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ABSTRACT

Background. p-Cresyl sulphate (p-CS) and p-cresyl glucuro-
nide (p-CG) are uraemic toxins that exhibit pro-inflammatory
features in leukocytes and are associated with the progression
of chronic kidney disease (CKD). Tubular cells are key targets
of nephrotoxic agents and tubular cell death and activation
contribute to the progression of CKD. However, the potential
toxicity of these compounds on tubular cells is not fully under-
stood. More specifically, apoptosis has never been studied.
Methods. HK-2 human proximal tubular epithelial cells were
studied. Cell death was evaluated by flow cytometry of DNA
content and by morphology. Gene expression was studied by
real-time (RT)-PCR. Protein expression was studied by
western blot and flow cytometry.
Results. Long-term (7 days) exposure to p-CS induced apop-
tosis in HK-2 cells in a concentration-dependent manner. In
addition, short-term (3 h) exposure to p-CS promoted the
expression of the TWEAK receptor Fn14, cooperated with
TWEAK in promoting cell death and increased inflammatory
gene expression. Albumin was cytotoxic and increased the
inflammatory response to p-CS concentrations found in the
circulation of non-dialysis CKD patients. In contrast, no

biological actions of p-CG were observed on HK-2 cells, either
alone or in combination with p-CS.
Conclusions. This study demonstrates for the first time that
p-CS has pro-apoptotic and pro-inflammatory effects on
tubular cells. These results identify mechanisms by which
uraemic toxicity may contribute to CKD progression.

INTRODUCTION

Uraemic toxins are molecules excreted or metabolized by normal
kidneys that progressively accumulate in chronic kidney disease
(CKD) and exert an adverse biological effect on a biological
system [1–3]. Uraemic toxicity derived from the accumulation of
these molecules has received attention as both a potential cause
for the excess of cardiovascular disease and mortality observed in
CKD and as a potential contributor to the progression of CKD
itself [4, 5]. Among the uraemic retention solutes, protein-bound
compounds such as the p-cresol conjugates p-cresyl sulphate
(p-CS) and p-cresyl glucuronide (p-CG) have attracted most in-
terest in recent years due to their poor clearance by conventional
dialysis and their potential toxicity [6].
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Observational studies have linked systemic inflammation to
cardiovascular events and mortality in CKD [7]. p-CS is pro-
inflammatory by activating leukocyte free radical production
[8, 9] and plays a role in endothelial microparticle release, an
indirect indicator of vascular damage [10]. In contrast, p-CG
per se exerts no pro-inflammatory activity on leukocytes, but it
enhances free radical generation induced by p-CS in these cells
[9], indicating the potential for synergism among uraemic
toxins.

A hallmark of advanced CKD is progression, even when
the original cause of CKD is no longer active. The molecular
mechanisms have not been totally unravelled. Local factors
such as loss of parenchymal renal cells, the presence of inflam-
matory cells and fibrosis, activation of kidney cells and infil-
trating leukocytes, haemodynamic factors and others may
have a role [11]. In this regard, there is evidence for a role of
uraemic toxins in the process. The use of the intestinal adsor-
bent AST-120 that binds uraemic toxins and the use of perito-
neal dialysis as renal replacement therapy have been associated
with slower progression of CKD [12–16]. Peritoneal dialysis is
associated with lower toxin concentration than haemodialysis
[17–19]. Decreased tubular injury has been described in
AST-120-treated patients, suggesting that tubular cells may be
targets of uraemic toxins [16]. In this regard, p-CS levels
predict CKD progression [5]. p-CS may also be involved
in renal fibrosis via epithelial-to-mesenchymal transition
induced by the renin–angiotensin system [20]. Further studies
also revealed that p-CS suppresses the transcription of the
renal-secreted hormone Klotho through hypermethylation of
the gene in renal tubular cells [21].

We have now explored the effects of the uraemic toxins
p-CS and p-CG on cultured human proximal tubular cell
apoptosis and inflammatory phenotype. p-CS, but not p-CG,
was found to enhance apoptosis. In addition, p-CS, but not
p-CG, promoted a pro-inflammatory phenotype in human
tubular cells.

