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Abstract
Background. Tryptophan (Trp) is catabolized by in-
doleamine 2,3-dioxygenase (IDO). Changes in Trp
metabolism and IDO activity in chronic kidney disease
(CKD) have not been widely studied, and the impact
of haemodialysis is uncertain. Here we investigate Trp
catabolism, IDO activity and the role of inflammation in
moderate to very severe CKD and haemodialysis.
Methods. Eighty individuals were included in a prospective
blinded endpoint analysis. Using tandem mass spectrom-
etry, serum levels of Trp, kynurenine (Kyn), kynurenic-
acid (Kyna), quinolinic-acid (Quin), 5-hydroxytryptophan
(OH-Trp), serotonin (5-HT), estimated IDO activity and
inflammatory markers were assessed in 40 CKD patients

(age 57 ± 14 years, 21 male, creatinine 4.5 ± 2.7, n = 17
receiving haemodialysis), and in 40 healthy controls (age
34 ± 9 years, 26 male).
Results. Trp levels were unchanged in CKD (P = 0.78
versus controls). Serum levels of Kyn, Kyna and Quin in-
creased with CKD severity (stages 4, 5 versus controls
all P ≤ 0.01). IDO activity was significantly induced in
CKD and correlated with disease severity (stages 3–5 ver-
sus controls, all P ≤ 0.01) and inflammatory markers
[high-sensitivity C-reactive protein (hsCRP), soluble TNF-
receptor-1 (sTNFR-I); both P ≤ 0.03]. IDO products (Kyn,
Kyna, Quin) correlated also with hsCRP and sTNFR-I (all P
≤ 0.04). Haemodialysis did not influence IDO activity (P =
0.26) and incompletely removed Kyn, Kyna, Quin, OH-Trp
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and 5-HT by 22, 26, 50, 44 and 34%, respectively. In mul-
tiple regression, IDO activity correlated with hsCRP and
sTNFR-I (both P ≤ 0.03) independent of serum creatinine,
age and body weight.
Conclusions. IDO activity and serum levels of tryptophan
catabolites of the kynurenine pathway increase with CKD
severity. In CKD, induction of IDO may primarily be a
consequence of chronic inflammation.

Keywords: IDO; immune system; infection; kynurenine; renal failure

Introduction

Catabolism of the essential amino acid tryptophan (Trp) is
tightly regulated in healthy individuals, occurs via two dis-
tinct pathways (Figure 1), and is controlled to ∼99% by the
rate-limiting enzyme indoleamine 2,3-dioxygenase (IDO).
Induced IDO activity leads to the formation of kynurenine
(Kyn), kynurenic acid (Kyna) and quinolinic acid (Quin) [1,
2]. This may contribute to the restoration of energy supplies
via formation of acetyl-CoA (glutarate pathway) and nicoti-
namide adenine dinucleotide (NAD pathway) (Figure 1).

Trp catabolites have been demonstrated to be involved
in the development of key uraemic symptoms. This in-
cludes, among others, neurotoxicity [3–5], lipid metabolism
disorders and atherosclerosis [6] and increased suscep-
tibility to infection [7,8]. IDO itself has been demon-
strated as a key player in immunologic processes including
infection, autoimmunity, allergic reaction, chronic inflam-
mation and renal injury [9–17]. IDO activity, which may
be estimated via the Kyn/Trp ratio, is induced by a
number of pro-inflammatory stimuli including endotoxin
(LPS), bacterial DNA [18,19], pro-inflammatory TH1-
cytokines such as interferon-γ [10,20,21] and soluble
cytokine receptors [10]. Increased IDO activity may thus
be observed in states of chronic infection [22], malignant
disease [23] and neuropsychiatric diseases [24].

Few data from animal models suggest that Trp and
metabolites of the kynurenine pathway are excreted via the
kidneys. However, Trp metabolism and IDO activation in
chronic kidney disease (CKD) have not been widely stud-
ied, and the impact of haemodialysis on Trp and respective
catabolites remains uncertain. This seems of interest as
CKD is strongly attended by the presence of chronic in-
flammation, which has been convincingly demonstrated to
be associated with adverse outcomes in CKD.

