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Abstract

Derangements of the three endothelium-related vaso-
dilator systems (prostaglandins, endothelium-derived
hyperpolarizing factor(s) and nitric oxide) cause the
endothelial dysfunction observed in hypertension. Free
radical-induced nitric oxide degradation plays a crucial
role in hypertension. An increase in superoxide pro-
ducing enzymes such as NAD(P)H oxidase and
xanthine oxidase has been demonstrated. Superoxide
dismutase may correct endothelial dysfunction in vitro
and superoxide dismutase mimetics can lower blood
pressure in experimental animals. Antioxidant agents
and xanthine oxidase-inhibiting compounds have been
used in humans. In addition, the synthesis of vasocon-
strictor peroxides derived from the activity of cyclo-
oxygenase in the endothelium and the vascular smooth
muscle is stimulated by the OH? radical. Hydrogen
peroxide levels are augmented in hypertension, but its
role is unclear because recent investigations have
shown that this substance may act as a hyperpolarizing
factor. It is thought that the therapeutic benefit of anti-
hypertensive drugs, such as calcium antagonists and
angiotensin-converting enzyme inhibitors, could be in
part due to an inhibition of free radical production.
A role of superoxide in the endothelial dysfunction and
hypertension of chronic renal failure has also been
suggested by recent animal experiments.
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Introduction

The control of circulatory homeostasis depends on
vascular endothelium responses to chemical, hormonal
and haemodynamic changes. The endothelium releases

mediators which affect vascular smooth muscle cell
activity. Imbalance between vasodilators and vaso-
constrictors, inducing endothelial dysfunction, has been
described in a variety of conditions w1x. Depressed
endothelium-dependent vascular relaxation was first
demonstrated in spontaneously hypertensive rats
(SHR) by Konishi and Su in 1983 w2x. This phenomenon
occurs progressively as arterial pressure increases
with age w3x. By contrast, the response to sodium
nitroprusside or nitroglycerine w4x is maintained.
Endothelial dysfunction is similarly present in patients
with essential hypertension w5–8x, and even in their
normotensive descendants w9x. However, it is still
unclear whether endothelial dysfunction causes the
hypertensive process or, in contrast, high arterial pres-
sure damages the endothelium. Whatever the sequence
of events, endothelial dysfunction may maintain
increased vascular resistance, leading to hypertension
and its complications w10x.

Locally released endothelium-derived vasodilators
in hypertension

The term endothelial dysfunction refers to alterations
of endothelial properties, such as anticoagulant and
anti-inflammatory functions, modulation of vascular
growth and remodeling. However, in the context of
tone control (and hypertension), this term indicates
deranged vasodilator activity. Three main vasodilator
pathways have been recognized. The first is cyclo-
oxygenase dependent w11,12x. Two mechanisms which
have received much attention recently are the nitric
oxide (NO)-dependent mechanism w13x and those
related to a heterogeneous group of substances,
defined as endothelial-derived hyperpolarizing fac-
tor(s) (EDHF) w14x. EDHF is involved in shear
stress-induced endothelium-dependent relaxation via
Ca-activated K channels w15x, and is thought to modu-
late vasoconstriction w16x, and to mediate the response
to contractions induced by a1-adrenoceptor stimula-
tion of smooth muscle, at least in the mesenteric
artery w17x.
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All these systems are altered in hypertension.
Abnormal synthesis of prostaglandins has been
described in human and animal hypertension w11,12x.
There is a decrease in the basal production of NO
and expression of endothelial NO synthase in SHR
w18,19x, although in the salt-sensitive hypertensive Dahl
rat, no alteration of NO synthase genes was found w20x.
Hypertensive patients are not deficient in L-arginine
and its administration fails to improve acetylcholine
response w5,6,8x. However, NO synthesis inhibitors
provoke less vasoconstriction in the forearm of hyper-
tensive patients than normotensive controls w21x, sug-
gesting decreased NO bioavailability. No association
was found between NO synthase gene markers and
hypertension in humans w22x. In SHR rats, decreased
EDHF-related endothelial function is associated with
decreased NO system activity w23x. These changes are
reversible in response to antihypertensive treat-
ment w24x, administration of cholecalciferol, which nor-
malizes blood pressure w25x, and endothelin receptor
antagonists w26x.

