Secondary structure model for 23S ribosomal RNA

Harry F.Noller, JoAnn Kop, Virginia Wheaton, Jürgen Brosius, Robin R.Gutell, Alexei M.Kopylov,
Ferdinand Dohme and Winship Herr
Thimann Laboratories, University of California, Santa Cruz, CA 95064, and
David A.Stahl, Ramesh Gupta and Carl R.Woese
Department of Genetics and Development, University of Illinois, Urbana, IL 61801 , USA

Received 27 July 1981

Abstract

A secondary structure model for 23 S ribosomal RNA has been constructed on the basis of comparative sequence data, including the complete sequences from E. Coli, Bacillus stearothermophilis, human and mouse mitochondria and several partial sequences. The model has been tested extensively with single strandspecific chemical and enzymatic probes. Long range base-paired interactions organize the molecule into six major structural domains containing over 100 individual helices in all. Regions containing the sites of interaction with several ribosomal proteins and $5 S$ RNA have been located. Segments of the $23 S$ RNA structure corresponding to eucaryotic $5.8 S$ and 25 RNA have been identified, and base paired interactions in the model suggest how they are attached to $28 S$ RNA. Punctionally important regions, including possible sites of contact with $30 S$ ribosomal subunits, the peptidyl transferase center and locations of intervening sequences in various organisms are discussed. Models for molecular 'switching' of RNA molecules based on coaxial stacking of helices are presented, including a scheme for tRNA-23S RNA interaction.

INTRODUCTION

The last few years have seen a rapid development of the study of the large ribosomal RNAs (1, 2). In the main this reflects the introduction of rapid nucleic acid sequencing technology (3, 4) and the power of comparative sequence analysis in deducing secondary structure (5, 6). Although complete elucidation of the role of ribosomal RNA in ribosome function and assembly will doubtless require considerable three dimensional structural information, our present level of understanding of the 165 RNA structure has already provided significant insight into several aspects of ribosome biology (1). In this paper we present a model for the secondary structure of 235 ribosomal RNA. As in the case of $16 S$ rRNA (6) evidence for the correctness of the model comes largely from comparative sequence analysis. The latter is based mainly on the nucleotide sequences of the E . coli (7) and Bacillus stearothermophilus (8) $23 S$ IRNA genes. The two organisms represent the phylogenetic extremes of the eubacteria; their $23 S$ rRNA sequences differ in 26% of their analogous positions. These data are supplemented by sequences of the corresponding

Nucleic Acids Research

large subunit rRNAs from mammalian mitochondria (9, 10) and other partial sequences from the literature. Sites accessible to single strand-specific chemical and enzymatic probes are given as further evidence for our model. The $23 S$ rRNA molecule is organized by long-range base paired interactions into six major structural domains, and exhibits many of the same kinds of helical structures seen in $16 S$ rRNA.

METHODS

$23 S$ rRNA gene sequences
The E. Coli $23 S$ rRNA sequence was reported by Brosius et al. (7). A $23 S$ rRNA gene from B. stearothermophilus strain 1054 was cloned in pBR 313 and pBR 322 and sequenced (8) by the method of Maxam and Gilbert (4). The two sequences were aligned for maximum homology. Additionally, the sequences of the human and mouse mitochondrial large subunit rRNAs were used (9, 10) as well as numerous partial sequences (ll-19). After initial completion of our studies, the nucleotide sequence of the maize chloroplast $23 S$ RNA gene became available (66). Use of this additional information resulted in changes in ten of the helices in our earlier model.

Secondary structure strategy

All nucleotide differences between the two aligned sequences were marked according to whether they were transitions or transversions. Using such notation on the aligned sequences, one can readily detect base paired regions common to the two RNAs that differ significantly in sequence. Thus the derivation of the secondary structure begins with those helices for which there is the strongest comparative evidence. In this way the number of potential helices in the molecule (which number is enormous) could be reliably reduced, greatly simplifying the task of deciding among the remaining helical possibilities, for which less or no comparative evidence existed. At the same time, fitting of the mammalian mitochondrial and other sequences to the developing structure brought additional data to bear on the remaining unstructured part of the sequence. [In cases where no base replacements are found between the two bacterial sequences, the more highly diverged sequences often show differences.] Computer-generated arrays (34) were used as a source of potential helices. As with the $16 S$ rRNA (6) only helices containing four or more base pairs were compiled; this amounts to about 4×10^{5} possibilities, of which only about 100 are the true helices

Chemical and Enzymatic Probes
Bisulfite was used as a probe of single stranded cytosines in naked 235

RNA and in 505 subunits (26). Kethoxal was used as a probe of single-stranded guanines in 505 subunits (24).

