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Nuclear factor-kB (NF-kB) is a ubiquitous transcription factor that regulates multiple aspects of cancer formation, growth, and
treatment response. Glioblastoma (GBM), the most common primary malignant tumor of the central nervous system, is charac-
terized by molecular heterogeneity, resistance to therapy, and high NF-kB activity. In this review, we examine the mechanisms by
which oncogenic pathways active in GBM impinge on the NF-kB system, discuss the role of NF-kB signaling in regulating the phe-
notypic properties that promote GBM and, finally, review the components of the NF-kB pathway that have been targeted for treat-
ment in both preclinical studies and clinical trials. While a direct role for NF-kB in gliomagenesis has not been reported, the
importance of this transcription factor in the overall malignant phenotype suggests that more rational and specific targeting
of NF-kB-dependent pathways can make a significant contribution to the management of GBM.
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Glioblastoma (GBM), the most common primary glial neo-
plasm, is also one of the most aggressive cancers in humans.
Among the signaling pathways active in GBM, the nuclear
factor-kB (NF-kB) response plays an important role in promot-
ing tumor pathobiology and response to therapy. Although this
multi-subunit transcription factor was originally characterized
within the context of the immune system, it was subsequently
identified as a critical factor in cancer.1 Like other malignancies,
GBM demonstrates high constitutive NF-kB activity,2 – 4 and
many of the central oncogenic pathways active in GBM con-
verge on the NF-kB system.

Nuclear Factor-kB Activation Pathways
The mammalian NF-kB family is made up of 5 subunits: p50
(NF-kB1, p105), p52 (NF-kB2, p100), p65 (RelA), RelB, and
c-Rel (Fig. 1). These proteins exist as homo- and heterodimers
with the most abundant form being p50/p65.5 While each sub-
unit contains an N-terminal Rel homology domain (RHD) that is
necessary for DNA binding and subunit dimerization, only p65,
RelB, and c-Rel contain a C-terminal transactivation domain
(TAD).6 In general, NF-kB dimers are maintained in the cyto-
plasm bound to inhibitor-kB (IkB) proteins (Fig. 1). Activation
of NF-kB occurs by multiple interrelated pathways that

converge on the cytoplasmic IkB kinase (IkK) complex made
up of 2 catalytic subunits, IkKa and IkKb, and a noncatalytic
regulatory subunit, IkKg (NEMO). Following stimulation, phos-
phorylation of IkB proteins by IkK results in IkB degradation
and NF-kB nuclear translocation (Fig. 2). In the nucleus,
NF-kB dimers bind to consensus elements (kB-sites) in the reg-
ulatory regions of genes involved in a wide range of cellular pro-
cesses including inflammation, cell survival, and apoptosis.

In the canonical activation response, stimulation of surface
receptors such as tumor necrosis factor alpha receptor 1
(TNFR1) results in a signaling cascade that induces phosphory-
lation of IkBa by IkKb (Fig. 2).5 In this pathway, ubiquitination
of receptor-interacting protein 1 (RIP1) forms a scaffold for re-
cruitment of the IkK complex via the ubiquitin-binding domain
of NEMO.7 The E3 ligases cIAP1/2 and TRAF2/5 are involved in
RIP1 ubiquitination facilitating TAK1 binding and IkK activation.
Phosphorylation of IkBa by IkKb leads to IkBa’s ubiquitination
and proteosomal degradation.

A second evolutionarily conserved noncanonical or alternate
activation pathway has also been described that involves NF-kB
inducing kinase (NIK) and p52-containing complexes (Fig. 2).8

The alternate pathway is induced by a different set of cell sur-
face receptors and is primarily involved in lymphoid development
and osteoclastogenesis.9 In this pathway, phosphorylation of
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p100 by IkKa leads to p100 proteolytic cleavage and nuclear
translocation of p52/RelB dimers.

