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Introduction: proteinuria as a risk factor for
progressive renal disease

It has long been recognized that patients with high-
grade proteinuria due to chronic glomerular disease
are more likely to develop chronic renal failure than
a matched group of patients with low-grade or no
proteinuria [1,2]. Although this association may seem
intuitively obvious, suggesting correlation with the
severity of glomerular damage, two important observa-
tions promote an alternative compelling hypothesis.
First is the fact that renal functional outcome for
patients with chronic glomerulopathy is best predicted
histologically by the severity of chronic extraglomerular
damage—peritubular capillary loss, tubular atrophy
and interstitial fibrosis. Second is research evidence
that urinary proteins themselves may elicit pro-
inflammatory and pro-fibrotic effects that directly
contribute to chronic tubulointerstitial damage. For
example, rodents injected daily with large doses of
albumin develop ‘overload proteinuria’ that consists
of both the exogenous albumin as well as several
endogenous plasma proteins [3,4]. Although there does
not appear to be an immunological response to the
albumin, shortly after the onset of proteinuria,
interstitial inflammation develops and fibrosis ensues.
While this exact scenario would be unusual in humans,
analogous cases have been reported including two
children with hemolytic uremic syndrome, severe hyper-
proteineamia and proteinuria associatedwith aggressive
plasma-infusion therapy [5]. The existence of a direct
proteinuria–interstitial inflammation–fibrosis connec-
tion has important clinical implications including

avoidance of unnecessary albumin and plasma infusions
and the use of therapies that reduce protein excretion
rates, both immunosuppressive therapy for the primary
disease and angiotensin II blockade, especially for
hypertensive patients.

The proteinuria–interstitial inflammation–fibrosis
connection

Effects of proteinuria on renal tubules

Interstitial inflammatory cells are recruited from the
circulation via an integrated series of steps involving
interactions between leukocyte adhesion molecules
(selectins and integrins) and their counter-receptors/
ligands on peritubular capillaries (mucins and IgG-like
receptors). Leukocyte migration is directionally regu-
lated by chemokines and chemoattractants. Several
in vitro studies have demonstrated that certain urinary
proteins (albumin and transferrin are commonly used)
canstimulateproximal tubularcells to synthesize chemo-
kines: monocyte chemoattractant protein-1 (MCP-1),
RANTES and fractalkine that recruit monocytes and
T-cells and interleukin-8 that attracts neutrophils
[6–10]. Such findings suggest that a similar sequence
of events may occur in vivo, providing a plausible
mechanistic link between proteinuria and interstitial
inflammation (Figure 1). Indeed, de novo tubular
production of MCP-1 has been observed in several
proteinuric renal diseases including overload protein-
uria [4]. Anti-MCP-1 gene therapy was shown to
significantly reduce the severity of interstitial inflam-
mation and fibrosis in animals with overload protein-
uria [11]. Studies in knockout mice provide further
evidence that MCP-1 is involved in the interstitial
inflammatory and fibrogenic response in mice with
anti-GBM and lupus nephritis [12,13]. Although a role
for chemokines such as MCP-1 is most convincing,
other tubular-derived chemoattractants have been
implicated in this process including the adhesive glyco-
protein osteopontin [14] and activated complement C3
fragments [15].
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Given the apparent effects of tubular-derived
proteins, several questions need further consideration.
First, which urinary protein(s) activates tubular cells?
Despite the fact that albumin elicits several tubular
responses in vitro, it is still unclear whether albumin
alone is an important activator of tubular cells in vivo.
Progressive renal disease is less common in patients
with steroid-responsive nephrotic syndrome and famil-
ial nephropathy associated with highly selective protein-
uria [16], composed predominantly of albumin and
lower molecular weight proteins. Although animals
with albumin-induced overload proteinuria develop
interstitial disease, the urine of these animals does
contain non-albumin endogenous plasma proteins.
Analbuminemic rats [17] treated with adriamycin
develop proteinura and interstitial damage, although
the latter could be a response to the drug rather than
proteinuria. Albumin might act as a carrier for other
inflammatory mediators such as lipids [18,19]. Several
other urinary proteins have already been shown to
activate tubular cells including complement proteins,
transferrin and certain growth factors [20–22]. Many
other candidates remain to be investigated.