Here, we investigate the relationship between tryptophan,
downstream Trp catabolites and IDO activity with measures
of kidney function, clinical CKD stages and prognostically
relevant indices of chronic inflammation, such as high-
sensitivity C-reactive protein (hsCRP) and the soluble TNF-
receptor-1 (sTNFR-I).

Subjects and methods

Study population

In a prospective study, 40 consecutive Caucasian patients [21 male, age
57 ± 14 years, serum creatinine 4.5 ± 2.7, serum urea 101.4 ± 42.0 mg/dl,

estimated glomerular filtration rate (eGFR) 22.4 ± 13.6 ml/min/1.73 m2,
creatinine clearance 21.6 ± 14.3 ml/min, body weight 67.1 ± 2.8 kg
and body height 165.5 ± 9.4 cm] with CKD according to National Kid-
ney Foundation (NKF) stages 3–5 hospitalized in the Charité University
Hospital, Berlin, and the University Hospital of Greifswald, Germany,
were included in this analysis (Table 1). Seventeen patients were in stage
5 (end-stage renal disease, ESRD) and received chronic haemodialysis
(three times per week, 4 h per session). Major underlying kidney disease
was diabetic nephropathy (n = 19, 48%), hypertensive nephropathy (n =
16, 40%), glomerulonephritis (n = 4, 10%) and IgA-nephropathy (n = 1,
0.3%). Major concomitant diseases were coronary artery disease (n = 32,
80%), hyperlipoproteinaemia (n = 26, 65%) and congestive heart failure
(n = 14, New York Heart association class 1–2, 35%). Forty healthy Cau-
casian volunteers (age 34 ± 9 years, 26 male, serum creatinine 1.1 ± 0.2,
body weight 72 ± 3.9 kg) served as controls.

For inclusion into the analysis, participants were required to meet
the following criteria: age >18 years and hospitalization related to any
cause other than infection or acute inflammation. Patients were ex-
cluded when signs of systemic or localized infection (bacterial, fun-
gal or viral) were present (dry cough, expectoration, positive chest
X-ray, signs of urinary infection or diarrhoea). Patients with malignoma,
and acute leukaemia, or patients on a medication known to interfere with
Trp metabolism (e.g. selective serotonin reuptake inhibitors) were also
excluded. The study was performed in accordance with the Declaration of
Helsinki. Informed consent was achieved.

Assessment of kidney function and indices of inflammation

Kidney function was assessed using the following indices: serum crea-
tinine (mg/dl), estimated creatinine clearance (Cockroft-Gault formula),
serum urea (mg/dl) and estimated GFR [modification of diet in renal
disease (MDRD) formula]. For assessment of chronic inflammation, the
following indices were measured in a certified laboratory: hsCRP (as-
sessed using immunoturbidimetry, mg/dl), white blood cell (WBC) count
(×109/l), platelet count (×109/l) and sTNFR-I (pg/ml, upper and lower
limit of detection 15.6–1000 pg/ml). For assessment of Trp metabolism,
plasma ethylene-diaminetetraacetic acid samples were collected in the
morning before breakfast (7:00–8:30 am) and in the early afternoon (1:00–
2:30 pm), or directly before and 20 min after haemodialysis [for patients
in kidney disease outcomes quality initiative (KDOQI) stage 5], respec-
tively. All samples were peripheral venous blood samples and were stored
at −80◦C until assay.

Analysis of Trp metabolism

One hundred microlitre plasma was analysed after addition of 50 µl sulfos-
alicylic acid, 40 µl water and 10 µl standard solution [tryptophan-indole-
d5 (d5-Trp) and 5-times deuterized kynurenic acid (d5-Kyna), Cambridge
Isotope Laboratories, Andover, MA, USA]. The samples were mixed,
stored at 4◦C (30 min) and centrifuged (20 000g, 10 min). For record-
ing, a Wallac MS2 tandem mass spectrometer (Perkin Elmer, Rodgau,
Germany) equipped with an electrospray ion source was used. Ions were
detected in a positive ion mode using multiple reaction monitoring. The
first quadrupole selected the protonated ions at mass-to-charge ratio (m/z)
205, 210, 177, 209, 168, 190 and 195 for Trp, d5-Trp, 5-HT, Kyn, Quin,
Kyna and d5-Kyna, respectively. Nitrogen served as collision gas. Frac-
tioned ions m/z 188 for Trp, 193 for d5-Trp, 160 for 5-HT, 192 for
Kyn, 78 for Quin, 144 for Kyna and 149 for d5-Kyna were detected in
quadrupole Q3 (Q3) (flow solvent: 0.02% formic acid in 50% aqueous
acetonitrile, flow rate 75 µl/min). For quantification, plasma samples
were spiked with standards. Calibration curves were fitted by linear least-
square regression and correlated with the concentration of d5-Trp and
d5-Kyna.