NF-kB is also activated by an atypical response induced by
genotoxic stressors such as DNA double-strand breaks (DSBs),
replication stress (RS) and reactive oxygen species.5,10 Atypical
signaling, which actually involves a series of interrelated path-
ways, is fundamentally different from canonical and alternative
pathways in that it involves nuclear-to-cytoplasmic signaling
and direct nuclear NF-kB modification. In the setting of DNA
DSBs, NF-kB is activated by a mechanism involving ataxia and
telangectasia mutated (ATM) and nuclear NEMO (Fig. 2).11

Sequential phosphorylation and mono-ubiquitination of
sumoylated nuclear NEMO result in its nuclear export.12 In
the cytoplasm, NEMO interacts with a protein rich in gluta-
mate-E, leucine-L, lysine-K, and serine-S (ELKS), ATM, and
TAK1 to activate IkK and induce NF-kB.

While nuclear translocation is the primary method of
regulating NF-kB activity, the overall NF-kB response is deter-
mined by the cooperative action of multiple promoter-specific
factors. Individual subunit post-translational modification
(PTM) plays a central role in regulating NF-kB activity by a
variety of mechanisms including modulating dimer/kB-site
interactions,13 restricting transcriptional co-regulator recruit-
ment,13,14 and directly altering subunit transactivity.15 In con-
trast to the response to DSBs, NF-kB signaling downstream of
RS and ATM-and-Rad3-related protein (ATR) occurs in a more
complex, promoter-specific manner that is regulated to

a large extent by subunit PTM. Specifically, ATR induces
Chk1-mediated phosphorylation of p65 Thr505 and p50
Ser329,16,17 a pathway that acts to promote cell death.10,18

The ATR-mediated NF-kB response is particularly important
for the treatment of GBM because temozolomide (TMZ), the pri-
mary chemotherapeutic used in the treatment of GBM, induces
RS and activates ATR by forming cytotoxic O6-methylguanine
(O6-meG) lesions.17,19

The activation pathways outlined above promote NF-kB sig-
naling; however, given that the NF-kB response is primarily a
stimulus-induced system, multiple auto-regulatory mecha-
nisms concomitantly replenish the pools of latent NF-kB dimers
to enable repeat stimulation. In this regard, NF-kB induces ex-
pression of its own inhibitor, IkBa, which removes DNA-bound
dimers and translocates them back to the cytoplasm.20 Also,
NF-kB signaling induces expression of various de-ubiquitinating
(DUB) enzymes that degrade the ubiquitin scaffolds necessary
for IkK activation. In sum, the overall NF-kB response repre-
sents the composite action of a series of complementary path-
ways that act in a stimulus, subunit, and cell-type specific
manner to mediate the eventual downstream effect.

NF-kB Activation in Glioblastoma
Over the past decade, expression profiling has enabled the
classification of adult GBM into several well-defined

Fig. 1. NF-kB pathway proteins. There are 5 NF-kB subunits that include the 3 Rel proteins (RelA, RelB, and c-Rel) and the 2 non-Rel, precursor
proteins (p100 and p105) that give rise to p52 and p50 following proteosomal processing, respectively. The IkB proteins are recognizable by
their multiple ankyrin repeats (ANK), and include the classical members (IkBa, IkBb, and IkB1 that sequester NF-kB dimers in the cytoplasm)
and the atypical members (IkBz, Bcl-3 and IkBNS) that act to modify nuclear NF-kB activity. The primary structural motifs of each protein are
indicated: Rel homology domain (RHD), transactivation domain (TAD); leucine zipper (LZ); glycine-rich region (GRR); death domain (DD); and
proline-rich, glutamic acid-rich, serine-rich, and threonine-rich (PEST).

Cahill et al.: NF-kB in GBM

330

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/article/18/3/329/2509337 by guest on 23 April 2024



subtypes.21,22 More recently, epigenetic analysis has further
modified classification of GBM and also enabled incorporation
of pediatric tumors.23 This molecular analysis has led to better
understanding of the role of NF-kB in GBM. In general, GBMs
with mesenchymal features demonstrate elevated levels of
NF-kB pathway genes such as TRADD, RELB and TNFRSF1A.22

Activation of NF-kB signaling has also been found to promote
mesenchymal differentiation of GBM by modulating down-
stream transcriptional signaling.24 Consistent with this obser-
vation, the noncanonical NF-kB subunit, RelB, was shown to
drive mesenchymal differentiation in GBM.25 Despite the impor-
tance of NF-kB in GBM, mutation or amplification of individual
NF-kB subunits is rare in these tumors. The above findings sug-
gest that the elevated NF-kB activity in GBM is likely the result
of deregulation of the pathways that modulate the NF-kB
response.

