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Multimodal MRI features predict isocitrate 
dehydrogenase genotype in high-grade gliomas

High-grade gliomas constitute the most common primary 
adult brain malignancy, with an incidence of 3.68 per 100 
000.1 Prognosis is grim despite the best available thera-
pies. Five-year survival rates are 27.3% to 52.2% for WHO 
grade III gliomas, depending on the subtype, and only 

5% for WHO grade IV gliomas.1 Recent genomic char-
acterization of these tumors has shown, however, that 
mutations in the isocitrate dehydrogenase 1 (IDH1) gene, 
or its homolog IDH2, are associated with longer overall 
survival in high-grade gliomas relative to their wild-type 
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Abstract
Background. High-grade gliomas with mutations in the isocitrate dehydrogenase (IDH) gene family confer longer 
overall survival relative to their IDH-wild-type counterparts. Accurate determination of the IDH genotype preop-
eratively may have both prognostic and diagnostic value. The current study used a machine-learning algorithm to 
generate a model predictive of IDH genotype in high-grade gliomas based on clinical variables and multimodal 
features extracted from conventional MRI.
Methods. Preoperative MRIs were obtained for 120 patients with primary grades III (n = 35) and IV (n = 85) glioma 
in this retrospective study. IDH genotype was confirmed for grade III (32/35, 91%) and IV (22/85, 26%) tumors by 
immunohistochemistry, spectrometry-based mutation genotyping (OncoMap), or multiplex exome sequencing 
(OncoPanel). IDH1 and IDH2 mutations were mutually exclusive, and all mutated tumors were collapsed into one 
IDH-mutated cohort. Cases were randomly assigned to either the training (n = 90) or validation cohort (n = 30). 
A total of 2970 imaging features were extracted from pre- and postcontrast T1-weighted, T2-weighted, and appar-
ent diffusion coefficient map. Using a random forest algorithm, nonredundant features were integrated with clini-
cal data to generate a model predictive of IDH genotype.
Results. Our model achieved accuracies of 86% (area under the curve [AUC] = 0.8830) in the training cohort and 
89% (AUC = 0.9231) in the validation cohort. Features with the highest predictive value included patient age as well 
as parametric intensity, texture, and shape features.
Conclusion. Using a machine-learning algorithm, we achieved accurate prediction of IDH genotype in high-grade 
gliomas with preoperative clinical and MRI features.
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(WT) counterparts and independent of histologic grade.2–5 
Grade IV gliomas that have acquired IDH1 or IDH2 (IDH) 
mutations have a median overall survival of 31 months as 
compared with 15 months for those with WT IDH.2 Among 
high-grade gliomas, patients with IDH-WT grade III tumors 
also exhibit worse prognosis than those with IDH-mutated 
grade IV tumors.6

The IDH gene product normally converts isocitrate into 
α-ketoglutarate, while mutations in the IDH gene family 
result in enzyme products that instead drive conversion of 
isocitrate into 2-hydroxyglutarate (2-HG). 2-HG competi-
tively inhibits downstream histone demethylases, which 
contributes to abnormal regulation of gene expression in 
these cancers.7

At present, the most commonly used method for assess-
ing IDH mutation status is immunohistochemical analysis 
following biopsy or surgical resection. Multiple exome 
sequencing studies have demonstrated, however, that up 
to 15% of IDH-mutated gliomas are not detected by tradi-
tional IDH1 (p.R132H) antibody testing.8,9 In addition, while 
biopsy for most intracranial masses can be performed with 
relatively low risk, a noninvasive method for preoperative 
prediction may be helpful for operative planning; a recent 
study suggested that subtotal resection of enhancing tumor 
was associated with longer overall survival in IDH-WT high-
grade glioma, whereas only complete resection including 
both enhancing and nonenhancing components of tumor 
improved survival in IDH-mutated gliomas.10 It is these 
aspects of IDH-WT and IDH-mutated high-grade glioma that 
increase the impetus for preoperative determination of IDH 
genotype with methods such as MRI.