Naked $23 S$ RNA was also probed with RNase T_{1} under mild conditions (1:150 ratio of T_{1} : RNA, $10 \mathrm{mM} \mathrm{MgCl}_{2}, 100 \mathrm{mM} \mathrm{NH} \mathrm{NCl}_{4} 10 \mathrm{mM}$ Tris pH 7.2 for 30 min at $0^{\circ} \mathrm{C}$. The reaction was stopped by addition of diethylpyrocarbonate (0.1%) and SDS (0.58)). Products were 3' labeled with ${ }^{32}$ pCp (21), fractionated by two dimensional gel electrophoresis (22) and sequenced by the chemical cleavage method of Peattie (23). In most cases 5° and 3^{\prime} termini could be determined, giving the precise positions of RNase T_{1} attack.

RESULTS AND DISCUSSION

Table I sumarizes the comparative sequence evidence used in deriving the secondary structure model. In most cases, the E. coli and B. stearothermophilus sequences in the vicinity of each helix are shown. In many cases, the mammalian mitochondrial and maize chloroplast large subunit rRNA sequences (9, 10) are shown; and other partial sequence data (11-19, 64) are also included where applicable.

We consider the existence of a helix proven if there are two or more base pair replacements to support it. If only a single base pair replacement is known, we consider the helix likely, but not proven. [If a helix can be extended by bulging one or more residues, proof must apply to both sides of the bulge; however, if there are only 1-3 pairs on one side of a single residue bulge, a single base pair replacement is considered proof of that part of the composite structure.] In all other cases where helices are presented, the sequences are identical in all available organisms, and so the structure shown is merely consistent, not proven.

Agreement with the chemical and enzymatic probe experiments is generally good, but some apparent conflicts exist. Of the 30 guanine sites in $23 S$ rRNA that are kethoxal-reactive in $50 S$ subunits (and which can be located in the primary structure) (24), all but three are unpaired, in agreement with the model (Fig. 1). Two of the three conflicting sites occur near each other at positions 2093 and 2102, in a well-characterized helical stem implicated in the binding of protein Ll (see below). Thus there is the suggestion that this stem may be unpaired to some degree in the ribosome, although it appears to be highly resistant to RNAse T_{1} in the Ll-23S RNA complex (13). Kethoxal reactivity of G_{2093} and G_{2102} is similar in 505 and 705 ribosomes (25).

Bisulfite-reactive sites in naked 235 RNA and $50 S$ ribosomal subunits have also been studied (26). Of the 75 of these sites reliably placed, 64 occur in

品留

긍
品罳馬

2820	
	107. AACGUUGAAGACGACGACGUU EC
	UCCCUCGAAGAUGACGAGGUC Bs
	UAGCGGCGAGACGAGCCGUUU $\quad 2 \mathrm{~m} \mathrm{chl}$
	28402880
	108. UAGGCCGG. CCGGUACUA Ec
	UAGGUCCG. CGGAUACUA Bs
	UAGGUGUC........ GGCAUCCUA Nt chl 4.5 s
	2860
	109. AGCGCAGCGAUGCGUU EC
	AGCGUGGCGACACGUG Bs
	AGUGCAGUGAUGUAUG Nt chl 4.5 s
	Base paired sequences are underlined. Sequences are designated Ec, Escherichia coli (7); Bs, Bacillus stearothermophilus (8); Eg chl, Euglena
	gracilis chloroplast (11); X1, Xenopus laevis (12, 15); Nc, Neurospora
	crassa (64); Dd, Dictyostelium discoides (13); Hs mt, human mitochon-
	dria (9); Mm mt, mouse mitochondria (10); Sc mt, yeast mitochondrıa (16);
	Cl chl, Chlamydomonas reinhardii chloroplast (18); Nt chl, tobacco chloro-
	plast (19): Zm chl, Zea mays chloroplast (66). Due to space limitations,

single stranded regions, in agreement with the model. of the ones that occur in double stranded regions (and so are not compatible with the model) all but the ones at positions 96,1152 and 2683 are located in the terminal base pair of a proposed helix.

Free E. Coli $23 S$ RNA was treated under mild conditions with RNAse T_{1} and the resulting fragments end-labelled and sequenced by the chemical method of Peattie (23). In this case, the fragments can be placed unambiguously in the sequence because of their length, and their 5° and 3^{\prime} termini can usually be identified precisely. Here, 51 out of the 59 identifiable T_{1} cleavage sites are in agreement with the model. In most of the conflicting cases, the site of cleavage is at a G.U pair at the end of a helix (e.g. position 2083) or in thermodynamically unstable structures that could be stabilized by proteins in the intact ribosome (e.g., positions 205, 597, and 1002).