Oncogenes and NF-kB in Glioblastoma

Receptor tyrosine kinases (RTKs) are important oncogenic driv-
ers in GBM. Epidermal growth factor receptor (EGFR), the first
member of the RTK family, is deregulated in more than 50%
of GBMs.26 EGFR signaling is aberrantly induced in GBM, primar-
ily as a result of gene amplification or mutation, and activation
of NF-kB by EGFR in GBM involves both Akt-dependent
and -independent mechanisms (Fig. 3).27,28 EGFR-mediated
NF-kB activation promotes both GBM formation and chemoresist-
ance.29,30 EGFRvIII is one of the best-characterized EGFR muta-
tions found in about 30% of all GBMs and more than 60% of
tumors with amplified EGFR.31 Despite the inability of EGFRvIII
to bind ligands, it is constitutively active and induces NF-kB by a
mechanism involving the adaptor protein, RIP1,32,33 a factor
whose expression level has been linked with GBM prognosis.22,34

Fig. 2. NF-kB activation pathways. In the canonical pathway, stimulation of receptors such as TNFR1 activates the IkK complex, which comprises
IkKa/b and g (NEMO) and results in phosphorylation of IkBa. Subsequently, ubiquitin-dependent degradation of IkBa releases NF-kB dimers that
translocate to the nucleus and modulate target gene expression. The alternate pathway is triggered by surface receptors such as B-cell-activating
factor receptor (BAFFR), which stimulates a cascade involving NF-kB-inducing kinase (NIK) and IkK-a. In this response, proteosomal processing of
p100 leads to formation of p52-containing dimers that modulate the genes regulating lymphoid development and B-cell maturation. The atypical
response comprises a number of pathways that are induced by genotoxic stressors such as DNA double-strand breaks (DSBs) and replication stress
(RS). In response to DSBs, ATM interacts with sumoylated nuclear NEMO, resulting in sequential phosphorylation and mono-ubiquitination of NEMO.
Subsequently, cytoplasmic translocation of ATM/NEMO leads to stimulation of IkK activity. RS activates ATR, which induces Chk1-mediated
phosphorylation of both p50 and p65 and leads to promoter-specific modulation of NF-kB target genes that act to promote cytotoxicity.

Cahill et al.: NF-kB in GBM

Neuro-Oncology 331

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/article/18/3/329/2509337 by guest on 23 April 2024



The connection between NF-kB and EGFR in GBM is also sup-
ported at the genomic level by a report demonstrating the mu-
tual exclusivity of EGFR amplification and deletion of NFKBIA,
the gene encoding for IkBa.35 In this study, it was reported
that heterozygous deletion of NFKBIA is present in about 25%
of GBMs, and patients with either EGFR amplification or NFKBIA
deletion have a shorter median survival than those with normal
NFKBIA and EGFR. Of note, a more recent report found that the
incidence of NFKBIA deletion in GBM might be much lower than
initially reported.36

Platelet-derived growth factor receptor (PDGFR) is another
RTK frequently amplified in GBM.22 Glial tumors often co-
express PDGF and its receptor, setting up an autocrine activa-
tion loop.37 PDGF has been shown to activate NF-kB via Akt,
although the mechanistic association between NF-kB and the
PDGFR pathway is not as well elucidated as the link to
EGFR.38 NF-kB has also been shown to promote glioma progres-
sion in a PDGFb-driven transgenic mouse glioma model.39

Moreover, dominant negative PDGFb, or anti-PDGF neutralizing
antibodies, decrease NF-kB activity in glioma cells.40

A robust link exists between the Ras oncogene and NF-kB;
while RAS mutation is rare in GBM, high levels of active Ras
are found in GBM due to hyperactive RTKs and loss of tumor
suppressors such as NF1.26 Ras signaling activates NF-kB via
p65 by a pathway that is independent of classical IkK signal-
ing.41 Importantly, NF-kB is required for the oncogenic effect
of Ras in both cells and animals.42,43 Despite the numerous
studies linking NF-kB and Ras in peripheral tumors, the impor-
tance of this pathway in GBM is not known.