Superoxide-NO relationship in the control of
vascular tone

Recent research suggests that NO degradation is
increased in the presence of excessive production of
free radicals such as superoxide anion (O2

�?) w27,28x. In
several pathological conditions, in which endothelial
dysfunction is related to decreased NO bioactivity
(diabetes mellitus, arteriosclerosis, cigarette smoking,
hypercholesterolaemia, hypertension), the vascular
production of superoxide is increased. Because O2

�?

and NO both contain unpaired electrons in their outer
orbitals, they undergo an extremely rapid, diffusion-
limited radicaluradical reaction, leading to formation
of peroxynitrite anion (ONOO�?), a strong oxidant
which is rapidly protonated at physiological pH to
yield the highly reactive peroxynitrous acid, which
in turn generates the hydroxyl radical OH�? w29x.
Production of O2

�? in the vessel wall inactivates NO
and blunts endothelium-dependent vasodilation w30x.
Thus, controlling the amount of O2

�? is critically
important for preserving NO bioactivity at the level
of the vessel wall.

NAD(P)H oxidases are major sources of superoxide
in vascular cells. The NAD(P)H oxidases of the
cardiovascular system are membrane-associated
enzymes that catalyze the 1-electron reduction of
oxygen using NADH or NADPH as the electron
donor w31x. Upon stimulation by various agents, O2

�? is
produced within minutes to hours by endothelial cells
and vascular smooth muscle cells w32,33x, in contrast to
the almost instantaneous release seen in neutrophils.
One of the most important attributes of the cardio-
vascular oxidase is its responsiveness to hormones and
vasoactive substances (angiotensin II, thrombin,
PDGF, TNF-a), haemodynamic forces and local
metabolic changes. Activation of the oxidase can be

mediated by intracellular second messengers, including
calcium, protein kinase C and lipoxygenase metabo-
lites of arachidonic acid w31x. A second enzymatic
pathway generating superoxide in the vessel wall is
xanthine-oxidase (XO). Because the measurement of
the activity of this enzyme remains difficult, its precise
role in vascular physiology is still unclear and rests
mainly on indirect evidence derived from studies of the
effects of antagonists of enzyme activity such as
oxypurinol w34x. Recently a molybdenum-deficient
form of XO has been identified, which uses NADH
as its substrate w35x. It is thus possible that some of the
evidence gathered on NADH-oxidase reflects in fact
the activity of this modified form of XO. A third
enzyme capable of producing O2

�? is endothelial nitric
oxide synthase (eNOS). This enzyme uses L-arginine as
its substrate and needs tetrahydrobiopterin (BH4)
bound near its heme group in order to produce NO.
In absence of substrate or BH4 (eNOS uncoupling),
eNOS produces O2

�? w36–38x. There is evidence that this
occurs in some forms of hypertension (see below). In
addition, it has recently been demonstrated that eNOS
may produce O2

�? and H2O2 even in normal conditions
w39x.

The superoxide dismutases (SOD) represent a
major cellular defense against O2

�? and formation
of peroxynitrite w40x. Three isoenzymes have been
identified, including a cytosolic copperuzinc-containing
form (CuuZnSOD), a mitochondrial manganese-
containing form (MnSOD), and an extracellular
isoenzyme (ecSOD), which is also a copperuzinc-
containing enzyme. In the vessel wall, one third to
one half of total SOD activity is made up by ecSOD
w41x. Immunohistochemical studies have shown that
vascular ecSOD is localized in high concentrations
between the endothelium and the smooth muscle layer,
which endothelium-derived NO must cross to stimu-
late smooth muscle relaxation w42x. Upregulation
of ecSOD in response to NO has been demonstrated.
This can reduce reactions of NO with O2

�?, thereby
enhancing the beneficial biologic effects of NO released
by the endothelium.

Vascular superoxide in hypertension

Evidence for microvascular oxidative stress in animal
hypertension has accumulated recently w43–45x. Blood
SOD activity is lower in ISIAH (stress-sensitive) rats
compared with that of Wistar rats w46x. Moreover,
the functional importance of reactive oxygen species
(ROS) in hypertension has been suggested by the fact
that the administration of tempol (a stable membrane-
permeable SOD mimetic) or heparin-binding SOD,
which localizes within the vessel wall, normalized
blood pressure in SHR w27,47x. Similar findings have
been demonstrated in DOCA-salt hypertension w48x
and in renovascular hypertensive rats w49x. In the
model of chronic infusion of angiotensin II in rats, the
NAD(P)H subunit p22phox mRNA is upregulated and
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NAD(P)H oxidase-derived O2
�? production increases

w31x. Both hypertension and the increase in p22phox
mRNA were prevented by pretreatment with SOD
w50x. Aortic NAD(P)H oxidase activity and expression
of p22phox messenger RNA are elevated in SHR, and
both are decreased after antihypertensive treatment
w51x. Superoxide anions may be involved in the
development of hypertension-related cardiac hyper-
trophy w52x, stroke w53x and renal damage w54x observed
in SHR. It should also be mentioned that Na load-
ing decreases endothelium-dependent vasodilation in
normotensive w55x, spontaneously hypertensive w56x
and salt-sensitive Dahl rats w57x as well as in the
DOCA-salt model of hypertension w58x. A recent study
has shown that salt loading stimulates the production
of reactive oxygen species in resistance vessels from
normotensive rats w59x. Erythrocyte SOD activity is
reduced in patients with essential hypertension w60x
and in hypertensive pregnant women w61x.

