Abstract

The CArG box is an essential promoter sequence for cardiac muscle actin gene expression in Xenopus embryos. To assess the role of the CArG motif in promoter function during Xenopus development, the DNA-binding activities present in the embryo that interact with this sequence have been investigated. A family of four Embryo CArG box1 Factors (ECFs) was separated by a 2-step fractionation procedure. These factors were distinct from the previously described CArG box binding activity Serum Response Factor (SRF). ECF1 was the most prominent binding activity in cardiac actin-expressing tissues, and bound the CArG box in preference to a Serum Response Element (SRE). SRF was also detectable in muscle, but it bound preferentially to an SRE. The properties of ECF3 were similar to those of ECF1, but it was much less prominent in cardiac actin-expressing tissues. The properties of the two other factors were distinctive: ECF2 was of relatively low affinity and high abundance, whilst ECF4 bound non-specifically to ends of DNA. The binding activity (or activities) that interacted with the CArG box was found to be influenced by both the concentrations of the other CArG box binding activities and the sequence of the site. Although there was no evidence for a muscle-specific CArG box binding activity, the properties of ECF1 suggest that it could play a role in the expression of the cardiac actln gene during Xenopus development.

This content is only available as a PDF.

Author notes

* Present address: Wellcome/CRC Institute of Cancer and Developmental Biology, Tennis Court Road, Cambridge, CB2 1QR, UK

Comments

0 Comments
Submit a comment
You have entered an invalid code
Thank you for submitting a comment on this article. Your comment will be reviewed and published at the journal's discretion. Please check for further notifications by email.