Tumor Suppressors, NF-kB, and Glioblastoma

As with oncogenes, many tumor suppressors that promote
GBM formation also modulate NF-kB signaling. The p53 path-
way is almost universally affected in GBM. In tumors with wild-
type TP53, p53 signaling is often functionally abrogated by
MDM2 amplification or INK4aARF (CDKN2A) mutation.26 The
p53 response intersects with the NF-kB pathway at multiple
points (Fig. 3).5,44 While wild-type p53 was initially reported to
activate NF-kB by a mechanism involving the serine/threonine

Fig. 3. Modulation of NF-kB signaling by oncogenic pathways in GBM. The link between the primary oncogenic pathways active in GBM and the
NF-kB system are illustrated. Oncogenic pathways are shaded in red and tumor suppressor pathways in blue. The RTKs, EGFR and PDGFR, induce
NF-kB activation via a number of interrelated pathways, and a reciprocal relationship between EGFR amplification and NFKB1A deletion is seen. Loss
of tumor suppressors such as PTEN, NF1, and ARF promote NF-kB activity because of their physiological role in attenuating the NF-kB response. The
p53 pathway is a tumor suppressor response modified in virtually all GBMs. A reciprocal association between p53 and NF-kB signaling is evident at
multiple pre- and postnuclear translocational points. In addition to cell-intrinsic responses, the inflammatory GBM microenvironment contributes
to high NF-kB activity by triggering canonical and noncanonical signaling.
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kinase, p90rsk,45 mutant p53 can also activate NF-kB.46

CDKN2A, a tumor suppressor that modulates p53-mediated
cell cycle arrest, is mutated in almost 50% of GBMs,26 and its
protein product can directly inhibit p65 transactivity.15 These
studies and multiple others44 illustrate the complex manner
in which the p53 and NF-kB pathways combine to regulate
the downstream response.

Loss of the long arm of chromosome 10 is another frequent
finding in GBM, and the tumor suppressor PTEN that is inactivat-
ed in 30% of GBM is found in this region.26 PTEN is a phospha-
tase that negatively regulates PI3-kinase activity and blocks
Akt signaling. Given the overwhelming propensity of Akt to
activate NF-kB,38 the frequent loss of PTEN in GBM plays an
important role in activating NF-kB in these tumors.

In addition to these common GBM-associated changes,
other tumor suppressors also have prognostic value in GBM
and have been linked to NF-kB. For example, CYLD, a DUB
that blocks NF-kB activity by removing ubiquitin chains from
NF-kB intermediates, is downregulated in glioma, and its ex-
pression is inversely associated with patient prognosis.47 Simi-
larly, expression of ING4, a protein that physically interacts with
p65 and blocks angiogenesis by inhibiting NF-kB activity, was
inversely correlated with glioma grade.48

Together, the above observations indicate that the impor-
tant oncogenic pathways active in GBM impinge on the NF-kB
system and, moreover, act in concert to enhance NF-kB
activity.

NF-kB and Glioblastoma Pathobiology
Although NF-kB activity is high in GBM, there is no definitive ev-
idence that NF-kB actually plays a causal role in glioma forma-
tion as it does in other malignancies.1 Nevertheless, NF-kB
signaling modulates many of the central hallmarks of cancer
including: cellular proliferation, angiogenesis, invasion, and re-
sistance to apoptosis (Fig. 4).49 In addition, the critical role of
NF-kB in promoting inflammation further contributes to the
malignant phenotype.

