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ABSTRACT

Background. Fatty acid (FA) composition in serum choles-
terol esters (CE) and adipose tissue (AT) reflect the long-term
FA intake in the general population. Because both dietary
intake and FA biomarkers associate with renal function, our
aim was to identify which CE and AT FAs are useful bio-
markers of habitual FA intake in individuals with chronic
kidney disease (CKD).
Methods. Cross-sectional analysis was performed in 506 men
(aged 70 years) with a glomerular filtration rate (GFR) of <60
mL/min per 1.73 m2 from the Uppsala Longitudinal Study of
Adult Men cohort. Dietary habits were evaluated with a 7-day
dietary record. FA compositions in CE and AT were analyzed
by gas–liquid chromatography in two random subsamples of
248 and 318 individuals, respectively.
Results. Both CE and AT linoleic acid and docosahexaenoic
acid (DHA) were strongly associated with their corresponding
intake, after adjustments for non-dietary factors. The pro-
portions of eicosapentaenoic acid (EPA) and palmitic acid in
CE and AT moderately correlated with dietary intake, whereas
correlations of other FAs were weaker or absent. Proportions
of EPA and DHA in CE and AT were positively associated
with the total energy-adjusted fish intake. Results were con-
firmed in adequate reporters as identified by the Goldberg
cutoff method. These relationships held constant, regardless of

a GFR above or below 45 mL/min per 1.73 m2 or the preva-
lence of microalbuminuria.
Conclusions. Proportions of EPA, DHA, palmitic and linoleic
acid in serum CE and AT are good indicators of their dietary
intake in men with CKD. They can be considered valid bio-
markers for epidemiological studies and assessment of compli-
ance.

INTRODUCTION

Chronic kidney disease (CKD), defined as decreased glomeru-
lar filtration rate (GFR) and/or albuminuria, is highly preva-
lent worldwide and is recognized as a public health burden
[1]. The prevalence of CKD ranges from 23.4 to 35.8% in
people older than 64 years [2] and rises to 47% in those above
70 years [3], mostly due to decline in the GFR with age. CKD
patients are vulnerable to malnutrition, systemic inflam-
mation, metabolic disorders, premature cardiovascular disease
(CVD) and progression to end-stage renal disease (ESRD),
which collectively lead to high mortality rates [4–6].

The quantity and quality of dietary fatty acids (FAs) affect
clinical outcomes [7–9]. Reports using dietary assessment
suggest that an unfavourable dietary FA pattern, generally
characterized by high saturated FA (SFA) and low polyunsatu-
rated FA (PUFA) intake, is common in patients with CKD
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[10, 11] and may contribute to CKD-related risk profile and
mortality [12]. Dietary assessment methods have, however,
several limitations that may weaken both the accuracy and pre-
cision of the measurement, such as under-reporting of respon-
dents, interviewer bias and lack of well-matched food
composition databases [13].

FA biomarkers in blood or tissues could be more accurate
and convenient for estimating the long-term dietary FA intake
[13]. Previous studies in populations without CKD have
suggested that FA proportions in serum cholesterol esters
(CEs), phospholipids, as well as adipose tissue (AT) are good
indicators of the corresponding habitual intake of FAs of
exogenous origin [14–16]. However, results regarding the
effect of chronic disease status on diet-biomarker correlations
are still mixed [14, 16]. Because both dietary intake and bio-
markers of FA intake are associated with the GFR in commu-
nity studies [17, 18], it is plausible that renal diseases may
modify these associations. Although some studies in CKD
patients have used serum FAs as biomarkers of dietary intake
[8, 11, 19], it is presently unknown whether these biomarkers
validly do so in the context of CKD. The objective of this
study was to identify which blood and AT FAs are useful bio-
markers of habitual FA intake in individuals with CKD.