Statistical analysis

Statistical analyses were performed using the MedCalc 9.0.1 software
(MedCalc Software, Mariakerke, Belgium). All data were tested for nor-
mal distribution using the Kolmogorov–Smirnov test and were found to
be normally distributed. The coefficient of determination is provided,
when applicable. Univariate and multivariate regression analyses were
applied to assess factors that independently predicted IDO activity. A
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Fig. 1. Overview of Trp catabolism and the role of IDO. Two distinct pathways of Trp catabolism are indicated: 1 = 5-HT branch, 2 = kynurenine
branch including both quinolinic branch and transamination branch. ACMSDase, amino-carboxymuconate-semialdehyde. QPRT, quinolinic acid
phosphoribosyltransferase.

Table 1. Kidney function and indices of inflammation in CKD stages 3–5

CKD stage 3 (30–59 ml/min/
1.73 m2) n = 10 (25%)

CKD stage 4 (15–29 ml/min/
1.73 m2) n = 14 (35%)

CKD stage 5 (<15 ml/min/
1.73 m2) n = 17 (42%)

Serum creatinine (mg/dl) 2.0 ± 0.7∗, ∗∗ 3.7 ± 1.3∗∗ 6.6 ± 1.5
Serum urea (mg/dl) 89.7 ± 37.0 102.6 ± 47.6 107.8 ± 40.9
Creatinine clearance (ml/min) 41.9 ± 12.5#, ### 20.7 ± 5.2## 10.3 ± 3.0
White blood cell count (×109/l) 8.5 ± 3.3 8.7 ± 6.4 7.9 ± 3.2
Platelet count (×109/l) 200.6 ± 93.8 240.6 ± 113.1 243.6 ± 142.0
High-sensitivity C-reactive protein

(mg/dl)
0.7 ± 0.6§ 2.4 ± 2.1 3.2 ± 2.5

Soluble TNF receptor I (pg/ml) 4365.6 ± 4154.1§, §§ 8594.8 ± 5443.1§§§ 12617.2 ± 4935.0

∗P = 0.001 versus stage 4; ∗∗P < 0.0001 versus stage 5; #P ≤ 0.01 versus stage 4; ##P ≤ 0.01 versus stage 5; ###P < 0.001 versus stage 5; § P ≤ 0.005
versus stage 5; §§P = 0.04 versus stage 4; §§§P = 0.04 versus stage 5.

value of P < 0.05 was considered to be significant. Results and relative
changes are reported as means ± standard deviations (SD), if not indicated
otherwise.

Results

Trp metabolism in controls

In controls (n = 40), the mean morning Trp level was
19.04 ± 3.7 µM. The following mean levels were mea-

sured in the morning of the respective day of assessment
(Figure 2a–g): Kyn 2.6 ± 0.26 µM, Kyna 0.55 ± 0.23 µM,
Quin 0.23 ± 0.09 µM and IDO activity 14.04 ± 2.4. In
the 5-HT branch, OH-Trp levels were 0.07 ± 0.04 µM and
0.84 ± 0.19 µM (5-HT).

Trp and Trp catabolites over time

In order to assess potential changes in the levels of Trp,
downstream Trp catabolites and IDO activity across the
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Fig. 2. Box and whisper plots demonstrating the course of tryptophan and respective metabolites through the clinical stages of CKD (a–g). ∗P ≤ 0.05;
∗∗P ≤ 0.01; ∗∗∗P ≤ 0.005; ∗∗∗∗P ≤ 0.0001.

day, morning and afternoon samples (or before and after
haemodialysis for study patients receiving haemodialysis,
i.e. CKD stage 5) were analysed. In all study cohorts, morn-
ing and afternoon samples were not found to differ signifi-
cantly (all P > 0.06).