NF-kB Promotes Glioblastoma Cell Survival and
Resistance to Therapy

NF-kB is classically considered to be a pro-survival factor that
induces the expression of genes promoting cell survival and
proliferation. Proteins regulated by NF-kB in GBM that act in
this manner include Bcl2, Bclxl, survivin, Cox2, and the inhibitor
of apoptosis proteins (IAPs).50 Cyclin D1 (CCND1), another NF-kB
target gene involved in survival and proliferation,51 has also
been linked to poor prognosis in GBM patients,52 and depletion
of cyclin D1 in glioma cells blocks proliferation and invasion.53

Interestingly, while the pro-survival effects of NF-kB play an im-
portant role in mediating resistance to therapy in GBM,24,54

Chk1-mediated inhibition of p50-induced antiapoptotic genes
demonstrates a mechanism by which NF-kB signaling also pro-
motes cytotoxicity by chemotherapeutics such as TMZ.17

Fig. 4. NF-kB-regulated processes and factors central to GBM pathobiology. The NF-kB family regulates the expression of numerous proteins that
are critical for the survival and progression of GBM. The various responses modulated by NF-kB signaling are highlighted.
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NF-kB and Angiogenesis

New blood vessel formation is critical for the maintenance of an
expanding tumor, and vascular proliferation is a central tenet in
the pathological diagnosis of glioblastoma. Neovascularization
in GBM is driven primarily by vascular endothelial growth factor
(VEGF). Not only is VEGF an NF-kB target gene,55 it is also induced
by NF-kB-regulated factors such as IL-6.56 Another proangio-
genic NF-kB target gene is IL8. While IL-8 levels are low in nor-
mal tissue, in GBM the IL-8 level is high, a finding related both to
loss of the tumor suppressor ING4,48 and to the presence of
macrophages and microglia in the GBM microenvironment.57

These finding not only demonstrate the importance of NF-kB
to angiogenesis but also highlight how multiple factors in GBM
converge on NF-kB to promote this malignant feature.

NF-kB, Migration, and Invasion

Migration of GBM cells into the surrounding brain parenchyma is
one of the primary reasons for tumor recurrence, and NF-kB
signaling significantly contributes to this property of GBM
cells.39 Pin1, a prolyl isomerase that stabilizes p65 and pro-
motes its transcriptional activity, is overexpressed in GBM and
promotes cellular migration via IL-8.58 Astrocyte elevated
gene-1 (AEG-1), an HIV-1-inducible gene that is overexpressed
in GBM, is another factor that interacts with p65 to promote gli-
oma cell migration.59 p65 has also been shown to interact with
STAT3 at the ICAM-1 promoter to stimulate migration of GBM
cells in response to ionizing radiation.60

To identify novel factors associated with GBM invasion, ex-
pression profiling was performed, and fibroblast growth factor-
inducible 14 (FN14) was identified as a gene significantly
upregulated in migrating cells.61 Fn14 is regulated in an NF-
kB-dependent manner via a kB site in its promoter.62 In addi-
tion, high FN14 mRNA expression correlates with poor GBM
survival. In a similar fashion, connective tissue growth factor
(CTGF) was identified as a gene important in invading GBM
cells.63 CTGF induces NF-kB binding to the ZEB-1 promoter, a
transcriptional repressor of E-cadherin and a pathway neces-
sary for glioma cell invasion.64 One negative regulator of the
NF-kB response that promotes invasion and is downregulated
in GBM is Numblike (Numbl), a cytoplasmic protein involved in
brain morphogenesis that attenuates NF-kB and invasion by
acting on upstream TRAF proteins.65

NF-kB, Inflammation, and Glioblastoma

NF-kB signaling has been directly linked to multiple stages of
inflammation-associated carcinogenesis.66 Although no defin-
itive association between inflammation, NF-kB, and glioma-
genesis has been described, many inflammatory mediators,
cytokines, and immunosuppressive factors are upregulated in
the glioma microenvironment.67 Several of these factors are
not only NF-kB-regulated genes but are also activators of
NF-kB signaling and act together with intrinsic oncogenic path-
ways to promote NF-kB activation (Fig. 3). Interestingly, it was
recently reported that the elevated NF-kB status in the GBM mi-
croenvironment is promoted by inflammatory cells such as
macrophages and microglia and acts to augment GBM prolifer-
ation and resistance to therapy.24