Thus, the probing experiments are in generally good agreement with our proposed model. Some disagreements remain however, for which we do not have clear explanations at present. In a few specific cases (e.g., the helices at positions 1002-1004/1151-1153, 2676-2680/2727-2731) the conflicting evidence suggests that we accept the proposed structure with caution; in other cases (e.g., 678-683/794-799, 1478-1492/1498-1513, 2323-2326/2331-2334), the comparative evidence is overwhelmingly in favor of the proposed structures.

Figure 1. Secondary structure model for E. Coli 235 ribosomal RNA. Primary structure is from Brosius et al. (7). The molecule is arbitrarily displayed in two halves (positions 1-1647 and 1648-2904); the pairing of the 5° and 3° ends is shown in both drawings. I-VI refer to the six major structural domains. Guanines reactive with kethoxal in 505 subunits (24 and W. H. and H.F.N., unpublished) are indicated by a circled K. Cytosines reactive with bisulfite in naked 23S RNA (26) are shown by a filled circle; unreactive cytosines are shown by open circles. Positions of cleavage of 23 S RNA by RNase T_{1} under mild conditions are indicated by arrows. Helices that we consider proven by comparative sequence criteria (see text) are stippled.

Nucleic Acids Research

Here, we must conclude either that the true structure became disrupted under the experimental conditions (e.g.. in the case of naked $23 S$ RNA) or that multiple conformations are possible at these sites.

General architecture of the 23 S ribosomal RNA

Our secondary structure model is displayed in Fig. 1. About 528 of the residues exist in paired structures. The 5^{\prime} and 3^{\prime} terminal sequences are base paired, giving the whole the form of a closed loop. As in the $16 S$ RNA (1, 6), long range base paired interactions partition the chain into readily identifiable large domains. There axe six of these in the 235 RNA , defined by their respective long range interactions: domain I (16-25/515-524), domain II (579-585/1255-1261), domain III (1295-1298/1642-1645), domain IV (1656-1664/1997-2004), domain V (2043-2054/2615-2625) and domain VI (2630-2637/2781-2788). These domains project from the central loop created by pairing of the 5^{\prime} and 3^{\prime} ends of the molecule.

The $23 S$ RNA chain is readily cleaved into a $13 S$ and an $18 S$ fragment (20), and the $18 S$ is further cleavable into $a n 85$ and a $12 S$ fragment (63). Comparison of oligonucleotide compositions of the various fragments with the complete 235 RNA sequence suggests that the 135 fragment corresponds roughly to domains I and II (although the 13S/18S cleavage site appears to occur within domain II), the $8 S$ fragment to domains III and IV, and the 125 fragment to domains V and VI. No "knots" (27) appear in our model; however, it would be premature to rule out their existence in the structure. Nor is any convincing evidence available to suggest how the structure might be organized into the compact, roughly spherical shape demanded by the 50 S ribosomal subunit.

Electron microscopic analysis of unfolded 50 s subunits or partially denatured $23 S$ RNA has shown characteristic structural features that can be compared with our secondary structure scheme. 505 subunits unfolded by removal of magnesium ions appear as asterisk-like shapes, with five prominent arms radiating from a common center (28). These could well correspond to the five largest domains (I-V; Fig. 1), which radiate from the central loop. Large loop structures have been seen in electron micrographs of partially denatured $23 S$ RNA (29), presumably corresponding to strong long-range base paired interactions between approximately positions 1/500, 1700/2100 and 2200/2600. These agree well with the strong long range interactions enclosing domains I (20/520), IV (1650/2000) and V (2050/2620). Hairpin structures visualized at approximately positions 950, 1550 and 2800 probably correspond to the extended compound helical stems centered at positions 890, 1500 and 2700.

As observed previously in $16 S$ RNA, there are no long, uninterrupted regu-
lar helices. Instead, the $23 S$ rRNA architecture appears to comprise an arrangement of small helices, many of which contain characteristic irregularities. As in the $16 S$ RNA case, the helices in $23 S \mathrm{RNA}$ appear to be of several types. Some are regular (involve only watson-Crick base pairs). Others are notable for a high content of G-U pairs. Still others are even more irregular, containing non-Watson-Crick "pairings" (especially A-G "pairs") and bulged residues. In $16 S$ RNA there appeared a marked tendency for highly conserved residues to be concentrated in the non-helical regions. This tendency is not so pronounced in the present case. What is noticeable in the present instance, however, is that some of the helices are particularly variable in sequence phylogenetically (again a property of some helices in 165 rRNA).