Genomic alterations in gliomas are associated with a 
number of radiographic features on MRI.11 Several of these 
standard imaging features including unilateral growth, 
tumor margin sharpness, and signal intensity heteroge-
neity vary significantly with IDH genotype and progno-
sis, although these associations have largely been based 
on univariate analyses.12,13 Single imaging features are 
expected to perform less well in predicting IDH genotype 
in HHGs as a result of greater tumor heterogeneity.14,15 
Studies correlating the genetic and clinical features of gli-
oma based on qualitative imaging analysis such as degree 
of enhancement and appearance of tumor margins are 
prone to interrater variability.16

In recent years, machine-learning algorithms have 
been applied to imaging studies of gliomas to predict 
genotype and patient survival outcomes based on imag-
ing features extracted from conventional MRI.17–20 In this 
study, we retrospectively examined the preoperative MRI 
of 120 patients diagnosed with either primary grade III 
or IV glioma with known IDH genotype. We hypothesized 
that a model integrating multimodal MRI features using a 
machine-learning approach could accurately predict IDH 
genotype in HGGs.

Methods

Patient Enrollment

This study was conducted following approval by the Dana-
Farber/Brigham and Women's Cancer Center (DF/BWCC) 

Institutional Review Board (IRB). MR imaging, clinical vari-
ables including primary patient demographics (ie, age, sex, 
KPS, and preoperative steroid use), and genotyping data 
were obtained from the medical record under a consented 
research protocol approved by the DF/BWCC IRB (11-104). 
We retrospectively identified patients who met the fol-
lowing criteria: (i) histopathologically confirmed primary 
grade III or IV glioma according to current WHO criteria,21 
(ii) known IDH genotype, and (iii) available preoperative 
MRI consisting of precontrast axial T1-weighted (T1), post-
contrast axial T1-weighted (T1c), axial T2-weighted fast 
spin echo (FSE, T2), T2-weighted fluid attenuation inversion 
recovery (T2/FLAIR) images, and MR-diffusion weighted 
imaging (DWI). Patients with secondary HGGs were 
excluded from this study. Patients whose genetic data 
were not confirmed per criteria (see “Tissue Diagnosis and 
Genotyping” section below) and whose tumors did not 
demonstrate contrast enhancement were excluded. Our 
final cohort included 120 patients with primary grade III  
(n = 35) and grade IV (n = 85) gliomas.

Tissue Diagnosis and Genotyping

All sequencing assays were performed within the Molecular 
Diagnostics Division of the Brigham and Women's Hospital 
Center for Advanced Molecular Diagnostics, a CLIA-
certified laboratory environment. IDH1/2 mutations were 
determined using immunohistochemistry,22 mass spec-
trometry-based mutation genotyping (OncoMap),22,23 or 
multiplex exome sequencing (OncoPanel)8,24 depending on 
which genotyping technologies were available at the time 
of diagnosis. For this retrospective study, only gliomas 
with absence of IDH1/2 mutations as determined by full 
sequencing assay with OncoPanel, were included in our 
analyses as IDH-WT gliomas. IDH-mutated gliomas were 
defined by the presence of mutation as indicated by immu-
nohistochemistry or either of the 2 sequencing methods.

Briefly, diaminobenzidine (DAB) brightfield staining was 
performed according to standard protocols on 5-micron 
thick paraffin sections. Antigens were retrieved using heat 
and 10 mM sodium citrate buffer (pH 6.0), and the follow-
ing primary antibody was utilized: IDH1(R132H) (Dianova, 
DIA-H05). Counterstaining for nuclei was performed using 
Mayer's hematoxylin stain, and coverslips were mounted 
with Permount (Fisher Scientific). OncoMap is a multi-
plexed Sequenom-based assay to detect somatic muta-
tions in tumor DNA and was performed in the DF/BWCC 
CLIA-certified laboratory. OncoMap v4 detects mutations 
in 471 different loci from 41 cancer genes. OncoPanel 
(Illumina HiSeq) is a DNA-based next-generation sequenc-
ing assay that detects somatic mutations in 275 different 
cancer genes including IDH1 and IDH2.

MRI Data Acquisition and Preprocessing

Standard MR imaging protocol for brain tumors at our 
institution includes nonenhanced sagittal and axial 
T1-weighted imaging, axial T2-weighted FSE and T2/FLAIR 
imaging, contrast-enhanced axial T1-weighted imaging, 
and 3D spoiled gradient echo (SPGR) imaging with coronal 
and sagittal reconstructions. Gadopentetate dimeglumine 
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(Magnevist, Bayer Healthcare) was administered for con-
trast-enhanced imaging.