NF-kB and Glioma Stem-like Cells

Accumulating evidence suggests that subpopulations of tumor-
initiating or stem-like cells are a major reason for GBM recur-
rence and resistance to treatment.68 Notably, GBM stem-like
cells have higher levels of nuclear p65 and NF-kB-dependent
gene expression than regular glioma cells.69 Also, NF-kB signal-
ing has been linked to the proliferation, migration, and differen-
tiation of neural stem cells,70 a potential cell of origin of brain
tumors. RelB an NF-kB subunit that is highly expressed in mes-
enchymal GBM regulates expression of Olig2,25 a critical factor
in normal and tumorigenic stem-like cell proliferation. Finally, it
has been suggested that NF-kB signaling may prevent GBM
stem-like cells from acquiring a mature postmitotic phenotype;
consistent with this, blockade of NF-kB promotes senescence.71

In general, multiple studies suggest that the NF-kB pathway
acts in a similar fashion in stem-like cells as in regular GBM
cells to promote malignancy and enhance treatment resistance.

Therapeutic Targeting of the NF-kB Pathway
The importance of NF-kB to glioma pathobiology suggests that
targeting it may be a fruitful approach for treating GBM. In this
section, we review the numerous strategies that have been
used to block NF-kB signaling, both specifically and nonspecif-
ically. While the bulk of the data involve in vitro and preclinical
studies, we also discuss the few clinical trials in which the NF-kB
pathway has been targeted in GBM.

Specific NF-kB Inhibition

IkK Inhibition

The importance of the IkK complex in regulating NF-kB activa-
tion, coupled with the druggable nature of kinase activity, has
made IkK a primary target for pharmacotherapy. While many
IkK inhibitors have been used in the treatment of peripheral
cancers, only a few have been studied in GBM (Fig. 5). In one
study, the antiglioma effect of several NF-kB inhibitors was
demonstrated in vitro.72 These agents were found to sensitize
GBM cells to cisplatin and doxorubicin and were even effective
against chemotherapy-resistant clones. One agent, BAY11-
7082, was shown to have an IC50 in GBM cells that was over
4-fold lower than normal astrocytes. In another study, a
novel glycosylated indolocarbazol that blocks IkKb activity,
EC-70124, was shown to induce senescence in GBM stem-like
cells.71 While these results support the use of IkK inhibition
as an antiglioma strategy, even highly selective agents such
as BAY11-7082 also modulate other signaling pathways,73

suggesting that the effects reported may not be solely due to
inhibition of NF-kB.

RNA interference is an alternative and potentially more spe-
cific method for targeting IkK. MiR-218, a microRNA that targets
the 3′-UTR region of IkKb mRNA, is downregulated in patient-
derived GBM tissue.74,75 Ectopic delivery of miR-218 inhibits
NF-kB activity and invasion of GBM cells.74 While RNA interfer-
ence can reduce the off-target effects seen with chemical inhib-
itors, microRNAs can also have multiple targets. In fact, miR-218
was shown to inhibit NF-kB by an alternative mechanism involv-
ing EGFR–co-amplified and overexpressed protein.75
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Despite the importance of IkK in the NF-kB response, this ki-
nase has multiple non–NF-kB-related functions.76 While IkKb
can phosphorylate p53, tuberous sclerosis 1, and FOXO3a,
IkKa can enter the nucleus and interact with TGFb-regulated
Smad2/3.77 These observations suggest that targeting IkK
can lead to numerous NF-kB– independent actions that are
not related to the off-target effects of the specific inhibitors.
The potentially unpredictable nature of targeting the IkK
complex emphasizes the importance of critically examining
each agent individually. Nevertheless, given the heterogeneous
nature of GBM, targeting a factor like IkK that modulates more
than one signaling response might have a greater chance of
achieving a therapeutic effect in this tumor.

IkBa Super Repressor

In contrast to the promiscuous nature of IkK, IkB proteins reg-
ulate NF-kB signaling in a more selective manner by specifically

interacting with NF-kB dimers. Mutation of serines 32 and 36 in
IkBa gives rise to a super repressor (IkBaSR), which is a protein
that cannot be phosphorylated or degraded (Fig. 5). Whether
used alone or in combination with DNA-damaging agents or cy-
tokines, IkBaSR invariably improves the antiglioma ef-
fect.24,71,78 Similarly, the combination of herpes simplex virus
thymidine kinase (HSV-tk) and IkBaSR augments HSV-tk/ganci-
clovir suicide-gene therapy in GBM.79 These studies highlight
the potential of sequestering NF-kB subunits in the cytoplasm
to enhance the therapeutic efficacy of antiglioma agents.