MATERIALS AND METHODS

Study population

This is a cross-sectional analysis including individuals with
reduced kidney function (GFR <60 mL/min per 1.73 m2) from
The Uppsala Longitudinal Study of Adult Men (ULSAM)
community-based cohort. The ULSAM cohort was initiated in
1970; all 50-year-old men born between 1920 and 1924 who
lived in Uppsala, Sweden, were invited to a health survey (de-
scribed in detail at http://www2.pubcare.uu.se/ULSAM/). Par-
ticipants returned for subsequent examinations at age 60, 70,
77 and 82 years. The present analyses are based on the third
examination cycle of the ULSAM cohort, when participants
were approximately 70 years of age (visits performed during
1991 to 1995; n = 1221). Inclusion criteria for this analysis is a
serum cystatin C-estimated GFR <60 mL/min per 1.73 m2

(n = 543). Additional exclusion criteria were incomplete data
on 7-day dietary records (n = 36) and abnormal values of re-
ported energy intake (<3200 or >18 000 kJ/day; n = 1). The
present study therefore comprises 506 participants with CKD
according to the current Kidney Disease Outcomes Quality
Initiative definition [20]. All participants gave written consent,
and the Ethics Committee of Uppsala University approved the
study.

All investigations were performed under standardized con-
ditions as described elsewhere [21]. The smoking status was
defined as current smoking versus nonsmoking. Regular phys-
ical activity was defined as the reporting of regular or athletic
leisure-time exercise habits according to four physical activity
categories (sedentary, moderate, regular and athletic) [22].
Previous CVD was defined as history of any CVD as recorded
in the Swedish Hospital Discharge Registry [International
Classification of Diseases (ICD-8) codes 390 to 458 or ICD-9

codes 390 to 459]. Diabetes mellitus (DM) was defined as
fasting plasma glucose ≥7.0 mmol/L, 2-h postload glucose
levels ≥11.1 mmol/L or the use of oral hypoglycaemic agents
or insulin [23]. Hypertension was defined as systolic blood
pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg or
use of antihypertensive medications. Hyperlipidaemia was
defined as serum cholesterol >6.5 mmol/L and/or serum tri-
glycerides >2.3 mmol/L and/or treatment with lipid-lowering
medications.

Laboratory analysis

Venous blood samples were drawn after an overnight fast
and stored at −70°C until analyses. Serum cystatin C was
measured by latex-enhanced reagent (N Latex Cystatin C,
Dade Behring, Deerfield, IL, USA) with a Behring BN ProSpec
analyser (Dade Behring). The assays were performed at the
Department of Clinical Chemistry, University Hospital,
Uppsala, which is accredited according to the Swedish Board
for Accreditation and Conformity Assessment (Swedac) stan-
dard ISO/IEC 17025. The total analytical imprecision of the
method was 4.8% at 0.56 mg/L and 3.7% at 2.85 mg/L. GFR
was calculated from serum cystatin C concentrations (mg/L)
by the following formula: y = 77.24 × x−1.2623, which has been
shown to be closely correlated with iohexol clearance [24].
Individuals with CKD were further divided into stage 3A and
more advanced stage of CKD on the basis of a GFR cut-off
value of 45 mL/min per 1.73 m2. Urinary albumin excretion
rate (UAER) was calculated on the amount of albumin in the
urine collected during the night. The assay employed a com-
mercially available radioimmunoassay kit (Albumin RIA 100,
Pharmacia, Uppsala, Sweden). Microalbuminuria was defined
as UAER ≥30 mg/24 h.

Dietary assessment and determination of dietary
adequate reporters

Dietary habits were evaluated with an optically readable
form of a 7-day dietary record based on a validated pre-coded
menu book [25], which was prepared and previously used by
the Swedish National Food Administration (NFA) [26]. The
participants were given oral instructions by a dietitian on how
to perform the dietary registration, and the amounts con-
sumed were reported in household measurements or specified
as portion sizes. The daily intake of energy, various FAs, fish
and alcohol were calculated by using a database from the
Swedish NFA. This method was used to estimate the intake of
major specific FAs, e.g. 16:0 and 18:0 in the SFA class. The FA
intake was expressed in two different ways: as absolute intake
(g/day) and as a percentage of total fat intake by weight [(g/g
total fat) × 100], with the latter being comparable with bio-
marker measurements.