Sites of interaction with ribosomal proteins and 5 S RNA

Considerable data have been reported on the ribosomal protein binding sites in $23 S$ RNA, although generally not as extensive as for $16 S$ RNA (reviewed in ref. 37). These data come either from nuclease protection studies, in which a specific RNA fragment is shielded by a bound protein or group of proteins, or from covalent crosslinking. The regions bound by proteins Ll (35), L20 (36), L23 (38), and L24 (31, 38) can be located within their protected fragments, and the position of $L 4$ can be inferred from ultraviolet irradiation-induced crosslinking of this protein to position 615 of the 23 S RNA (39). Approximate locations of these proteins in the $23 S$ RNA secondary structures are shown in Figure 2.

An interesting and characteristic feature noted previously in 165 rRNA (1) and $5 S$ IRNA (30) is a class of helix containing a single bulged nucleotide, usually an A. The occurrence of this type of structure in regions of rRNA known to contain recognition sites for ribosomal proteins has been noted and it has been suggested that the bulged base could form part of the recognition signal for certain proteins (1, 30). There are fifteen singly bulged nucleotides in our 235 RNA model; ten of these are adenylate residues. We suggest that the bulged adenylate at position 443 is involved in the recognition of protein L24 (31), and that other helices of this type may also be involved in protein binding.

The type of helix containing multiple G•U pairs may constitute another class of protein recognition sites. Examples of proteins whose binding sites contain this type of helix include S8 in $16 S$ RNA (32) and L25 in 5S RNA (24). In 235 RNA a number of these G-U helices occur, including 588-601/656-669 [implicated in binding protein L4 (34)] and the pair 2093-2103/2186-2196 and 2127-2143/2148-2161 [both implicated in binding protein Ll (13, 35)].

Figure 2. Schematic diagram of the 235 RNA secondary structure model. Regions containing binding sites for certain ribosomal proteins and $5 S$ RNA are shaded. Helices that have clearly recognizable counterparts in mammalian mitochondrial large subunit RNAs are indicated by a dark bar. posttranscriptionally modified nucleotides are shown by asterisks. I-VI are the six major structural domains. IVS, intervening sequence; Dm, D. melanogaster; Dv, D. virilis; Pp, Physarum polycephalum; Sc, S. cerevisiae; Cr, Chlamydomonas reinhardii; Tp, Tetrahymena pigmentosa; mt, mitochondria; chlp, chloroplast; Cm^{2} indicates sites of nucleotide substitutions in chloramphenicolresistant mitochondrial ribosomes (see text). Kethoxal-reactive sites protected in 705 ribosomes (25) are shown by a circled k. Positions corresponding to the points of demarcation of $5.8 \mathrm{~S}, 2 \mathrm{~S}$ and 4.5 S RNAs are indicated.

RNA binding site fragments for proteins 120 and $L 23$ are not well documented, but they can be placed approximately within the structure from the available data in the literature. Protein L20 is located in domain II and probably binds to the $23 S$ RNA somewhere between positions 1000 and 1150 (36). Protein L23 binds in domain III and can be placed approximately between positions 1320 and 1600 (38).

The mechanism of association of $5 S$ RNA with the 50 ribosomal subunit is not yet understood. Although it binds proteins LS, L18, L25 and L31. (33, 65), and requires $L 5$ and $L 18$ to associate with $23 S$ RNA, it is not known whether or not it interacts directly with $23 S$ RNA. Comparative sequence evi-
dence from B. stearothermophilus shows that the remarkable complementarity of base pairing observed between E. coli $5 S$ and $23 S$ RNAs involving position 143154 of $23 S$ RNA (40) is not maintained in general. Thus, it is unlikely that base pairing between $5 S$ and $23 S$ RNAs, although seemingly possible, actually occurs at this site. Protein-mediated binding between the two RNAs is, of course, a possibility.

The site of interaction of the complex between $5 S$ RNA, L5, $L 18$ and L25 with $23 S$ RNA has been studied by the nuclease protection approach in two laboratories (41, 42). Both groups isolated a protected fragment of 235 RNA spanning approximately positions 2250-2350. Significantly, this region of $23 S$ RNA is deleted in the mammalian mitochondrial large subunit RNA, the ribosomes of which lack $5 S$ RNA.