METHODS

Cells and reagents

HK-2 human proximal tubular epithelial cells (ATCC, Rock-
ville, MD) were grown on Roswell Park Memorial Institute
(RPMI) 1640 (Life Technologies, Grand Island, NY) with 10%
heat-inactivated fetal bovine serum, 2 mM glutamine, 100 U/mL
penicillin, 100 μg/mL streptomycin, 5 μg/mL insulin, 5 μg/mL
transferrin, 5 ng/mL sodium selenite and 5 ng/mL hydrocorti-
sone in 5% carbon dioxide at 37°C [22]. For experiments, cells
were rested in serum-free media 24 h prior to the addition of p-
CS, p-CG or their respective control salts and throughout the
experiment. Ten thousand cells were seeded for flow cytometry
experiments, while 200 000 cells were seeded for RNA extraction
and western blot. Bovine serum albumin (Sigma-Aldrich, Co.,
St. Louis, MO) was added at a concentration of 40 mg/mL in
some experiments. This is the concentration found in serum and
may be present in proximal tubular fluid in proteinuric states.

Two experimental settings were explored: (i) addition of
toxins or vehicle and collection of cells or supernatants at 3 to

48 h, (ii) addition of fresh toxin- or vehicle-containing
medium every 48 h and collection of cells at Day 7.

The p-CS potassium salt and the p-CG ammonium salt
were synthesized and purified as previously reported [9].
The purity of both p-CS and p-CG was checked by liquid
chromatography–mass spectrometry and nuclear magnetic
resonance. The concentrations at which both compounds were
added ranged from 1 to 500 μg/mL in the case of p-CS and 25
or 50 μg/mL for p-CG, with 105 and 24 μg/mL being the
maximum serum concentrations found in a haemodialysis
population [9]. Equimolar potassium chloride and
ammonium chloride solution were used as control (vehicle).

Cell death

Apoptosis was characterized by morphological and func-
tional criteria. Nuclei of formalin-fixed cells were stained with
40,6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich) to
observe the typical morphological changes, as previously de-
scribed [23]. For assessment of apoptosis by flow cytometry,
10 000 cells were seeded in 12-well plates (Costar, Cambridge,
MA) in 10% fetal calf serum (FCS) RPMI overnight. They
were rested in serum-free medium for 24 h. Thereafter, p-CS
or p-CG was added to subconfluent cells. Then, adherent cells
were pooled with spontaneously detached cells, and incubated
in 100 µg/mL propidium iodide (PI), 0.05% NP-40, 10 µg/mL
RNAse A in PBS at 4°C for >3 h. This assay permeabilizes the
cells, thus PI stains both live and dead cells. The percentage of
apoptotic cells with decreased DNA staining (hypodiploid
cells) was counted by flow cytometry using BD CellQuest Soft-
ware (BD Biosciences, San Jose, CA) [24, 25].

RNA extraction and real-time polymerase chain reaction

For RNA extraction, 200 000 cells were seeded in 60-mm
cell culture dishes (BD, Franklin Lakes, NJ) in 10% FCS RPMI
overnight. They were rested in serum-free medium for 24 h
and p-CS or p-CG was added to subconfluent cells. Three
hours later cells were rinsed once with 1 mL of ice cold saline
and then total RNA was extracted from cells by the TRI
Reagent method (Roche, Mannheim, Germany). This time
point was chosen because inflammatory responses in proximal
tubular cells are usually observed within this time-frame
[26, 27]. One microgram RNA was reverse transcribed with a
High Capacity cDNA Archive kit (Applied Biosystems,
Foster City, CA). Pre-developed primer and probe assays for
MCP-1, CXCL16, RANTES, Fn14 and 18S were obtained
from Applied Biosystems. A quantitative PCR was performed
by 7500 Real-Time PCR System with the Prism 7000 System
SDS Software (Applied Biosystems) and RNA expression of
different genes was corrected for 18S [26].

Cell surface Fn14 expression

For assessment of Fn14 expression by flow cytometry,
10 000 cells were seeded in 12-well plates (Costar, Cambridge,
MA) in 10% FCS RPMI overnight. They were rested in serum-
free medium for 24 h. Thereafter, p-CS was added to subcon-
fluent cells and 24 h later they were detached with 2 mM
EDTA/1% bovine serum albumin (BSA) in PBS, washed and
resuspended in PBS/1% BSA for 4 min. Then, cells
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were incubated with a 1 µg/mL anti-Fn14 ITEM4 antibody
(eBioscience, San Diego, CA) or an isotype-matched control
antibody for 30 min on ice. Cells were washed twice, blocked
in PBS/1% BSA for 4 min and incubated with an Alexa488-
labelled goat anti-mouse IgG antibody (1/300, Invitrogen,
Carlsbad, CA) for 45 min on ice in the dark. Following two
additional washes with PBS/1%BSA, cells were resuspended in
1% filtered paraformaldehyde in PBS and analysed by flow cy-
tometry using BD CellQuest Software (BD Biosciences) [28].