Stringent criteria to identify adequate reporters of energy
intake were applied according to the Goldberg cutoff [27]. In
this procedure, an acceptable range of energy intake is deter-
mined for each subject in relation to the estimated energy ex-
penditure taking the level of physical activity and basal
metabolic rate into consideration, i.e. producing a 95% confi-
dence interval (CI) for energy intake required for weight main-
tenance. Subjects with reported energy intake within the 95%
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CI were regarded as adequate reporters, rendering a subpopu-
lation of 250 individuals for verification of the associations re-
ported in the whole material.

FA analysis

FA compositions in serum CE and AT were analysed in
two random sub-samples of 248 and 318 CKD men, respect-
ively. Subcutaneous AT was collected with a biopsy from the
upper, outer quadrant of the buttocks [28]. The sample was
stored at −70°C for some weeks until analysis.

The FA composition was analysed as described previously
[29]. Briefly, an extraction with chloroform was conducted.
The dry extracts were dissolved in a few drops of chloroform
and filled in thin liquid chromatography plates for separation
of the lipids. The lipid esters were trans-methylated and the
methyl esters were extracted. The FA methyl esters were dis-
solved in hexane and separated by gas–liquid chromatography
(GLC). The Hewlett Packard GLC system used for the analyses
was consisted a GC 5890, automatic sampler 7671A, integrator
3392A and 25 m Quadrex Fused Silica capillary column OV-
351. The FAs were identified by comparison of the retention
times of separation, controlled by Nu Check Prep GLC reference
standard GLC-68A. The coefficients of variation (CVs) for all
FAs were 1–5.5%, except for 18:0, with a CV of 9.9% [30]. FAs
are given as the relative percentage of the sum of the FAs ana-
lysed. In this analysis, we compared the eight individual FAs that
were estimated from dietary records, that is, 16:0, 18:0, 18:1 n-9,
18:2 n-6, 20:4 n-6, 18:3 n-3, 20:5 n-3, and 22:6 n-3.

Statistical analysis

All statistical analyses were performed using statistical soft-
ware STATA version 12 (Stata Corporation, College Station,
TX, USA). Figures were created with GraphPad Prism version
5 (GraphPad Software, Inc., San Diego, CA, USA). Values
were expressed as mean ± standard deviation (SD) or median
(interquartile range) or percentage of total, as appropriate.
Spearman’s univariate correlation coefficients (rho) were cal-
culated to determine correlations between the proportions of
specific dietary FAs and their biomarkers in serum CE and
AT. Multivariate regression models were fitted to assess the in-
dependence of this association by introducing potential con-
founders such as BMI, smoking status, physical activity,
alcohol intake, the prevalence of comorbidities (CVD, DM,
hypertension and hyperlipidaemia), GFR and UAER. Data are
expressed as standardized regression coefficients (β). Multi-
variate regression models were used to detect linear trends of
marine n-3 PUFA (20:5 n-3 and 22:6 n-3) proportions in
serum CE and AT across quartiles or with the linear increase
of daily fish intake corrected for the total energy intake. All
analyses were repeated in the subset of adequate reporters to
eliminate bias of non-adequate reporting. To investigate
whether the associations between dietary and biomarker FAs
were modified by GFR or UAER, linear trends of FAs in CE
and AT across quartiles of the corresponding FAs dietary
intake, stratified by GFR (above and below 45 mL/min per
1.73 m2) or UAER (above and below 30 mg/24 h), were tested.
The FAs considered important a priori for investigation were
16:0, 18:1 n-9, 18:2 n-6, and 22:6 n-3, because they represent

the major dietary sources of SFA, MUFA, n-6 and n-3 PUFA
families, respectively. All tests were two-tailed and P < 0.05
was considered significant. Because P values were not adjusted
for multiple testing, they have to be considered as descriptive.

RESULTS

General characteristics

Age, BMI, lifestyle parameters, the prevalence of comorbid-
ities, GFR, UAER and nutrient intake of included patients are
shown in Table 1. No significant differences were observed
between the whole cohort and the random subpopulations in
which serum CE and AT FA compositions were measured.