Other reactive oxygen species (OH�? and H2O2)

In essential hypertension, the role played by vaso-
constrictor cyclooxygenase (COX) products, such as
PGH2 and thromboxane w62x is probably important.
COX expression is elevated in SHR rats w62x and
acetylcholine paradoxically produces endothelium-
dependent contractions. These can be inhibited by
selective COX-1 inhibitors, which also reduce blood
pressure w63x. Recent evidence shows that OH�?,
originating from endothelial O2

�? produced through
the XO pathway, stimulates COX w14x.

Plasma concentrations of H2O2 are elevated in
salt-sensitive Dahl rats w64x, and H2O2 produces
PGH2uTXA2-mediated contraction in aortic segments
from SHR. On the other hand, H2O2 impairs
KCl-induced contraction, acting as a K channel
opener (EDHF) w39,65x, and induces relaxation via
ATP-sensitive K channels in endothelium-denuded
aortic rings taken from SHR. Relaxation in response
to levcromakalim (an ATP-channel opener) is aug-
mented in SHR aorta. Catalase, but not SOD or
desferrioxamine reduced them. These results suggest
that in chronic hypertension, vasorelaxation to an
ATP-sensitive K channel opener is augmented and that
H2O2 produced in smooth muscle cells may partly
contribute to these relaxations w66x. H2O2 levels are
elevated in humans with essential hypertension. Hydro-
gen peroxide production was correlated positively with
plasma rennin activity (PRA), and negatively with
cardiac contractility and renal function w67x.

Free radical production inhibitors in hypertension

Antioxidant agents have been used to treat endothelial
dysfunction, as found in arterial hypertension w68x.
In hypertensive patients, vitamin C improves coronary

artery responses to acetylcholine and the endothelium-
dependent vasomotor capacity w69x and intravenous
infusion of ascorbic acid at high-dose ameliorated
the impaired endothelium-dependent vasodilation to
methacholine w70x. Administration of xanthine
oxidase inhibitors, such as allopurinol, given intraven-
ously to SHR, produces a temporary drop in arterial
blood pressure w71x. Oxypurinol, with a longer half-
life, was effective in reversing endothelial dysfunc-
tion in double transgenic hypertensive rats, carrying
the human renin and angiotensinogen genes w72x.
However, oxypurinol did not affect blood pressure in
human hypertension w73x.

Effect of antihypertensive drugs on
free radical production

Angiotensin-converting enzyme inhibitors w74x and
calcium antagonists w75x improve endothelium-depend-
ent vasodilation in hypertensive patients, and facilitate
the vasoconstrictor responses of NO antagonists w76x.
This may be, at least in part, the consequence of their
antioxidant action, inhibiting free radical produc-
tion w77,78x. A similar action has been reported with
losartan, an angiotensin II receptor antagonist, which
depressed the angiotensin II-induced production of
superoxide radicals w79x.

Oxygen free radicals in endothelial dysfunction
and hypertension of chronic renal failure

Hypertension, common in patients with chronic
renal failure (CRF), is a major determinant of the rate
of deterioration of renal function, and of morbidity
and mortality of dialysis patients w80x. Its pathogenesis
is not well understood. Endothelial dysfunction due to
reduced NO bioactivity w81x, has been demonstrated
by experimental w82x and human w83,84x studies. There
is evidence that oxidative stress occurs early during
the evolution of CRF. Parameters of oxidative stress
and antioxidant enzyme activities are altered in CRF
patients w85–87x. The activity of antioxidant enzymes
decreases in the renal cortex of rats after subtotal
nephrectomy w88,89x, and the associated increase in
oxidative stress seems to play a role in the development
of renal fibrosis, since antioxidant treatments (vitamin
E w90x or magnesium lithospermate B w88x) may hinder
its progression. Very little is known of the role played
by superoxide in endothelial dysfunction and hyper-
tension in CRF. In one study, the antioxidant sub-
stance lazaroid has decreased blood pressure in rats
after subtotal nephrectomy w91x. We have recently
shown that exogenous SOD restores the decreased
response to acetylcholine in isolated mesenteric
arteries from rats after 5u6 nephrectomy and the
SOD-mimetic tempol prevents the increase of blood
pressure in these animals w92x. These studies suggest
that increased superoxide production in the vascular
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wall is an important pathogenetic factor in the devel-
opment of endothelial dysfunction and high blood
pressure in CRF.
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