5.8S, 2S and 4.5S YRNAS

In eucaryotic cytoplasmic 605 ribosomal subunits, a $5.8 S$ RNA is found, in addition to a 265 (or 285) and a $5 S$ RNA. Although previously thought to be a $5 S$ RNA analogue (43) more recent evidence suggests that $5.8 S$ RNA is in fact analogous to the 5^{\prime} terminus of bacterial $23 S$ RNA (44), whereas the eucaryotic $5 S$ RNA is at least structurally a close analogue of procaryotic 5 S RNA (33, 45). Alignment of $5.8 S$ RNAs with $23 S$ RNAs so as to maximize their sequence homology shows that both can form similar base paired structures within their common regions (see Table I). Attachment of $5.8 S$ RNA to $28 S$ RNA, known to involve the 3^{\prime} terminus of $5.8 S$ RNA (47), is accounted for by its pairing with the 5° terminus of $28 S$ RNA, which is a close analogue of the helical stem 150-158/168-176 in the E. Coli structure (Table I; Pigure 1).

Similarly, 25 RNA, found in some insect $80 S$ ribosomes (46. 48), corresponds approximately to positions 140 to 165 of $23 S$ RNA, and is probably bound to 5.8S RNA by base pairing analogous to the 132-137/142-147 pairing of $23 S$ RNA. The 4.5S RNA found in certain higher plant chloroplasts has previously been postulated to be analogous to the $3^{\text {. }}$ terminus of $23 S$ RNA (49). This is supported by the finding that these two molecules can also form closely analogous secondary structures involving their homologous regions (R. Hallick, personal communication; Table I). By analogy with 5.as RNA, it is possible that binding of $4.5 S$ RNA to $23 S$ RNA occurs via base pairing of residues homologous to the helix 2791-2796/2800-2805 of E. Coli.

Intervening sequences in large subunit ribosomal RNAs

In several, but certainly not all cases, intervening sequences have been discovered in the large subunit RNAs of eucaryotic cytoplasnic, mitochondrial and chloroplast ribosomes (16-18, 50-53). Positions of six intervening
sequences are shown in Figure 2 in the analogous positions in the E. Coli $23 S$ RNA structure. Inspection of the primary and secondary structure around these sites shows that (1) there is no obvious common primary sequence among them, (2) all of the sites occur in single stranded positions, although nearly all are closely adjacent to helical elements, (3) all are located in highly conserved structures in the 3^{\prime} half of the molecule, which include the peptidyl transferase region (see below).

The role of intervening sequences in ribosomal RNA genes is not yet clear; with the possible exception of the Drosophila virilis site (51), they do not appear to demarcate structural domains, as has been suggested in the case of protein genes (54). A more striking correlate is their appearance in what would seem to be functionally indispensable regions of the structure. It is likely that a ribosomal RNA containing an intervening sequence at any of the observed positions would be non-functional. Perhaps, then, they are involved in the regulation of the size of the active ribosome population in certain cells. Alternatively, they might constitute a proof-reading mechanism for ribosome maturation: only those ribosomes which have assembled properly would be recognized and processed. In any event, the fact that they have all been localized thus far in the 3^{\prime} half of the large subunit RNA is probably significant.

Functional Sites

There exists a growing body of evidence implicating the $23 S$ RNA in ribosomal function. Affinity labelling experiments, in which chemically reactive groups attached to tRNA or antibiotics are allowed to react with ribosomes, have shown that some of these functionally important ligands bind in the immediate vicinity of the $23 S$ RNA (55). In two cases, attempts have been made to localize the precise sites of reaction with 235 RNA. In the case of iodoacetyl-Phe-tRNA (56), an RNA sequence was reported which, however, is not found in the complete $23 S$ RNA sequence. Another affinity reagent, $5^{\circ}-\mathrm{O}^{-}\left(\mathrm{N}^{-}\right.$ bromoacetyl p-aminophenylphosphoryl)-3'-N-L-phenylalanyl puromycin aminonucleoside, an analogue of the antibiotic puromycin, was localized to the sequence GUČ̃ $^{\star} C G$ or GỮCG (57). Further studies are required to establish the precise sites of attack by these reagents.

Chloramphenicol, a specific antibiotic inhibitor of peptidyl transferase, is thought to interfere with proper binding of the aminoacyl trNA at its acceptor end (for a review, see ref. 58). Certain chloramphenicol-resistant mutant mitochonarial ribosomes have been shown to arise by mutation at sites in the large subunit ribosomal RNA (16,59). The region of the RNA containing
the mutations is highly conserved phylogenetically, indicative of its importance, allowing the sites of mutation to be located unambiguously in the E. coli 235 RNA sequence, at positions $2447,2451,2503$ and 2504 . In the gecondary structure model (Figs. 1, 2) these four sites are found clustered around a central loop in domain V. Thus, this highly conserved region of the $23 S$ RNA structure is likely to constitute some part of the peptidyl transferase center of the ribosome.