Second, how do urinary proteins activate tubular
cells? Megalin and cubilin are multi-ligand and multi-
functional receptors expressed by proximal tubular cells
and involved in the endocytosis of luminal proteins [23].
While logical candidates, it is not yet clear if megalin
and/or cubulin are the primary receptors that initiate
tubular cell pro-inflammatory responses to proteinuria.
Activation of nuclear factor kappa B (NF-�B) within
proximal tubular cells exposed to urinary proteins
appears to be one intracellular signalling event that
leads to transcriptional activation of chemokine genes.

In vivo treatment with the NF-�B inhibitor (I�Ba)
significantly reduced interstitial inflammation and
fibrosis in rats with overload proteinuria although
specific effects on chemokine expression were not
evaluated [24].

Third, how do tubular-derived mediators of inflam-
mation reach their target cells, which are circulating
within peritubular capillaries? Some in vitro studies
using confluent monolayers of polarized tubular cells
have nicely demonstrated that apical presentation of
proteins can lead to synthesis and release of potential
inflammatory mediators across the basolateral mem-
brane. However, in vivo tubular basement membranes
(TBM) still present a significant barrier between tubules
and capillaries (Figure 1). In more advanced disease,
the TBM is often damaged, permitting direct commu-
nication between tubular cells and the interstitial
space. For example, TBM disruption appears to be an
important prerequisite for the migration of transdiffer-
entiated tubular cells into the interstitium where they
contribute to matrix protein synthesis [25]. However
interstitial inflammation typically precedes overt TBM
damage and the channels of communication between
the tubular epithelium and the capillary endothelium
remain to be determined. Along the distal nephron,
tubules may be damaged by obstructing protein casts,
with subsequent damage to epithelial cells and their
basement membranes. Little is currently known about
specific cellular effects of proteinuria on more distal
tubular cells.

While the pro-inflammatory response of renal
tubules to proteinuria has been implicated as the
important early event leading to interstitial fibrosis,
other effects may also contribute to progressive renal

Fig. 1. Effects of urinary proteins on tubular cells. (1) In glomerular diseases associated with proteinuria, proximal tubular cells may be
activated by elevated levels of normal and novel urinary proteins. (2) Activated tubular cells may synthesize pro-inflammatory mediators,
especially monocyte chemoattractant molecules (e.g. MCP-1, RANTES, fractalkine, complement component 3) and fibrosis-promoting
molecules (e.g. endothelin, angiotensin II, TGF-�). (3) Damage to tubular basement membrane facilitates the passage of tubular-derived
products into the interstitium and peritubular capillaries spaces. (4) Along the distal nephron, protein casts may obstruct urinary flow and
aggravate tubulointerstitial damage. (This figure was adapted from Segerer S, Nelson, PJ, Schlondorff D, Chemokines, chemokine receptors,
and renal disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol 2000; 11: 152–176 [34] with permission of
Lippincott, Williams and Wilkins.)
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destruction including increased tubular cell synthesis of
extracellular matrix proteins as a direct response to
urinary proteins, especially pro-fibrotic growth factors
such as transforming growth factor � [22] and the
activation of pro-apoptotic pathways that lead to
tubular cell death [26,27].

Other pathways from the glomerulus to the interstitium

While the response of proximal tubules to excessive
and/or novel urinary proteins has been strongly
implicated in the proteinuria–interstitial inflammation
connection, additional pro-inflammatory mediators
may originate within glomeruli, either produced sys-
temically or locally by inflammatory and resident
glomerular cells as part of the primary nephritic
process. Under this scenario, the glomerular-derived
products may elicit additional tubular responses, but
these proteins may also gain access to the tubulointer-
stitium via alternative pathways (Figure 2). Analogous
to pulmonary venous blood enriched with oxygen,
blood in the glomerular efferent arterioles may be
enriched with glomerular inflammatory mediators
before perfusing the peritubular capillaries. Although
it is easy to imagine how activation of peritubular
capillary endothelium could facilitate leukocyte recruit-
ment and migration into the interstitium, this pathway
has not been investigated in any detail.

In crescentic glomerular diseases, breaks in
Bowman’s capsule are not uncommon and allow
leakage of proteins in the glomerular ultrafiltrate
directly from Bowman’s space into the interstitium.
Evidence that such a pathway may be important comes
from careful observation of human biopsies, demon-
strating that the periglomerular interstitial space is
often most severely inflamed in crescentic forms of
nephritis. In animal models of anti-GBM nephritis,
interleukin-1 has been identified as one glomerular
mediator of interstitial inflammation [28].