FA compositions in diet, serum CE and AT

Daily dietary FA intakes, as well as the relative proportions
of individual FA in the diet, serum CE and AT, are presented
in Table 2. SFAs were the most abundant source of fat accord-
ing to dietary records, followed by MUFA, n-6 and n-3 PUFA.
Dietary 16:0, 18:1 n-9, 18:2 n-6 and 18:3 n-3 were the most
abundant FAs in their respective subfamilies. In the case of
CE, 18:2 n-6 represented about 50% of all FAs, whereas 18:1
n-9 was the most abundant FA in AT.

Correlations of FA biomarkers with dietary intake

In Table 3, Spearman’s univariate correlations show that
18:2 n-6 and 22:6 n-3 in serum CE were strongly correlated
with their corresponding intake. The major dietary SFA 16:0
as well as 20:5 n-3 presented moderate rho values. On the
other hand, 18:0, 18:3 n-3 and 20:4 n-6 were not associated
with the dietary intake, whereas 18:1 n-9 in CE was negatively
correlated with its proportion in the diet. In AT, the corre-
lations with dietary FAs were similar, except that 18:3 n-3 was
moderately associated and 18:1 n-9 was not significantly
associated with their counterparts in dietary records.

Multivariable regression models investigating independent
associations between dietary FA intake and FA biomarkers in
serum CE and AT are presented in Table 3. We did not observe
substantial differences between crude correlation coefficients and
standard coefficients in multivariate regression models, which
were adjusted for BMI, smoking status, alcohol intake, physical
activity, comorbidities, GFR and UAER. As a sensitivity analysis,
these regression models were also fitted in the subpopulation of
adequate reporters. As shown in Figure 1, the strength of the
associations between dietary FAs and their corresponding CE
and AT biomarkers were maintained or even improved.

Associations between fish intake and marine n-3 PUFA
biomarkers

Biomarkers for marine n-3 PUFA in serum CE and AT
were incrementally higher across increasing reported daily fish
intake (Figure 2). Daily fish intake, adjusted for total energy
intake, was positively associated with the proportions of 20:5
n-3 and 22:6 n-3 in CE (β = 0.21, P < 0.001; β = 0.26,
P < 0.001) and AT (β = 0.18, P = 0.001; β = 0.18, P < 0.001).
These results were also confirmed in the subpopulation of ade-
quate reporters (data not shown).
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Association between dietary FA intake and FA
biomarkers in individuals with different GFR and UAER

Figure 3 shows the association between quartiles of dietary
reported FA intake of selected FAs (16:0, 18:1 n-9, 18:2 n-6,
and 22:6 n-3) with their corresponding biomarkers in CE and
AT, with patients stratified by CKD stages (stage 3A or worse).
FA biomarkers varied in a monotonic fashion along with in-
creasing dietary intake, regardless of the stratum. Similar pat-
terns were observed by stratifying according to the prevalence
of microalbuminuria (data not shown).

DISCUSSION

This is the first study investigating associations of dietary FA
intake with FA biomarkers in serum CE and AT in individuals
with CKD stages 3–4. An important strength of this study is the
availability of both serum CE and AT in the same population.

AT FA composition has been considered a gold standard for the
representation of long-term (>1 year) dietary FA intake, due to
the slow turnover time [31] and its lack of response to acute
disease [32]. Serum CE is more sensitive to recent diet [33] and
represents dietary intake over weeks or months [7]. The data on
two types of biologic specimens as well as diet therefore offer
internal consistency of specimen comparisons. Another advan-
tage is that a 7-day dietary record rather than a food-frequency
questionnaire was used for dietary assessment. The ‘real-time’
nature of the former decreases reporting bias related to memory,
particularly in such an elderly cohort. Finally, in order to mini-
mize this bias, we applied the Goldberg cutoff and confirmed the
main findings in a subgroup of adequate reporters. The fact that
∼50% of the study participants did not adequately report their
dietary intake highlights the importance of reporting bias in
dietary assessment.