MR-DWI images were acquired before injection of con-
trast and were obtained with TE/TR 80–110 ms/4–10 s, sec-
tion thickness 5 mm with 1 mm intersection gap, matrix 
size 128  × 128, and FOV 22–25  cm by using monopolar 
spin-echo echo-planar preparation. Apparent diffusion 
coefficient (ADC) images were calculated from acquired 
DWI with b-values of 0 s/mm2 and 1000 s/mm2 images. 
ADC maps were generated using Advantage Workstation 
(version 4.3, GE Healthcare). All MR images were trans-
ferred to a high-performance cluster server for post 
processing.25

Volumetric Tumor Segmentation

Figure  1 provides an overview of our MRI processing 
pipeline. The computer-based Brain Tumor Image Analysis 
(BraTumIA, version 1.2) software was used to co-register 
and skull-strip T1, T1c, T2, and T2/FLAIR images. The seg-
mentation protocol was completed as described previ-
ously.26 Briefly, whole tumor volume, which includes solid 
tumor, infiltrating tumor, and edema, were segmented 
from FLAIR imaging. The T1c images from MRI were used 
for enhancing-tumor volume segmentation. Enhancing-
tumor volume was subtracted from whole tumor volume 
to obtain the nonenhancing tumor volume. 3D Slicer 
Software (version 4.1), a user-driven manual active con-
tour segmentation tool, was used to segment tumor vol-
umes.27,28 The segmented volume contour was overlaid 
with source T1c and T2/FLAIR images and edited by the 
study neuroradiologist (R.Y.H.) to manually add pixels for 
tumor regions not included in the preliminary contour or 
remove pixels for nontumor regions included in the pre-
liminary contour.

Generation of Subregional Volume Mask

Additional volumes were calculated within whole tumor, 
enhanced tumor, and nonenhanced tumor volume seg-
mentations. Regions with ADC values <1100 and 1350  × 
10−6 mm2/s were segmented. In addition, to characterize 
tumor margins, edge submasks were calculated by detect-
ing the edge of whole tumor and enhanced tumor vol-
umes, then width dilations to lengths of 5 voxels outside 
and 3 voxels inside this edge. The resulting edge submasks 
have an 8 voxel width that captures regions of both tumor 
and normal-appearing brain.

MRI Feature Extraction

For each glioma case, we extracted 5 categories of features 
(anatomical location, shape, texture, multimodal voxel 
parametric, and histogram) from volume masks and sub-
masks to maximize the characterization of the tumor.

Anatomical features were defined by the study radiolo-
gist (R.Y.H.) by region (frontal, temporal, parietal, occipital, 
and deep brain) and laterality (left, right). The remaining 
shape, texture, multimodal parametric features, and 
ADC features were calculated from MRI (Supplemental 
Materials Section).

Classification Procedure

The machine-learning procedure was performed using the 
Statistics and Machine Learning Toolbox MATLAB 2015a. 
We applied the random forest algorithm to generate a 
model predictive of IDH genotype. Random forest is one 
of several machine-learning algorithms that have been 
applied in clinical classification problems. It is especially 
advantageous when the number of predictor variables 
greatly exceeds sample size because it is resistant to over-
fitting.29 This method has been applied successfully for 
identifying single-nucleotide polymorphisms among mil-
lions of mutations in known DNA repair pathways that may 
contribute to the development of grade IV glioma.30 This 

Fig.  1 MRI feature extraction and machine-learning 
pipeline.
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approach can also distinguish low-grade from high-grade 
gliomas by MRI features from area under the receiver 
operating characteristic (AUROC) analysis.31

Building a classifier involved growing multiple decision 
trees based on random selection of predictors (ie, MRI 
features) and random selection of data (ie, glioma cases). 
In this study, all 120 patients were randomly assigned to 
either the training cohort (n = 90) or validation cohort (n = 
30). All cases in the training cohort were used to train the 
classifier, while cases in the validation cohort were used 
to independently evaluate the performance of the final 
model.