Trp metabolism, IDO activity and kidney function/clinical
CKD stages

Trp and catabolites were checked for correlations with mea-
sures of kidney function (creatinine, urea, creatinine clear-
ance, eGFR) and CKD stages.

(Trp): Trp levels were unchanged in CKD and did not
correlate with measures of kidney function (n.s. versus all
groups, Figure 2a).

(IDO): IDO activity increased with CKD severity
(Figure 2b) and correlated with creatinine and creatinine
clearance (both P ≤0.05).

(Kyn): Kyn levels significantly increased in CKD stages
3–5 (Figure 2c) but did not directly correlate with kidney
function (all P ≤0.05).

(Kyna): Kyna levels increased significantly with respec-
tive CKD stages (Figure 2d) and correlated with serum
creatinine (P < 0.0001, r = 0.74), creatinine clearance
(P < 0.0001, r = −0.65) and eGFR (P = 0.0046,
r = −0.53).

(Quin): Quin levels increased with respective CKD
stages (Figure 2e) and correlated with serum creatinine,
and creatinine clearance (both P ≤ 0.04).

(OH-Trp): OH-Trp increased with CKD severity
(Figure 2f) and correlated with creatinine (P = 0.0001,
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Fig. 3. Box and whisper plots indicating the levels of tryptophan and respective metabolites in patients before and after haemodialysis (a–g, n = 17).
Respective changes (%) are indicated. ∗P ≤ 0.002; ∗∗P ≤ 0.0001.

r = 0.57), creatinine clearance (P < 0.0001, r = −0.59)
and eGFR (P = 0.006, r = −0.51).

(5-HT): 5-HT levels increased in CKD (Figure 2g) but
did not correlate with kidney function.

Markers of inflammation, Trp catabolism and kidney
function

Markers of inflammation (WBC and platelet counts, hsCRP
and sTNFR-I) were tested for correlations with Trp, respec-
tive catabolites and indices of kidney function. IDO, down-
stream catabolites and indices of kidney function correlated
with hsCRP and sTNFR-I but not with WBC or platelet
counts. Haemodialysis did not influence IDO activity
(P = 0.26) and incompletely removed Kyn, Kyna, Quin,

OH-Trp and 5-HT by 22, 26, 50, 44 and 34%, respectively
(Figure 3).

HsCRP and sTNFR-I levels correlated with serum crea-
tinine (P = 0.0001, r = 0.58 and P = 0.04, r = 0.33, respec-
tively), creatinine clearance (P = 0.0002, r = −0.56 and
P = 0.02, r = −0.38) and eGFR (P = 0.04, r = −0.31
and P = 0.03, r = −0.27). IDO activity, Kyn, Kyna, Quin
and OH-Trp (but not Trp and 5-HT) correlated with hsCRP
levels (all P ≤ 0.04). IDO activity correlated with sTNFR-
I levels (P = 0.01, r = 0.4). Moreover, sTNFR-I levels
correlated with products downstream of IDO such as Kyn
(P = 0.04, r = 0.31), Kyna (P = 0.0002, r = 0.56) and
Quin (P = 0.001, r = 0.50). WBC counts did not cor-
relate with respective parameters of Trp metabolism (all
P > 0.05). Platelet counts correlated with Kyn and Kyna
(both P = 0.02, r = 0.27), Quin (P = 0.005, r = −0.31)
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and Trp (P = 0.01, r = 0.28), but not with IDO activity,
5-HT or OH-Trp.

Between-group comparison for indices of inflammation

WBC, platelet count, hsCRP and sTNFR-I levels were
measured in order to assess the degree of chronic in-
flammation in the study population. WBC and platelet
counts were rather unchanged, whereas hsCRP and
sTNFR-I levels increased throughout CKD stages 3–5
(Table 1).