Kethoxal has been used as a functional probe of the 235 RNA by virtue of its reduced reactivity toward specific sites in the presence of functional ligands. Binding of $30 s$ ribosomal subunits decreases the kethoxal reactivity of G_{2307}, G_{2308}, and $G_{2553}(25)$, located in domain V. The simplest interpretation, that these sites make contact with the 305 subunit across the subunit interface, further implicates domain V in ribosome function.

Comparison of the 235 RNA with its mamalian mitochondrial ribosome analogue (9, 10) is of interest, since the latter molecule is only about half the size of 235 RNA. Presumably, sequences and structures which are indispensable for ribosome function are retained in the mitochondrial RNA, while less critical portions of the molecule have been lost during evolution. Homology between the bacterial and mitochondrial sequences is readily detectable, and with careful alignment of the respective sequences, conservation of certain secondary structure elements is also evident (cf. Table l). Those helices that have clearly recognizable counterparts in the mamalian mitochondrial large subunit RNAs are indicated by a dark stripe in Figure 2. Interestingly, nearly all of the conserved helices are found in domains II, IV and V. Coincidentally, nearly all of the post-transcriptionally modified nucleotides also occur in domains II, IV and V. Thus domains II and IV, in addition to the well-documented case of domain V, are also likely to contain functionally indispensable regions.

Hiqher order structure and mechanism in 235 ribosomal RNA
The ultimate picture of ribosomal RNA will show the various helical elements in specific three dimensional axrays, interacting with other components, and in all probability undergoing movement during the process of translation. Although the secondary structure and its present implications are a significant beginning, we are still a long way from such a conception of the ribosome. The secondary structures and elements defined by them suggest certain possibilities for higher order structure and mechanism (1, 2, 5). Of particular interest are coaxial helices, for such structures at very least congtrain the overall shape of the RNA significantly. The precedent for considering
coaxial helices is, of course, the tRNA molecule, which contains two such juxtapositions-the coaxial TYC and CCA arms, and the nearly coaxial anticodon and D arms. Any two adjacent helices (i.e.. having no unpaired residues between them in one of the strands) should be considered as potentially coaxial. Thexe are about 13 such possible coaxial situations (not so drawn) in Fig. 1.

One type of comparative evidence strongly suggests coaxiality. Suppose two adjacent helices in an RNA of organigm A are of lengths n and mairs. If the analogous helices in organism B are of lengths $n+a$ and m-a (i.e.. the sum of pairs in the two, $n+m$, is constant) then the two helices may be coaxial. An example of such a case for the $23 S$ rRNA is helix 79 in Table 1.

Going further, the forming and unforming of such coaxial structures, and the alternate forming of mutually exclusive coaxial structures, should be considered as a possible basis for mechanism in the ribosome. It is conceivable that such a mechanism operates in the tRNA molecule during translation and in the 55 RNA as well.

As an example of how coaxial stacking might be employed in translation, we consider the following. At the 3^{\prime} terminus of all tRNAs is found the invariant sequence CCA, likely to play a role in the precise positioning of aminoacyl and peptidyl moieties in the peptidyl transferage site of the 505 ribosomal subunit. The two cytidine residues have been shown to be crucial for productive binding of oligonucleotide analogues of peptidyl trNA to the peptidyl transferase site (60) (although the $3^{\prime \prime}$-terminal adenosine of f-MettRNA can be replaced by inosine or guanine and still carry out peptidyl transfer [61]). Peattie and Herr (62) have demonstrated that the two 3'terminal C residuces in ribosome-bound tRNA are strongly protected from chemical attack. If the 3^{\prime} terminus of peptidyl-tRNA binds through base pairing of

these two C residues, an invariant GG sequence is demanded in the ribosome. A suitable candidate is the pair of guanosines at positions 2607 and 2608 . Significantly, σ_{2605} is one of four possible candidates for the site of attack of the above-mentioned puromycin analogue (57). In this instance, pairing of the 3'-terminal cytosines with G_{2607} and G_{2608} creates an extended coaxial helix in which the two newly formed G-C pairs are stacked on the final C-G pair of the pre-existing helix 2588-2594/2599-2606 (Fig. 3).
(In the case of tRNA_{f} met and the majority of other tRNA's, an additional A-U or G-U pair can be made, as shown in Fig. 3). Coaxial stacking of this kind could afford the advantage of precise structural alignment of two RNA molecules, in addition to the stability gained from the stacking itself. This type of mechanism is also attractive for the reason that it makes use of two well-known structural properties of nucleic acids: base-pairing and stacking. Such a mechanism should soon be testable.

Recently, two other models for $23 S$ RNA secondary structure models have been proposed (67, 68). There are significant differences between these models and the one presented here. These differences will be discussed in a subsequent paper.