Western blot

For western blot analysis, 200 000 cells were seeded in 60-
mm cell culture dishes (BD, Franklin Lakes, NJ) in 10% FCS
RPMI overnight. They were rested in serum-free medium for
24 h. Thereafter, p-CS was added to subconfluent cells and 24
h later, cells were detached with a scrapper. Cell samples were
homogenized in lysis buffer (50 mM Tris–HCl, 150 mM NaCl,
2 mM EDTA, 2 mM EGTA, 0.2% Triton X-100, 0.3% NP-40,
0.1 mM PMSF and 1 µg/mL pepstatin A), then separated by
15% sodium dodecyl sulphate–polyacrylamide gel electro-
phoresis (SDS–PAGE) under reducing conditions. After elec-
trophoresis, samples were transferred to PVDF membranes
(Millipore, Billerica, MA), blocked with 5% BSA in PBS/0.5%
v/v Tween 20 for 1 h, washed with PBS/Tween and incubated
with rabbit polyclonal anti-Fn14 (1:1000, Cell Signaling,
Danvers, MA). Anti-Fn14 was diluted in 1% BSA PBS/Tween.
Blots were washed with PBS/Tween and incubated with appro-
priate horseradish peroxidase-conjugated secondary antibody
(1:2000, Amersham, Aylesbury, UK). After washing with PBS/
Tween blots were developed using the chemiluminescence
method (ECL) (Amersham). Blots were then probed with a
mouse monoclonal anti-β-actin antibody (1:2000, SIGMA-
ALDRICH) and levels of expression were corrected for minor
differences in loading [29].

Statistics

Statistical analysis was performed using SPSS 11.0 statistical
software. Results are expressed as mean ± SEM. Significance at
the P < 0.05 level was assessed by Student’s t test for two
groups of data and ANOVA for three or more groups.

RESULTS

p-CS promotes human proximal tubular cell death

In order to determine the biological activity of uraemic
toxins, tubular cells were exposed to different concentrations
of p-CS (1 to 500 μg/mL) for 24 h, and the percentage of hypo-
diploid apoptotic cells was analysed by flow cytometry
(Figure 1A). We observed no significant changes in the per-
centage of apoptotic cells at either 24 h (Figure 1A) or 48 h
(not shown), although a trend was observed towards increased
cytotoxicity for the higher p-CS concentrations. Since in vivo
tubular cells are chronically exposed to uraemic toxins, we re-
designed the experiment by adding p-CS or p-CG every other
day for a week (Figure 1B). We observed an increment in the
apoptotic rate in cells exposed to 100 μg/mL p-CS or higher
concentrations. Albumin was toxic to tubular epithelium, as

previously described [30], and p-CS did not increase the cyto-
toxicity over that of albumin (Figure 1B). Apoptotic mor-
phology was confirmed by DAPI staining that disclosed
fragmented, bright nuclei among cells exposed to
p-CS (Figure 1C). In contrast, p-CG alone was not lethal
(Figure 1D) and did not modulate the toxicity of p-CS (not
shown).

p-CS increases expression of the TWEAK receptor Fn14
and TWEAK-induced apoptosis in proximal tubular
cells

HK2 cells were exposed to 100 μg/mL p-CS or 25 μg/mL
p-CG for 3 h and then analysed for Fn14 mRNA expression
(Figure 2A). This time point was chosen because of prior
knowledge of Fn14 biology [23]. Fn14 is encoded by an early
response gene and protein expression after cytokine stimu-
lation occurs at this time point. Addition of p-CS increased
Fn14 mRNA expression, whereas no changes were observed in
p-CG-treated cells. p-CS also increased Fn14 protein
expression as assessed either by flow cytometry, which denotes
the presence of Fn14 on the cell membrane (Figure 2B and C),
or by western blot of whole cell lysates (Figure 2D). Increased
Fn14 expression induced by p-CS sensitized cells to death in
the presence of TWEAK in short-term, 24-h experiments
(Figure 3).