In implementing the random forest algorithm, we speci-
fied 3 parameters: (i) the number of features used during 
the training process, (ii) the maximum depth of the trees, 
and (iii) the number of trees grown. The predictive value of 
each MRI feature for determining IDH genotype was calcu-
lated individually by AUROC analysis. Features with AUC 
values >0.7 were then isolated and ranked. Redundant 
features, which were defined as features with a Spearman 
rank correlation coefficient >0.7, P < .05 with another fea-
ture of higher AUC, were removed. The remaining 386 fea-
tures were used in our training algorithm. The tree depth 
was set to 64, and the algorithm was set to grow to a total 
of 4096 trees, a number empirically determined to be a rea-
sonable upper bound in our learning models and before 
which the training set classification error commonly begins 
to converge.32

Individual trees were grown by taking a bootstrap sam-
ple from the training cohort with a fixed boot fraction of 
one-half. For each tree, growth at each branch utilized all 
386 MRI features, and bootstrapped cases were used to 
grow the tree while the remaining out-of-bag cases were 
used as the test set. The random forest algorithm inte-
grated all decorrelated trees to create a final classifier. 
Ten-fold cross validation was also applied to calculate mis-
classification error of our model within the training cohort. 
Finally, the model was tested on the validation cohort using 
the same model score threshold selected based on AUROC 
analysis of the training set. Subgroup analyses were also 
performed to test the final model on grade III and grade IV 
gliomas individually.

Features with most significant contributions to the final 
model were determined by the increase in prediction error 
if the values of that feature were permuted across the out-
of-bag observations. This measure was computed for every 
tree and then averaged over the entire ensemble and divided 
by the standard deviation over the entire ensemble.33

Statistical Analysis

All statistical analyses were performed using the Statistics 
and Machine Learning Toolbox 2015a (MATLAB). For 
comparison of mean model score between IDH-WT and 
-mutated high-grade gliomas, the Student t test was used 
with significance defined as <0.05.

Results

Patient Characteristics

MRI images were obtained from 120 patients with pri-
mary grade III (n = 35, 17 male [49%], age range 23y–72y) 
and grade IV (n = 85, 35 male [41%], age range 21y–85y) 
gliomas. IDH mutations were identified in 32 of 35 (91%) 
grade III gliomas and in 22 of 85 (26%) grade IV gliomas. 
One grade IV tumor harbored an IDH2 mutation; all other 
IDH-mutated tumors had IDH1 mutations. The proportion 
of IDH-mutated tumors in our grade IV cohort was higher 
than usual due to exclusion of IDH-WT gliomas that did not 
have sequencing data to confirm genotype. IDH1 and IDH2 
mutations were mutually exclusive in our cohort, consist-
ent with previous reports.34,35 As such, IDH1- and IDH2-
mutated gliomas were collapsed into one category. Each 
glioma was then randomly assigned to either the training 
or validation cohort in the learning model (Table 1).

Because of the retrospective nature of this study, KPS 
at the time of imaging was unfortunately unavailable for 
our cohort. Data on steroid use at the time of imaging were 
available for 91 patients (53 IDH-WT, 38 IDH-mutated); 9% 
(5/53) of patients with IDH-WT gliomas had initiated treat-
ment prior to imaging, while 34% (13/38) patients with IDH-
mutated tumors had initiated steroid use prior to imaging. 
Incorporating steroid use as a feature in our model did not 
significantly improve IDH prediction.

MRI Features and Univariate Analyses

From each patient's imaging, 2970 features were extracted. 
A total of 386 features remained after removing redundant 
features. The nonredundant features included 14 anatomi-
cal location, 27 shape, 114 texture, 212 parametric inten-
sity, and 19 histogram features.

We also evaluated individual MRI features, which were 
previously associated with IDH status, for their predictive 

Table 1 Patient characteristics

Training (n = 90) Validation (n 
= 30)

Total (n = 120)

Grade III (n; %)   26; 29%      9; 30%    35; 29%

Grade IV (n; %)   64; 71%    21; 70%    85; 71%

IDH-mutated (n; % column)   41; 46%    13; 43%    54; 45%

Age (years; mean; range) 51.4; 22–75 52.4; 20–85 51.65; 30–85

Sex (n male; % column)   52; 58%    16; 53%     68; 57%
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value in determining IDH genotype within our cohort.12,13,36 
The univariable AUCs for these MRI features tested on all 
120 glioma were as follows (listed in order from least to 
most predictive): frontal or temporal tumor location (AUC 
= 0.5051), ADC (AUC = 0.5098), laterality (AUC = 0.5185), 
and T2/FLAIR volume (AUC = 0.6758).