We wish to thank R. Hallick, I. Eperon and R. Brimacombe for sharing their unpublished results, Carol Kubitz for drawing figure 1, and M. Turner for preparing plasmid DNA. This work was supported by NIH grant GM 17129 (to H.F.N.) and NASA grant NSG 7044 (to C.R.W.).

REFERENCES

```
Nollex, H. F. \& Woese, C. R. (1981) Science 212, 403-411
Noller, H. F. (1980) in Ribosomes (eds. Chambliss, G. et al.) Univ. Park
    Press, Baltimore
    Sanger, F. \& Coulson, A. R. (1975) J. Mol. Biol. 94, 441-448
    Maxam, A. M. \& Gilbert, W. (1977) Proc. Natl. Acad. Sci. USA 74, 560-564
    Fox, G. \& Woese, C. R. (1975) Nature 256, 505-506
    Woese, C. R., Magrum, L. J., Gupta, R., Siegel, R. B., Stahl, D. A., Kop,
        J., Crawford, N., Brosius, J., Gutell, R., Hogan, J. J. \& Noller, H. F.
        (1980) Proc. Natl. Acad. Sci. USA 8, 2275-2293
    Brosius, J., Dull, T. J. \& Noller, H. F. (1980) Proc. Nat. Acad. Sci. USA
        77, 201-204
    Kop, J., Wheaton, V., Gupta, R., Turner, M., Woese, C. R. \& Noller, H. F.
        unpublished
    Eperon, I. C., Anderson, S. and Nierlich, D. P. (1980) Nature 286, 460-467
    VanEtten, R. A., Walberg, M. W. and Clayton, D. A. (1980) Cell 22, 157-170
    Orozco, E. M., Rushlow, K. E., Dodd, J. R. and Hallick, R. B. (1980) J.
        Biol. Chem. 255, 10997-11003
    Gourse, R. L. and Gerbi, 5. A. (1980) Nucleic Acids Res. 日, 3623-3637
    Gourse, R. L., Thurlow, D. L., Gerbi, S. A. and Zimmermann, R. A. (1981)
        Proc. Natl. Acad. Sci. USA 78, 2722-2726
14 Hall, L. M. C. and Maden, B. E. H. (1980) Nucleic Acids Res 8, 5993-6004
```