p-CS is pro-inflammatory in proximal tubular cells

To study whether uraemic toxins triggered inflammation,
we evaluated the effect of these molecules on the expression
profile of the chemokines MCP-1, CXCL16 and RANTES.
Exposure to 100 μg/mL p-CS significantly increased the gene
expression of the three chemokines (Figure 4). In contrast, no
differences were observed in p-CG-treated cells. Lower con-
centrations of p-CS, similar to those found in the circulation
of non-dialysis CKD patients (50 μg/mL) [31] increased the
mRNA expression of the chemokines MCP-1 and CXCL16 in
the presence of albumin (Figure 5A and B). The reason for the
albumin requirement is unclear. However, p-CS binds
albumin and albumin is present in the tubular lumen of
patients with progressive CKD, where it is known to be
uptaken and to stress tubular cells [30]. At this concentration,
p-CS did not promote RANTES expression (Figure 5C).
Although both MCP-1 and RANTES expression by proximal
tubular cells is dependent on NFκB [26], transcription of the
RANTES gene requires a more persistent activation of this
transcription factor since DNA should be made accessible
before NFκB activation wanes [27].

DISCUSSION

The main findings of our study were that in human proximal
tubular epithelial cells p-CS promotes cell death, increases the
expression of the TWEAK receptor Fn14 and promotes
inflammatory gene expression. These findings suggest that
p-CS may contribute to CKD progression by promoting
tubular cell injury.
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Proximal tubular cells are key cells for normal kidney struc-
ture and function. Selective depletion of proximal tubular cells
leads to acute kidney injury evolving to kidney fibrosis [32].
Tubular cells are key cells in tubulointerstitial inflammation.
In response to an adverse microenvironment, tubular cells are
activated to express chemotactic and proinflammatory mol-
ecules, including cytokines such as TNF, Fas ligand, TRAIL
and TWEAK and chemokines such as MCP-1, RANTES and
CXCl16 that decisively contribute to recruit inflammatory
cells and to promote kidney injury [26, 33–35]. After a long
focus on the glomerulus as a key target of diabetic and non-
diabetic nephropathy, recently there has been considerable in-
terest in the role of tubules [36, 37]. Indeed, tubular cells were
the first kidney cells described to undergo apoptosis in a high-
glucose milieu [38]. In this regard, tubulointerstitial damage
correlates better with the outcome of renal function than glo-
merular injury scores, even for primary glomerulonephritis
[39, 40].

p-CS was cytotoxic to cultured tubular cells, promoting
apoptosis. This effect was not observed for p-CG at the

concentrations tested. The increase of tubular cell death and
inflammation by p-CS is relatively mild. However, chronic
inflammation and loss of tubular cells in CKD are mild, per-
sistent conditions that lead to slow progression of CKD over
months to years. In addition, the present data were obtained
by means of subacute experiments with an exposition lasting
for only 7 days. A more prolonged in vivo exposure may lead
to more persistent and progressive injury. In this regard, other
sources of inflammatory cytokines released in the CKD milieu
may cooperate with uraemic toxins to promote tubular cell
death or inflammation. Thus, the combination of TWEAK
and uraemic toxin further increased cell death. Furthermore,
tubular cells are targets of additional nephrotoxic agents, in-
cluding contrast media, non-steroidal anti-inflammatory
agents or over-the-counter medications such as paracetamol
that may also cooperate in tubular injury [41–43]. The array
of cell membrane transporters of tubular cells facilitates
entry and accumulation of nephrotoxins in proximal tubular
cells. Examples include the accumulation and toxicity of anti-
retroviral drugs that cause both acute kidney injury and