Targeting NF-kB Subunits

Perhaps the most specific method for blocking NF-kB is to
directly target the subunits themselves. Given the importance
of p65 in mediating NF-kB signaling, most groups have focused
on this subunit. Knockdown of p65 induces cytotoxicity in GBM
cells,72 and expression of a p65 shRNA leads to a decrease in
GBM xenograft growth and vascular density.33 Another method
to specifically block protein expression involves the use of intra-
cellular antibodies (intrabodies). Expression of a single-chain
intrabody against p65 in GBM cells was found to downregulate
NF-kB–dependent gene expression and attenuate intracranial
xenograft growth compared with control.80 Pharmacological
targeting of NF-kB at the subunit level has also been performed
in GBM. Dehydroxymethylepoxyquinomicin (DHMEQ) is a small
molecule that binds specific cysteine residues in p65 and other
Rel homology proteins to block NF-kB nuclear translocation and
DNA binding.81 In GBM, DHMEQ inhibits NF-kB activity, decreas-
es cell proliferation, and increases the survival of animals bear-
ing intracranial xenografts.82

In contrast to experiments targeting p65, it was reported
that loss of the p50 subunit in GBM cells actually has the oppo-
site effect in that it attenuates the cytotoxicity of chemothera-
peutics such as TMZ.17 This effect of NF-kB is consistent with
the paradoxical requirement of NF-kB for apoptosis in response
to certain types of DNA damage.10,83 Taken together, these
findings illustrate the subunit-specific effects of NF-kB in mod-
ulating the response to DNA damaging agents.

Nonspecific NF-kB Inhibition

Proteasome Inhibitors

The NF-kB response is regulated to a large extent by ubiquitina-
tion, and proteasomal degradation of IkB proteins is an impor-
tant step in NF-kB activation. Proteasome inhibition is a
common strategy to attenuate NF-kB activity, and several pro-
teasome inhibitors have been used in the treatment of experi-
mental GBM including bortezomib, lactacystin, and MG132.84,85

Bortezomib (Velcade, PS-341), a peptide that blocks the 20S
subunit of the proteasome, downregulates antiapoptotic
genes to induce cytotoxicity in GBM cells,86 and enhances the
anti-GBM effect of the chemotherapeutic vorinostat.85

Other Nonspecific Inhibitors

Given the central role of NF-kB in the inflammatory response,
many natural and synthetic anti-inflammatory agents target
the NF-kB pathway as part of their mechanism of action.

Fig. 5. Target sites and inhibitors of the NF-kB pathway used in GBM.
NF-kB signaling can be targeted at multiple points to block activity,
and a wide range of both specific and nonspecific agents have been
used for NF-kB inhibition in GBM. The IkK complex is the primary
regulation point of NF-kB activity and has been targeted by the
largest number of agents. Downstream of IkK, IkBa degradation has
been blocked in GBM using either the IkB super repressor or, more
nonspecifically, with proteasome inhibitors. Depletion of individual
NF-kB subunits has also been examined using RNA interference.
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Although these agents have multiple non–NF-kB-related ef-
fects, their antitumor response is often linked to their action
on NF-kB. One group of compounds that blocks NF-kB activity
is the nonsteroidal anti-inflammatory drug (NSAID) family.
These agents have antiproliferative effects in cancer cells that
are at least partially attributed to inhibition of IkK. NSAIDs have
differing NF-kB–attenuating and cytotoxic potencies, and cele-
coxib, one of the more potent NF-kB inhibitors,87 has been
shown to decrease proliferation and increase apoptosis in
GBM cells.88