Nucleic Acids Research

```
15 Sollner-Webb, B. and Reeder, R. H. (1979) Cell 18, 485-499
16 Dujon, B. (1980) Cell 20, 185-197
17 Bos, J. L., Osinga, K. A., Van der Horst, G., Hecht, N. B., Tabak, H. F.,
    Von Ommen, G.-J. B. and Borst, P. (1980) Cell 20, 207-214
18 Allet, B. and Rochaix, J. D. (1979) Cell 18, 55-60
19 Takaiwa, F. and Sugiura, M. (1980) Molec. gen. Genet. 18, 55-60
20 Allet, B. & Spahr, P. F. (1971) Eur. J. Biochem. 19, 250-255
21 Bruce, A. G. & Uhlenbeck, 0. C. (1978) Nucleic Acids Res. 5, 3665-3677
22 Contreras, R. & Fiers, W. (1979) FEBS Lett. 16, 281-283
23 Peattie, D. A. (1979) Proc, Nat. Acad. Sci. USA 76, 1760-1764
24 Herr, W. & Noller, H. F. (1978) Biochem. 17, 307-315
25 Herr, W. & Noller, H. F. (1979) J. Mol. Biol. 130, 421-432
26 Stahl, D. A. (1978) Ph.D. Thesis, Univ. of Illinois, Urbana, Illinois
27 Cantor, C. R. (1980) in Ribosomes (eds. Chambliss, G. et al.) Univ. Park
    Press, Baltimore, pp. 23-49
28 King, T. C., Rucinsky, T., Schlessinger, D. & Milanovich, F. (1981)
    Nucleic Acids Res. 9, 647-661
29 Ealind, T. D. & Bassel, A. R. (1980) J. Bact. 141, 365-373
30 Noller, H. F., Douthwaite, S., Garrett, R. A., & Peattie, D. A. (in
        preparation)
3l Krol, A., Machatt, M. A., Branlant, C. & Ebel, J. p. (1978) Nucleic Acids
        Res. 5, 4933-4947
32 Muller, R., Garrett, R. A. & Noller, H. F. (1979) J. Biol. Chem. 254,
        3873-3878
33 Garrett, R. A., Douthwaite, S. & Noller, H. F. (1981) Trends in Biochem,
        Sci. 6, 137-139
34 Stauss, W., Gutell, R., Crawford, N. & Noller, H. P. (unpublished)
35 Branlant, C., Krol, A., Sriwidada, J., Sloof, P. & Garrett, R. (1976) Eur.
        J. Biochem. 70, 457-469
36 Branlant, C., Sriwidada, J., Krol, A. & Ebel, J. P. (1977) Nucleic Acids
        Res. 4, 4323-4345
37 Zimmermann, R, A. (1980) in Ribosomes (eds. Chambliss et al.) Univ. Park
        Press, Baltimore, p. 135-169
38 Sloof, P., Hunter, J. B., Garrett, R. A. & Branlant, C. (1978) Nucleic
        Acids Res. 5, 3503-3513
39 Maly, P., Rinke, J.. Ulmer, E., Zwieb, C. & Brimacombe, R. (1980) Biochem-
        istry 19, 4179-4188
40 Herr, W. & Noller, B. F. (1975) FEBS Lett. 53, 248-252
4 1 ~ B r a n l a n t , ~ C . , ~ K r o l , ~ A . , ~ S r i w i d a d a , ~ J . ~ \& ~ B r i m a c o m b e , ~ R . ~ ( 1 9 7 6 ) ~ E u r . ~ J . , ~
        Biochem. 70, 483-492
42 Sloof, P. (1977) Ph.D. Thesis, Univ. of Amsterdam
43 Wrede, P. & Erdmann, V. A. (1977) Proc. Nat. Acad. Sci. USA 74, 2706-2709
44 Nazar, R. N. (1980) FEBS Lett. 119, 212-214
45 Luehrsen, K. R. & Fox, G. E. (1981) Proc. Nat. Acad. Sci. USA 78, 2150-
        2154
46 Jordan, B. R. (1974) FEBS Lett. 44, 39-42
47 Pace, N. R., Walker, T. A. & Schroeder, E. (1977) Biochem. 16, 5321-5328
4 8 \text { Pavlakis, G. N., Jordan, B. R., Wurst, R. M. \& Vournakis, J. N. (1979)}
        Nucleic Acids Res. 7, 2213-2238
49 MacKay, R. M. (1981) FEBS Lett. 123, 17-18
50 Nomiyama, H., Sakaki, Y, and Takagi, Y. (1981) Proc. Natl. Acad. Sci. USA
        78, 1376-1380
51 Rae, P. M. M., Kohorn, B. D. & Wade, R. P. (1980) Nucleci Acids Res. 8,
        3491-3504
52 Roiha, H., Miller, J. R., Woods, L. C. & Glover, D. M. (1981) Nature 290,
        749-753
53 Wild, M. A. & Sommer, R. (1980) Nature 283, 693-694
```

```
54 Gilbert, W. (1978) Nature 271, 501
55 Cooperman, B. S. (1980) in Ribosomes, eds. Chambliss et al., Univ. Park
        Press, Baltimore, pp. 531-554
56 Yukioka, M., Hatayama, T. & Omari, K. (1977) Eur. J. Biochem. 73, 449-459
57 Eckermann, D. J. & Symons, R. H. (1978) Eur. J. Biochem. 82, 225-234
5 8 ~ C u n d l i f f e , ~ E . ~ ( 1 9 8 0 ) ~ i n ~ R i b o s o m e s , ~ e d s . ~ C h a m b l i s s , ~ G . ~ e t ~ a l . , ~ U n i v . ~ P a r k
        Press, Baltimore, pp. 555-581
59 Kearsay, S. E. & Craig, I. W. (1981) Nature 290, 607-608
60 Monro, R. E., Cerna, J. & Marcker, K. A. (1968) Proc. Nat. Acad. Sci. USA
        62,
61 Cernd, J., Rychlik, I., Krayevsky, A. A. and Gottikh, B. P. (1974) Acta
        Biol. Med. Ger. 33, 877.
62 Peattie, D. A. & Herr, W. (1981) Proc. Nat. Acad. Sci. USA 78, 2273-2277
63 Spierer, P., Zimmermann, R. A. & Branlant, C. (1976) FEBS Lett. 68, 71-75
64 Selker, E. and Yanofsky, C. (1979) Nucleic Acids Res. 6, 2561-2567
65 Fanning, T. G. and Traut, R. R. (1981) Nucleic Acids Res. 9, 993-1004
66 Edwards, K. & Korsel, H. (1981) Nucleic Acids Res. 9, 2853-2869
67 Glotz, C., Zwieb, C. & Brimacombe, R. (1981) Nucleic Acids Res. 9, 3287-
        3306
68 Branlant, C., Kro1, A., Machatt, M. A., Pouyet, J. & Ebel, J. B. (1981)
        Nucleic Acids Res., in press.
```