As glomerular diseases progress to a chronic phase,
regions of sclerosis of the glomerular tuft develop.
Often these sclerotic regions become adherent to and
disrupt Bowman’s capsule. Such lesions provide

an additional site for direct leakage of the glomer-
ular ultrafiltrate into the peritubular interstitial
space—misdirected ultrafiltatrion as described by Kriz
et al. [29].

Why is the inflamed interstitium a concern?

The recruitment of macrophages to sites of acute injury
represents a fundamental step in wound healing at any
site within the body. However, if these cells persist after
the initial damage is repaired, the fibrogenic responses
are often sustained with damaging consequences to
renal architecture. As the renal interstitium becomes
progressively expanded by extracellular matrix pro-
teins, there are damaging and ultimately irreversible
effects on peritubular capillaries and tubular epithe-
lium. Macrophages are multifunctional cells that are
capable of synthesizing a number of secretory products
that contribute to ongoing tissue injury (Figure 3).
They may also regulate matrix accumulation, primarily
by producing fibrosis-promoting growth factors (e.g.
TGF-�) and vasoactive products (e.g. endothelin-1,
angiotensin II) and products that impair matrix
degradation (e.g. plasminogen activator inhibitor-1,
tissue inhibitors of metalloproteinases). Macrophages
are not thought to be a significant source of the actual
matrix proteins that accumulate in the interstitium but
they may participate in the recruitment of the matrix-
producing interstitial myofibrobasts [30].

Many therapeutic interventions tested in experimen-
tal models and used in humans with chronic proteinuric
renal diseases decrease interstitial inflammation and
fibrosis. For example, following surgical 5/6 nephrec-
tomy of rats, the initially normal remnant kidney
undergoes progressive destruction by a process that
involves interstitial inflammation and fibrosis. In this
non-immune model of injury, immunosuppression with
mycophenolate mofetil was surprisingly protective [31].
The treated animals developed less interstitial inflam-
mation and fibrosis and had better renal function than
control animals. In several studies designed to identify
the molecular pathways involved in interstitial mono-
cyte recruitment, specific inhibition and/or deletion of a

Fig. 2. Points of direct communication between proteins in the glomerular ultrafiltrate and the tubulointerstitium.
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critical mediator has not only reduced the severity of
the interstitial inflammation but has been associated
with less fibrosis and chronic kidney damage. For
example, such beneficial outcomes have been reported
in animals with overload proteinuria that were treated
with inhibitors of MCP-1 and NF-�B [11,24].

However, there is one important caveat that needs
to be considered. Macrophages are multi-functional
cells that may also impart important beneficial func-
tions, especially pertaining to their ability to serve as
phagocytic scavengers. There is an increasing number
of examples where blockade of specific macrophage
receptors has caused worse chronic kidney damage
despite fewer numbers of interstitial macrophages,
including macrophages lacking the urokinase receptor
(uPAR) and the angiotensin II type 1 receptor [32,33].
Both of these receptors were shown to modify specific
macrophage phagocytic functions that may serve to

dampen the intensity of the fibrogenic response. Thus
future studies will need to delineate not only the
number but also the phenotype of interstitial macro-
phages in an effort to differentiate protective from
harmful responses.

Conclusion

There is now a substantial body of evidence that
sustained high-grade proteinuria is an independent
mediator of progressive kidney damage. Effects on
renal tubules appear to provide a critical link between
proteinuria and tubulointerstitial injury although
several other mechanisms have also been implicated
(Figure 4). These studies offer rationale for the
development and testing of therapies to modulate the
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Fig. 3. Macrophage secretory products that have been implicated in the pathogenesis of tubulointerstitial damage and progressive renal
disease. While most products promote injury, scavenging functions of macrophages may help to dampen the severity of the damage.

Fig. 4. Schematic summary of some of the pathways and mediators that may explain how proteinuria causes interstitial inflammation and
fibrosis. (This figure was modified from Eddy and Schnaper [35] with permission from Elsevier.)
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severity of proteinuria and/or mediators of proteinuria-
induced tubulointerstitial disease.
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