Resveratrol (trans-3,4′,5-trihydroxystilbene), a naturally oc-
curring anti-inflammatory compound found in red wine, is an-
other nonspecific NF-kB inhibitor that has shown promise in the
treatment of GBM. Resveratrol inhibits NF-kB by targeting sev-
eral points along the activation pathway including IkK and
RIP1.89,90 Although resveratrol induces cell death in U251
GBM cells91 and increases survival of rats bearing intracranial
gliomas,92 it has not yet been used in humans. Triterpenoids
are a group of naturally occurring compounds that have been
used as anti-inflammatory and anticancer agents. The synthet-
ic triterpenoid, 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic
acid (CDDO), has antitumor efficacy, and its methyl ester
CDDO-Me inhibits IkK activity93 and induces cytotoxicity in a
number of GBM cell lines.94 Another noteworthy agent is curcu-
min (diferuloylmethane) a biomolecule found in turmeric that
inhibits nuclear p65 translocation via inhibition of IkK and
Akt.95 The efficacy of curcumin, both alone and in combination
with chemotherapeutics, has been demonstrated in experi-
mental GBM models.96

NF-kB Inhibition in Clinical Studies
Despite the success of targeting NF-kB in preclinical GBM mod-
els, only nonspecific agents have been used in the clinical set-
ting. Sulfasalazine is an agent that inhibits IkK and is often used
for the management of rheumatoid arthritis. In a phase 1/2
study involving 10 patients with progressive malignant glioma,
subjects were assigned to one of 4 doses of oral sulfasala-
zine.97 Unfortunately, no clinical responses were observed
with a median progression-free survival (PFS) of 32 days. Four
patients developed grade 4 toxicity, and 2 patients died, lead-
ing to early termination of the study.

The promising preclinical results obtained with bortezomib
led to its use in patients with newly diagnosed and recurrent
GBM.98 – 100 In a phase 2 study, vorinostat and bortezomib
were used in 37 patients with recurrent GBM.98 However, as
the median overall survival (OS) was only 3.2 months, the au-
thors did not recommend continued evaluation at the dosing
schedule used. Also, while a phase 1 study combining bortezo-
mib with TMZ/IR was reported to be well tolerated and safe,99

no phase 2 data have been presented.
A number of clinical trials using celecoxib in malignant

glioma have been completed.101 – 103 Reardon et al. conducted
a phase 2 trial using CPT-11 (irinotecan) and celecoxib in
37 patients with grade III and IV glioma who had progressive
disease. Median PFS and OS were 11 and 31.5 weeks, respec-
tively.101 This 17% objective response was similar to the 15%
observed using CPT-11 alone.104 In another study, 50 patients
with newly diagnosed GBM and residual disease following

radiotherapy and no prior chemotherapy were treated with
TMZ, thalidomide, and celecoxib. Median PFS and OS were 5.9
and 12.6 months, respectively, with 9 partial responses and
22 cases of stable disease.102 These results were also similar
to a previous study using only TMZ and thalidomide, indicating
that the addition of celecoxib was unlikely to have provided any
significant benefit.

In summary, although the use of nonspecific NF-kB inhibi-
tors in malignant glioma patients has been safe and generally
well tolerated, these agents have not demonstrated any signif-
icant advantage over more conventional therapies. However,
interpretation of these studies is somewhat difficult as most
of them lack measurement of intratumoral NF-kB inhibition
or drug accumulation.

Summary
The NF-kB response indeed contributes to the pathogenicity of
GBM by modulating many of the pathways central to the ma-
lignant phenotype and promoting mesenchymal transition.
Moreover, despite its multifaceted role in the response to DNA
damage, in general NF-kB signaling attenuates the efficacy of
cytotoxic agents. To date, studies manipulating NF-kB as a po-
tential therapeutic approach have focused on nonspecific
agents or on targets such as IkK that impact multiple signaling
pathways. However, given the broad range of responses regu-
lated by NF-kB signaling, it is likely that strategies that more
rationally manipulate specific subsets of the NF-kB response
will be the most successful for treating GBM. In this regard, it
has been shown that inhibition of specific downstream NF-
kB-regulated targets can significantly enhance the antiglioma
effect.105

In conclusion, the importance of the NF-kB pathway to GBM
growth and treatment resistance suggests that improved un-
derstanding of the mechanism by which this transcription fac-
tor is regulated in GBM is a strategy that can make a significant
impact in the successful management of these tumors.
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