We observed strong associations between intakes of the
most essential PUFA, i.e. 18:2 n-6, 20:5 n-3 and 22:6 n-3, and

Table 1. Baseline characteristics of chronic kidney disease men and random subpopulations of
individuals in whom serum cholesterol esters (CE) or AT FA composition were assessed

All individuals
(n = 506)

Individuals with CE FAs
(n = 248)

Individuals with AT FAs
(n = 354)

Age, years 71.1 ± 0.6 71.3 ± 0.4 71.0 ± 0.6

BMI, kg/m2 26.5 ± 3.5 26.5 ± 3.3 26.6 ± 3.5

Smokers, n (%) 111 (22) 51 (21) 72 (20)

Physical activity, n (%)

Sedentary 23 (5) 7 (3) 16 (5)

Moderate 177 (36) 91 (38) 125 (36)

Regular 267 (55) 132 (56) 190 (55)

Athletic 21 (4) 7 (3) 14 (4)

Cardiovascular disease, n (%) 185 (37) 85 (34) 134 (38)

Diabetes, n (%) 67 (13) 34 (14) 48 (14)

Hypertension, n (%) 189 (37) 94 (38) 134 (38)

Hyperlipidaemia, n (%) 185 (37) 85 (34) 136 (38)

GFR, mL/min 1.73 m2 51.9 (46.3, 56.6) 51.4 (46.4, 56.0) 51.9 (46.7, 56.6)

UAER, mg/24 h 7.9 (4.8, 18.6) 7.5 (4.6, 15.8) 7.6 (4.8, 15.9)

Adequate reports, n (%) 250 (49) 121 (49) 172 (49)

Energy intake, kJ/day 7242 ± 1906 7115 ± 1832 7298 ± 1902

Fat intake, % of energy 34.2 ± 5.4 34.3 ± 5.2 34.3 ± 5.3

Carbohydrate intake, %
ofenergy

47.7 ± 5.7 47.5 ± 5.7 47.6 ± 5.6

Protein intake, % of energy 15.5 ± 2.0 15.8 ± 2.0 15.5 ± 1.9

Alcohol intake, g/day 4.3 (1.0, 10.2) 4.1 (1.0, 7.8) 4.6 (1.0, 9.0)

Fish intake, g/day 36.5 (12.9, 36.5) 24.6 (12.9, 38.2) 24.3 (12.9, 36.9)

Data are expressed as mean ± standard deviation, median (interquartile range) or number (percentage), as appropriate.
BMI, body mass index; GFR, glomerular filtration rate; UAER, urinary albumin excretion rate.

O
R
IG

IN
A
L
A
R
T
IC

L
E

F a t t y a c i d b i o m a r k e r s i n C K D

131

D
ow

nloaded from
 https://academ

ic.oup.com
/ndt/article/29/1/128/1819231 by guest on 24 April 2024



their respective biomarkers in serum CE and AT. As the body
can endogenously synthesize neither 18:2 n-6 nor 18:3 n-3,
these two FAs are mainly derived from dietary plant oils. Both
20:5 n-3 and 22:6 n-3 are n-3 PUFA of marine origin, e.g.
from oily fish or fish oils. Although they can be synthesized

from dietary 18:3 n-3 via elongation and desaturation, the effi-
ciency of the conversion from 18:3 n-3 to 20:5 n-3 is poor and
controversial (0.2–15%) and the conversion to 22:6 n-3 is even
poorer [34, 35]. As expected from its biology, the relationships
between dietary intake and biomarkers for these essential

Table 2. FA intake measured by 7-day dietary records and FA compositions in serum cholesterol
esters (CE) and AT