Multiple regression analysis

In multiple regression, IDO activity correlated with hsCRP
and sTNFR-I (P = 0.03, r = 0.42 and P = 0.01, r = 0.56)
independently of serum creatinine (P = 0.27, r = 0.12),
age (P = 0.50, r = −0.11) and body weight (P = 0.57,
r = −0.16). In this analysis, the multiple correlation co-
efficient was 0.59. The overall significance level for the
analysis of variance was P = 0.021. IDO activity remained
independent when eGFR instead of body weight entered
the analysis (P = 0.69, r = 0.03).

Discussion

We found that Trp levels were relatively unchanged in
CKD. Increasing CKD severity yielded elevated levels
of Trp catabolites of the kynurenine pathway including
both the quinolinic and transamination branch (Figure 1).
When compared to controls, Kyn, Kyna and Quin levels
increased in very severe kidney failure by about a factor
2, 6 and 8, respectively (Figure 2c–e). In addition, a sig-
nificant correlation of Kyna and Quin with serum creati-
nine and creatinine clearance was noticed. IDO activity was
found induced in CKD, correlated with CKD disease sever-
ity and with key inflammatory markers (hsCRP, sTNFR-
I). Moreover, a correlation of catabolites downstream of
IDO (Kyn, Kyna, Quin) with hsCRP and sTNFR-I was
found. In multiple regression, IDO activity correlated with
hsCRP and sTNFR-I independently of age, body weight
and serum creatinine. This may indicate that induction of
IDO in CKD may primarily be induced by inflammatory
mechanisms.

Moreover, we found that low-flux haemodialysis did not
influence IDO activity and only partially removed Kyn,
Kyna, Quin, OH-Trp and 5-HT (Figure 3). Toxic Trp
catabolites, which have been implicated in the pathogen-
esis of key uraemic syndromes [3,5–7,15,24–26,41], may
thus only be incompletely removed under 4 h of routine
low-flux haemodialysis. Such incomplete removal may be
due to protein-binding characteristics, respective distribu-
tion volumes, washout effects and turnover of the respective
molecules. Thus, although not investigated in the present
analysis, even high-flux haemodialysis may not sufficiently
remove respective mediators [27].

Chronic inflammation is a well-known feature in CKD.
Mounting data points to an important cross-link of inflam-
mation and cardiovascular disease as inflammation has been
shown as an integral part of atherosclerosis [34]. Epidemi-
ologically, this seems important as cardiovascular disease is
the major cause of morbidity and mortality in CKD and end-
stage renal disease (ESRD). Recent prospective epidemio-
logical studies have linked elevated CRP with atheroscle-
rosis in CKD. CRP has consistently been shown to predict
cardiovascular and all-cause mortality, and independently
predicts death in ESRD [28–33]. The strong association of
elevated CRP with inflammation, atherosclerosis and car-
diovascular mortality in CKD and ESRD is intriguing, as
a single CRP assessment may predict future cardiovascular
events [35, 36]. Moreover, sTNFR-I levels have been shown
to be elevated in CKD, and a direct link to progression of
CKD, vasculopathy and prognosis was established [37–40].
In the present analysis, we found that increased hsCRP and
sTNFR-I levels, but not WBC or platelet counts, correlated
with decreased kidney function. Indeed, this may indicate
the presence of chronic inflammation and increased cardio-
vascular risk in the study cohort.

Although it was suggested that decreased glomerular fil-
tration per se might lead to decreased excretion of Trp
catabolites via the kidneys, data from animals models of
renal insufficiency suggest the involvement of mechanisms
other than just simple renal excretion failure as respective
catabolites may also increase without a relevant decline
in renal function [26]. However, IDO activity has previ-
ously been demonstrated to be induced by a number of
immune activators including LPS, neopterin, IFN-γ, solu-
ble cytokine receptors and others [10]. In the present analy-
sis, we demonstrate that IDO activity correlates with CKD
severity (Figure 2b). When compared to controls, an about
2-fold increase in IDO activity was observed from moder-
ately reduced kidney function to very severe kidney failure
(Figure 2b) and a significant correlation of IDO activity
with hsCRP and sTNFR-I was noticed. In multiple regres-
sion, we found that IDO activity correlates with hsCRP
and sTNFR-I independently of age, body weight and serum
creatinine. This may indicate that although IDO activity is
induced in CKD, induction of IDO may primarily be due
to inflammatory stimuli. Next to inflammation, IDO activa-
tion in CKD may be influenced by factors other than inflam-
matory stimuli. This may include upregulation of hepatic
tryptophan 2,3-dioxygenase, decreased Kyn metabolism,
oxidative stress and increased Trp turnover.