Genotype Prediction

IDH genotype prediction using our model achieved accu-
racies of 86% (AUC = 0.8830) in the training cohort and 
89% (AUC = 0.9231) in the validation cohort (Fig.  2). The 
mean predictive model scores for WT and mutant gliomas 
were 0.36 (95% confidence interval [CI], 0.30–0.41) and 
0.59 (95% CI, 0.52–0.65), respectively (P < .0001) (Fig.  3). 
The training set classification error based on 10-fold cross 
validation was 0.1667. The 10 features that contributed 
most to our model are shown in Table 2. Patient age was 
the most important feature in our classifier; the relation-
ship between age and IDH genotype is depicted in Fig. 3. 
To assess the impact of MRI features alone, we generated a 
model excluding age and sex; this model achieved predic-
tion accuracies of 81% (AUC = 0.81) in the training cohort 
and 90% (AUC = 0.90) in the validation cohort with a train-
ing misclassification error of 0.1778.

Subgroup analyses revealed that the combined model 
with MRI and clinical features predicted IDH genotype of 
grade III and grade IV tumors with accuracies of 77.78% 
(AUC could not be calculated due to small sample size of 
grade III IDH-WT tumors) and 85.17% (AUC = 0.9265) in 
the validation cohort, respectively. The predictive model 
scores for WT and mutated gliomas separated by grade are 
shown in Fig. 4.

Discussion

In this study, a random forest classifier was created to inte-
grate clinical data with multimodal, preoperative imaging 

features to predict IDH genotype in high-grade gliomas. Our 
model achieved 86% accuracy in the training cohort and 
89% prediction accuracy in the validation cohort. This model 
only relied on patient age and imaging features extracted 
from a standard, preoperative MRI protocol including con-
ventional T1, T2, and diffusion weighted imaging.

Fig. 2 Receiver operating characteristic (ROC) curve for IDH gen-
otype prediction in validation cohort. Area under curve = 0.9231.

Fig.  3 Random forest classifier scores for IDH-wild-type and 
-mutated high-grade gliomas (HGGs) in the (A) training cohort and 
(B) validation cohort. Age (years) of patients with IDH-wild-type 
and -mutated HGGs in the validation cohort (C).
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Our analyses expand on the work of several recent stud-
ies that have uncovered novel associations among MRI 
features and glioma expression profiles. Macyszyn et  al. 
created a model with a support vector machine classifier 
that utilized imaging features to separate WHO grade IV 
gliomas by expression profile (proneural, neural, mesen-
chymal, and classical)18; we utilized a different machine-
learning technique (random forest) to build a model with 
clinical and imaging features to predict IDH genotype in a 
combined cohort of WHO grade III and IV gliomas. Previous 
groups have correlated qualitative MRI features with IDH1 
mutation in grade III and IV gliomas separately (specifi-
cally, Qi et  al. and Sonoda et  al. identified MRI features 
associated with grade III gliomas,12,39 while Yashimata 
et  al. evaluated features of grade IV gliomas.40 To date, 
IDH prediction in a combined cohort of grades III and IV 
has not been attempted. Such a study may be of clinical 
importance given that IDH genotype may be a more useful 
prognostic marker than WHO grade; patients with IDH-WT 
grade III tumors have been shown to exhibit worse prog-
nosis than those with IDH-mutated grade IV tumors.6 Here, 
machine learning enabled the integration of clinical data 
with quantitative, multimodal imaging features to build a 
model predictive of IDH genotype in a combined grade III 
and IV glioma cohort.

The features that contributed most to IDH genotype 
prediction in our model included age and MRI paramet-
ric intensity, texture, and shape features. Not surprisingly, 
patient age was the most important feature in our model, 
reflecting the observation that patients with IDH-mutated 
glioma present at a significantly younger age than those 
with IDH-WT tumors.41,42 Of note, one other clinical feature 
(ie, steroid use) yielded a significant finding: more patients 
with IDH-WT tumors than IDH-mutated tumors had initi-
ated steroid treatment at the time of preoperative imaging. 

This difference has not been reported previously and could 
be explored on other datasets. While steroid treatment has 
been shown to affect the appearance of tumors by reduc-
ing contrast permeability and peritumoral edema,20,37,38 
including this feature in our model did not improve IDH 
prediction. The remaining top 10 features contributing to 
IDH prediction were MRI features, and 8 among them were 
obtained by filtering tumor volumes using ADC thresholds 
rather than the whole tumor volumes. The utility of DWI 
in glioma prognostication has been demonstrated previ-
ously20,26,43,44; we corroborated the utility of DWI to subse-
lect volumes of interests with greater contribution to our 
model performance.

