Abstract

Numerous flanking nucleotide sequences from two primate interspersed repetitive DNA families have been aligned to determine the integration site preferences of each repetitive family. This analysis indicates that both the human Alu and galago Monomer families were preferentially inserted into short d(A+T)-rich regions. Moreover, both primate repeat families demonstrated an orientation specific integration with respect to dA-rich sequences within the flanking direct repeats. These observations suggest that a common mechanism exists for the insertion of many repetitive DNA families into new genomic sites. A modified mechanism for site-specific integration of primate repetitive DNA sequences is provided which requires insertion into dA-rich sequences in the genome. This model is consistent with the observed relationship between galago Type II subfamilies suggesting that they have arisen not by mere mutation but by independent integration events.

Comments

0 Comments