F IGURE 1 : p-CS has a pro-apoptotic effect on human proximal tubular HK2 cells. HK2 cells were exposed to 1–500 μg/mL p-CS or
25–50 μg/mL p-CG. Cells were permeabilized and stained with PI to quantify hypodiploid nuclei by flow cytometry in A, B and D. (A) p-CS
displayed little cytotoxicity regardless of dose at 24 h. n = 3 (B) When the cells were exposed to p-CS for 1 week, a statistically significant increase
in apoptosis was observed in cells treated with 100 μg/mL p-CS or higher concentrations (*P < 0.005 versus vehicle, **P < 0.05 versus no-
albumin vehicle, #P < 0.02 versus vehicle, §P < 0.01 versus vehicle). Since the toxins were added as p-CS potassium salt and p-CG ammonium
salt, equimolar potassium chloride and ammonium chloride solutions were used as control (vehicle), n = 3. (C) Apoptotic morphology was
observed after addition of 500 μg/mL p-CS for 1 week by DAPI staining. Representative experiment. (D) No excess apoptosis was observed after
addition of p-CG. The vehicle used was KCl for p-CS and NH4Cl for p-CG experiments. n = 3.
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CKD such as cidofovir and tenofovir [44, 45]. The same
transporters may contribute to accumulation of p-CS or
p-CG in tubular cells. Thus, p-CS is actively transported
into proximal tubular cells potentially contributing to intra-
cellular accumulation and potential adverse biological effects
[46]. In very short-term studies, there was evidence for
active uptake of p-CS that was linear for 10–15 min with
later stabilization [46]. Serum concentrations of p-CS and
p-CG are markedly increased in uraemic patients compared
with healthy subjects [9]. The total pre-dialysis concen-
tration of p-CS is higher than that of p-CG. Prolonged
in vivo exposure to the very high levels of uraemic toxins
found in advanced CKD may result in intracellular accumu-
lation and toxicity of the compounds.

F IGURE 2 : p-CS increases expression of the TWEAK receptor Fn14 and TWEAK-induced apoptosis in human proximal tubular HK2 cells.
(A) HK2 cells were treated with 100 μg/mL p-CS, p-CG 25 μg/mL or their vehicles for 3 h. RNAwas reverse transcribed and analysed by
quantitative PCR. Fn14 mRNA expression was increased by p-CS but not by p-CG (*P < 0.03 versus vehicle). n = 3. HK2 cells were treated with
100 μg/mL (B) or 200 μg/mL (C) p-CS for 24 h and then collected and stained with anti-Fn14 or control IgG. Membrane expression of Fn14
was measured by flow cytometry. n = 2. (D) HK2 cells were treated with 100 μg/mL p-CS for 24 h. Western blot of total cell protein shows an
increased Fn14 expression in p-CS-treated cells (*P < 0.002 versus vehicle). The vehicle used was KCl for p-CS and NH4Cl for p-CG experiments.
n = 3.

F IGURE 3 : Cooperation of p-CS and cytokines to promote tubular
cell death. HK2 cells were treated with 100 ng/mLTWEAK and
200 μg/mL p-CS for 24 h and cell death quantified by flow cytometry
of DNA content. Cells were permeabilized and stained with PI to
quantify hypodiploid nuclei by flow cytometry (*P < 0.02 versus
vehicle, #P < 0.03 versus vehicle + TWEAK) n = 3.
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The pro-inflammatory role of these toxins had been pre-
viously studied in leukocytes and overall findings are consist-
ent with those observed in tubular cells. p-CS enhanced the
percentage of free radical-producing leucocytes at baseline,
while p-CG was inert [47]. However, both toxins cooperated
in promoting free radical production in leukocytes, while
p-CG did not add to the pro-inflammatory or lethal effect of
p-CS when tested simultaneously in tubular cells. These toxins
may also directly damage the endothelium [10] and promote
smooth muscle cell proliferation [48], which may explain their
association with cardiovascular disease in the CKD population
[47, 49–51]. In this regard, enhancing the removal and/or de-
creasing the concentration of these protein-bound solutes might
slow progression of CKD [52, 53]. Thus, administration of p-CS
to mice promoted kidney fibrosis, modulated the epigenetics of
the Klotho gene and decreased tubular Klotho expression. In
addition, p-CS also decreased Klotho expression in cultured

tubular cells [21]. Klotho is a kidney secreted anti-ageing
hormone and also a receptor for fibroblast growth factor-23
(FGF-23). Klotho possesses antioxidant, anti-inflammatory,
antifibrotic and cytoprotective properties [54–56]. Klotho
expression by kidney tubular cells had been previously shown
to be downregulated by inflammatory cytokines in cell culture
and in vivo [57]. Specifically, the inflammatory cytokine
TWEAK downregulated Klotho expression through NFκB
binding to the Klotho promoter and through epigenetic
modulation of the gene. p-CS upregulation of the TWEAK
receptor Fn14 could contribute to the downregulation of
Klotho expression by uraemic toxins in vivo. In this regard,
the TWEAK/Fn14 system is regulated mainly by levels of
expression of the Fn14 receptor [58] and has been shown to be