Fatty acid Dietary records (n = 506) CE(n = 248) AT(n = 354)

g/day % of total fats % of total FAs

SFA

16:0 14.22 ± 5.34 20.98 ± 1.91 11.77 ± 0.90 21.77 ± 1.96

18:0 6.55 ± 2.32 9.66 ± 0.63 0.96 ± 0. 19 3.92 ± 0.92

MUFA

18:1 n-9 19.32 ± 6.71 28.59 ± 2.18 20.52 ± 2.23 49.50 ± 2.21

PUFA

n-6 PUFA

18:2 n-6 7.77 ± 3.20 11.50 ± 2.51 52.32 ± 4.53 12.57 ± 2.70

20:4 n-6 0.13 ± 0.06 0.19 ± 0.07 5.86 ± 1.08 0.35 ± 0.10

n-3 PUFA

18:3 n-3 1.16 ± 0.45 1.73 ± 0.53 0.83 ± 0.21 1.03 ± 0.23

20:5 n-3 0.09 ± 0.07 0.14 ± 0.12 1.72 ± 0.76 0.15 ± 0.06

22:6 n-3 0.21 ± 0.13 0.33 ± 0.21 0.96 ± 0.23 0.32 ± 0.13

Data are expressed as mean ± standard deviation.
MUFA, monounsaturated FAs; PUFA, polyunsaturated FAs; SFA, saturated FAs.

Table 3. Univariate and multivariate regressions between dietary FA intake and FA compositions in
plasma cholesterol esters and adipose tissue in individuals with chronic kidney disease

FAs in
the diet

Cholesterol esters Adipose tissue

Spearman’s correlation
(n = 248)
Rho (P)

Multivariate regression
(n = 236)
Std. beta (P)

Spearman’s correlation
(n = 354)
Rho (P)

Multivariate regression
(n = 344)
Std. beta (P)

16:0 0.26 (<0.001) 0.26 (<0.001) 0.15 (0.004) 0.22 (<0.001)

18:0 0.07 (0.27) 0.11 (0.10) 0.04 (0.50) 0.08 (0.14)

18:1 n-9 −0.22 (<0.001) −0.27 (<0.001) −0.02 (0.68) 0.02 (0.68)

18:2 n-6 0.34 (<0.001) 0.36 (<0.001) 0.35 (<0.001) 0.34 (<0.001)

20:4 n-6 0.02 (0.71) 0.01 (0.83) 0.02 (0.66) −0.01 (0.98)

18:3 n-3 −0.04 (0.53) −0.07 (0.31) 0.14 (0.01) 0.10 (0.06)

20:5 n-3 0.24 (<0.001) 0.19 (0.003) 0.22 (<0.001) 0.22 (<0.001)

22:6 n-3 0.38 (<0.001) 0.34 (<0.001) 0.36 (<0.001) 0.27 (<0.001)

Multivariate regression models were adjusted for BMI, smoking, alcohol intake, physical activity, cardiovascular disease, diabetes,
hypertension, hyperlipidaemia, glomerular filtration rate and urinary albumin excretion rate.
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PUFA were indeed the strongest in our study. This agrees with
similar reports in non-CKD individuals [14, 15], and these
biomarkers can be used as indicators of compliance in sup-
plementation studies [36–39]. We also report that 20:5 n-3
and 22:6 n-3 biomarkers are largely associated with the fish
intake, consistent with a previous report showing a positive
association between the frequency of fish servings and n-3
PUFA index (erythrocyte 20:5 n-3 and 22:6 n-3 contents) in

75 haemodialysis patients [11]. However, for 18:3 n-3, we did
not observe strong associations between dietary FA intake and
the biomarker, not even when considering adequate reporters.
These results were unexpected and the reason is unclear, but
in similar studies the agreement of 18:3 n-3 seems also poorer
than for the other essential PUFA [14, 16]. The smaller pro-
portion of 18:3 n-3 and the relatively higher within-person
variability in its measurement may have contributed to these
results.

