only slightly (» = 0.63. Supplementary Figure
S6), compared to performance on experimental structures (r
= 0.68), highlighting the robustness of the model and abil-
ity to accurately predict effects of mutations on homology
models. This defines a simple guideline for using mCSM-
membrane on homology models.

Identifying pathogenic mutations in transmembrane proteins

The second predictive mode for mCSM-membrane is a
predictor capable of accurately distinguishing between
pathogenic and benign mutations tailored for transmem-
brane proteins (Table 2). This predictor was trained and
assessed on 10-fold cross validation, with its performance
compared to alternative methods available. Our pathogenic-
ity predictor achieved an Mathew’s Correlation Coefficient
(MCC) of 0.77 and Fl-score of 0.91 significantly outper-
forming SIFT (0.43 and 0.85), PolyPhen2 (0.54 and 0.89)
PROVEAN (0.48 and 0.85), MutPred2 (0.48 and 0.79),
PON-P2 (0.38, 0.71). The only method that achieved a
higher performance than mCSM-membrane during cross
validation was BORODA-TM (0.87 and 0.96). However,
the discrepancy between the reported performance in cross
validation and blind test for BORODA-TM (on blind it
achieves an MCC of 0.46 and F1 of 0.78) is a strong indica-
tion of overfitting.

Our predictor was further validated via a blind test
achieving an MCC of 0.73 and Fl-score of 0.89, per-
formance compatible with cross validation, outperform-
ing alternative methods and demonstrating the efficacy
of a transmembrane-specific predictor no identifying
pathogenic mutations. Figure 2C and D shows the ROC
curves comparing the performance of the four methods
during cross validation and blind tests, with our predictor
achieving an Area Under the ROC Curve (AUC) of 0.89
and 0.95, respectively.
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Figure 2. Performance evaluation of mCSM-membrane on cross validation and blind tests. (A) shows the performance of mCSM-membrane on predicting
effects of mutations on stability for transmembrane proteins during 10-fold cross validation, achieving a Pearson’s correlation of 0.72 (0.83 on 90% of the
data). During blind test (B), mCSM-membrane achieved a correlation of 0.67 with experimental data. For the pathogenicity predictor, (C) and (D) show
the performance of mCSM-membrane in comparison with well-established methods as ROC plots on cross validation and blind test, respectively. Our
method achieved AUC of 0.89 and 0.95.

Table 2. Performance assessment of mCSM-membrane in predicting pathogenic mutations across training and test data sets, in comparison with alternative
methods.

Training Test
Method AUC F1 MCC AUC F1 MCC
PolyPhen2 0.79 0.79 0.47 0.73 0.75 0.40
SIFT 0.80 0.77 0.43 0.82 0.84 0.63
PROVEAN 0.80 0.79 0.48 0.79 0.75 0.40
SNAP2 0.67 0.70 0.26 0.73 0.66 0.21
MutPred2 0.75 0.79 0.48 0.75 0.82 0.57
PON-P2 0.83 0.71 0.38 0.88 0.78 0.53
BORODA-TM* --- 0.96 0.87 --- 0.78 0.46
mCSM-membrane 0.89 0.91 0.77 0.95 0.89 0.73

*AUC values were not calculated for BORODA-TM as no scores, rankings or class probabilities were available.
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CONCLUSION

Here, we introduce mCSM-membrane, a web server that
uses our graph-based signatures to predict the effects of
single-point missense mutations on the stability of trans-
membrane proteins and the likelihood of them being dis-
ease associated. The method represents a significant ad-
vance upon our current predictive platform, outperforming
previous methods, which had been built using globular sol-
uble proteins.

mCSM-membrane is freely available as user-friendly
and easy to use web server at http://biosig.unimelb.edu.au/
mcsm_membrane/.
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