F IGURE 5 : In human proximal tubular cells p-CS is proinflamma-
tory in the presence of albumin at concentrations found in the circu-
lation of non-dialysis CKD patients. HK2 cells were treated with
50 μg/mL p-CS, or vehicle with or without 40 mg/mL BSA for 3 h.
Gene expression was analysed by quantitative RT-PCR. At this p-CS
concentration, only the p-CS/BSA combination was proinflammatory
and increased the mRNA expression of (A) MCP-1 and (B) CXCL16.
(C) RANTES mRNA. *P < 0.05 versus vehicle control. n = 3. We
certify that there is no conflict of interest with any financial organiz-
ation regarding the material discussed in the manuscript.

F IGURE 4 : p-CS is proinflammatory for human proximal tubular
cells. HK2 cells were treated with 100 μg/mL p-CS, 25 μg/mL p-CG or
vehicle for 3 h. Gene expression was analysed by quantitative RT-
PCR. p-CS increased expression of (A) MCP-1, (B) CXCL16 and (C)
RANTES mRNA. *P < 0.05 versus vehicle control. n = 3.
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a key promoter of tubular cell death and inflammation in the
course of nephrotoxic AKI [26]. More recently, p-CS was
shown to cause oxidative stress and to promote a fibrogenic
response in tubular epithelium [59].

Another uraemic toxin, indoxyl sulphate, has adverse
effects on tubular cells that include oxidative stress, inhi-
bition of cell proliferation, apoptosis, promotion of inflam-
mation and secretion of profibrotic factors such as TGF-β1
and epithelial-to-mesenchymal transition of renal tubular
cells [60–66]. Since both indoxyl sulphate and p-CS are
present in the uraemic milieu it is conceivable that they may
interact or cooperate to promote kidney injury. In this
regard both indoxyl sulphate and p-CS have been suggested
to be transported into proximal tubular cells by organic
anion transporters [46, 62, 67], although this view has been
disputed [68].

The clinical relevance of these findings rests on the obser-
vation that clinically relevant concentrations of p-CS induced
proximal tubular cell stress, manifested as an inflammatory
response or death. At p-CS concentrations found in non-dialy-
sis CKD patients [5, 31, 47], a proinflammatory response was
observed in the presence of albumin. Albuminuria is a fre-
quent feature of progressive CKD, has tubulotoxic actions and
may accelerate progression of kidney disease [30]. At p-CS
concentrations found in dialysis patients, a proapoptotic
response was observed. The relevance of tubular cell loss in
dialysis patients may be disputed. However, tubular cells have
an endocrine function that includes activation of vitamin D
and secretion of Klotho. Maintenance of this endocrine func-
tion may be beneficial for dialysis patients. In fact, residual
renal function preservation is associated with improved out-
comes in dialysis [69].

The concentration ranges studied were 1–500 μg/mL p-CS
and 25 or 50 μg/mL for p-CG. The total serum levels of p-CS
and p-CG in healthy volunteers were 2.87 ± 1.71 and
0.35 ± 0.03 μg/mL and in the haemodialysis population reached
up to 105 and 24 μg/mL, respectively [9, 70]. These values cor-
respond to free p-CS 16.3 μg/mL and free p-CG 22.4 μg/mL.
There is very little information on p-CS values in patients with
non-dialysis CKD. An analysis of 10 CKD Stage 5 patients dis-
closed mean (SD) p-CS levels of 29 (17) μg/mL [31]. That is,
16% of patients had values >46 μg/mL. Additional authors
described p-CS levels 2.5-fold higher in CKD Stage 1–5 progres-
sors versus non-progressors [5] The interaction between
albumin and p-CS may take several hypothetical forms that
may impact the in vivo effects of p-CS on proximal tubular cells.
p-CS will bind to albumin decreasing the available free
p-CS fraction. However, uptake of albumin by proximal tubular
cells may facilitate p-CS entry into the cells, especially in the
presence of albuminuria. Finally, there might be additional
interactions between the biological activities on proximal
tubular cells of albumin and of p-CS.

In conclusion, p-CS has proapoptotic and pro-inflamma-
tory effects on human proximal tubular epithelial cells,
which may cooperate with other stressors such as the
inflammatory cytokine TWEAK to promote progression of
CKD.
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