For non-essential FAs, the relationships of dietary with
serum CE and AT compositions were weaker or absent, accor-
dant with those in populations without CKD [14–16, 40].
However, CE and AT 16:0 were fairly good markers of dietary
intake in the current population, although less strongly corre-
lated than observed for 18:2 n-6 and 22:6 n-3. The correlations
of SFA are weakened partly due to the fact that endogenous
metabolism, including de novo lipogenesis (DNL), elongation
and desaturation, affects the levels of these FAs [41]. Apart from
diet, SFA generated from carbohydrate through the process of
DNL is another source of 16:0 and 18:0 in the blood and tissues.
In Western populations with relatively high fat intake, however,
that DNL dilutes SFA pools has been considered minor [41].
Furthermore, stearoyl-CoA desaturase-1 (SCD-1) both in the
liver and AT converts 16:0 and 18:0 to synthesize 16 and 18-
carbon MUFA, with 18:0 being the preferred substrate [42]. It is
therefore not surprising that there was a lack of direct association
with the major MUFA 18:1 n-9. The significantly negative
associations of 18:1 n-9 were however unexpected and difficult
to explain. One might speculate that hepatic SCD-1 activity is
suppressed in response to high intake of PUFA [39], food
sources which also contain substantial amounts of 18:1 n-9 [41].
It is thus possible that high intake of vegetable oils (partly rep-
resented as high dietary 18:1 n-9 content) may in turn inhibit
endogenous synthesis of 18:1 n-9 thereby decreasing its levels in
the body, and vice versa.

The associations between dietary and biomarker FAs held
constant across decreased GFR or elevated UAER groups,
suggesting that moderate renal failure does not modify these
associations. Likewise, one previous investigation indicates
that the status of individuals with other chronic diseases, e.g.
CVD, hypertension, and DM, does not modify these relation-
ships either [14]. Nevertheless, we must take into consider-
ation that the included patients were mostly within CKD
stages 3A and 3B, and further studies may be necessary includ-
ing patients with a broader GFR distribution.

Our results need to be interpreted in the light of certain
limitations. Errors from dietary assessment, together with
physiological within-person variability, are susceptible to
weaken the correlations observed [14, 16]. Detailed phenotypic
characterization allows us to take into account many non-
dietary factors which may confound the dietary and biomarker
correlations, but unmeasured or unknown ones cannot be ex-
cluded. In this regard, we did not have information regarding
the possible intake of fish oil supplements in some subjects.
Finally, our results apply to elderly men with moderate CKD,
and may not necessarily extrapolate to other populations.

In conclusion, our results suggest that 18:2 n-6, 20:5 n-3,
22:6 n-3 and 16:0 in serum CE and AT are good indicators of

F IGURE 2 : Mean eicosapentaenoic acid (20:5 n-3) and docosahex-
aenoic acid (22:6 n-3) proportions in serum cholesterol esters (CE)
and AT according to daily fish intake (energy adjusted) quartiles. Bars
represent SEM. P for trend <0.01 for all.

F IGURE 1 : Relations between individual FA proportions in dietary
records versus serum CE and AT, respectively, expressed as standard
coefficients (β) in multivariate regression models, both in all individ-
uals with chronic kidney disease as well as in adequate reporters only.
Multivariate regression models were adjusted for BMI, smoking,
alcohol intake, physical activity, cardiovascular disease, diabetes, hy-
pertension, hyperlipidaemia, glomerular filtration rate and urinary
albumin excretion rate. O
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the habitual dietary intake of FAs in elderly men with CKD.
Dietary fish intake well reflect intake of n-3 PUFA of marine
origin in this population. The weak or lack of association with
18:0, 18:1 n-9, and 20:4 n-6 limits their use as biomarkers and
thus FA composition does not capture the intake of all FAs.
Taken together, these results indicate that specific FA bio-
markers could be a valid and objective tool to use in epidemio-
logical studies which aim at linking dietary fat quality and
diet-related conditions in CKD. At the same time, they can be

considered to measure compliance in dietary intervention
studies.
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ABSTRACT

Background. Uromodulin (Tamm–Horsfall protein) is the
most abundant protein excreted in the urine under physiological
conditions. It is exclusively produced in the kidney and secreted
into the urine via proteolytic cleavage. The involvement of
UMOD, the gene that encodes uromodulin, in rare autosomal

dominant diseases, and its robust genome-wide association with
the risk of chronic kidney disease suggest that the level of uro-
modulin in urine could represent a critical biomarker for kidney
function. The structure of uromodulin is complex, with multiple
disulfide bonds and typical domains of extracellular proteins.
Methods. Thus far, the conditions influencing stability and
measurement of uromodulin in human urine have not been
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