About 1% of Trp catabolism occurs via the serotonin (5-
HT) pathway (Figure 1). In this analysis, OH-Trp and 5-HT
were noticed to increase in CKD (Figure 2f, g). The mecha-
nism behind this may include a diminished 5-HT uptake by
platelets in the uraemic environment and increased 5-HT
production in intestinal enterochromaffin cells in response
to inflammatory stimuli. However, the mechanism behind
the increase in OH-Trp and 5-HT is beyond the scope of
this analysis and deserve further analyses in subsequent
investigations.

Some limitations of this analysis demand discussion.
First, we did not access the dietary amino acid intake of our
study population. Although Trp levels in CKD have also
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been documented to differ from that of controls [27,41], we
observed rather unchanged Trp levels in CKD (Figure 2a)
and under haemodialysis (Figure 3a). This may reflect a
relatively good nutritional condition of our study patients.
However, although short-term dietary amino acid intake
might be of minor impact on overall Trp and Trp catabolite
levels, we are unable to rule out an effect of dietary intake.
Nevertheless, morning and afternoon Trp levels were found
unchanged in all CKD stages investigated. Secondly, we did
not directly measure enzymatic IDO activity [42]. Although
this might be performed in subsequent studies, estimated
IDO activity has previously been shown to accurately as-
sess respective enzymatic activities. Third, KDOQI stage
2 patients were not analysed. This was done in order to
concentrate on patients with at least a moderately reduced
kidney function. However, it may be interesting to assess
Trp catabolism in the very early stages of CKD in subse-
quent analyses. Moreover, mean age was different between
the CKD and control groups. Nevertheless, estimated IDO
activity and respective Trp metabolites were found to be
independent of age in both CKD patients and in controls.

Here, we demonstrate that Trp catabolites accumulate
in CKD. These products, which have been shown to be
crucially involved in the pathogenesis of key uraemic
syndromes, are only partially removed under routine
haemodialysis. IDO activity was found to be induced with
increasing CKD disease severity but was not influenced by
routine haemodialysis. In multiple regression, IDO activity
was found to correlate with hsCRP and sTNFR-I inde-
pendently of age, body weight and serum creatinine. Our
results provide further evidence for the presence of chronic
inflammation in CKD, and we propose a role for IDO in
this context.
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Abstract
Background. Although many studies have investigated the
possible association between analgesic use (acetaminophen
and aspirin) and the development of chronic kidney dis-
ease (CKD), the effect of analgesics on the progres-
sion of established CKD of any cause has not yet been
investigated.
Methods. In this population-based Swedish cohort study,
we investigated the decline over 5–7 years in estimated
glomerular filtration rate (eGFR) among 801 patients with
incident, advanced CKD (serum creatinine >3.4 mg/dL for
men, >2.8 mg/dL for women for the first time) and with
different analgesic exposures. Lifetime analgesic use and
current regular use were ascertained through in-person in-
terviews at inclusion while data on analgesic use during the
follow-up was abstracted from the medical records at the
end of the study period. A linear regression slope, based on

their eGFR values during the follow-up, provided a sum-
mary of within-individual change. In the final multivariate
analyses, a linear mixed effects model was implemented to
assess the relation of analgesic use and change in eGFR
over time.
Results. The progression rate for regular users of ac-
etaminophen was slower than that for non-regular users
(regular users progressed 0.93 mL/min/1.73 m2 per year
slower than non-regular users; 95% CI 0.03, 1.8). For reg-
ular users of aspirin, the progression rate was significantly
slower than that for non-regular users (regular users pro-
gressed 0.80 mL/min/1.73 m2 per year slower than non-
regular users; 95% CI 0.1, 1.5). Different levels of lifetime
cumulative dose of acetaminophen and aspirin did not sig-
nificantly affect the progression rate.
Conclusion. We suggest that single substance ac-
etaminophen and aspirin may be safe to use by patients
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