Several multimodal texture and parametric inten-
sity features also contributed highly to our predictive 
model, although the underlying biological mechanism 
for how these features relate to IDH mutation is pres-
ently unclear. Past studies in glioma have correlated 
IDH genotype with intratumoral heterogeneity as well 
as with tumor margins based on qualitative assessment 
of conventional MRI.12,13 Both texture and parametric 
intensity features extracted from MRI in our study may 
provide quantitative measures of such tissue heteroge-
neity within the tumor as well as along tumor margins. 
In addition, the textural features used in our model have 
been previously applied to distinguish gliomas based 
on MGMT promoter methylation status.45,46 Brown et al. 
also found that texture features could be used to predict 
1p/19q co-deletion in low-grade gliomas,47 and Liu et al. 
observed associations between texture features and p53 
and MIB-1 genotype.48

While we tested our combined features model in predict-
ing IDH genotype, we also evaluated the predictive value of 
individual MRI features. No individual MRI feature achieved 
greater accuracy in predicting IDH genotype than the 

Table 2 Top-performing nonredundant features in univariate prediction of IDH genotype based on area under receiving 
operator characteristic curve in the validation cohort

Feature Type Mask; Submask; Image Feature Training AUC Validation AUC

Clinical N/A Patient age 0.8333 0.8552

Parametric T1; T1; N/A Enhancement intensity 0.6779 0.7104

Texture: co-occurrence T1; ADC <1100 10−6 mm2/s; ADC Information measure of correlationa, 
×direction

0.7760 0.7738

Texture: co-occurrence Nonenhancing tumor (T2/FLAIR); 
N/A; ADC

Information measure of correlation, 
×direction

0.7651 0.7647

Texture: co-occurrence T2 border; N/A; ADC Information measure of correlation, 
×direction

0.7511 0.7919

Texture: co-occurrence T1 border; N/A; ADC Information measure of correlation, 
×direction

0.7466 0.6380

Texture: co-occurrence Nonenhancing tumor (T2/FLAIR); 
ADC <1350 10−6 mm2/s; N/A

Compactnessa 0.7466 0.8642

Shape: volume T1c: T2/FLAIR; N/A; N/A Tumor volume-to-edema ratio 0.6750 0.7059

Parametric T1; ADC <1350 10−6 mm2/s; N/A Enhancement intensity 0.7601 0.6968

Texture: co-occurrence T2; ADC <1100 10−6 mm2/s; ADC Inverse correlationa 0.6934 0.7828

Abbreviations: ADC, apparent diffusion coefficient; AUC, area under the curve: FLAIR, fluid-attenuated inversion recovery.
aInformation measure of correlation, compactness, and inverse correlation are texture features that have been previously applied to classify gliomas 
by degree of malignancy54 and to predict survival outcomes in grade IV gliomas.55Detailed equations for these texture features are described else-
where.55,56

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/article/19/1/109/2739747 by guest on 24 April 2024



115Zhang et al. MRI predicts IDH genotype in gliomas
N

eu
ro-

O
n

colog
y

combined model. This observation underscores the advan-
tage of using a machine-learning algorithm to discover and 
integrate synergistic multimodal imaging features.

We also examined MRI features previously identified 
to vary with IDH genotype: frontoinsular-temporal tumor 

location, laterality, T2/FLAIR volume, and ADC.12,13,36,39 
Among these features, only T2/FLAIR volume (AUC = 0.6758) 
achieved an AUC >0.6. While T2/FLAIR volume was removed 
as a redundant feature in our pipeline, an associated fea-
ture (ie, contrast-enhancing tumor to T2/FLAIR volume) did 
contribute to our combined model. This finding concurs 
with previous studies that have broadly evaluated contrast 
enhancement and T2/FLAIR in IDH-mutated gliomas. Qi et al. 
correlated the extent of contrast enhancement with IDH1 gen-
otype in grade III gliomas,12 while Carrillo et al. identified an 
association between the presence of noncontrast-enhancing 
tumor and IDH1 mutation in grade IV gliomas.49 MRI param-
eters combining contrast enhancement with nonenhancing 
perilesional FLAIR hyperintensity have also been reported to 
predict IDH1 mutation in grade IV gliomas.50 Recent studies 
have also suggested that MR spectroscopy is a promising 
noninvasive technique for identifying IDH-mutated gliomas 
through detection of intratumoral 2-HG.51–53 Perfusion imag-
ing features such as measures of tumor blood flow may also 
be of added value in IDH genotype prediction.40 Our multi-
modality model may be improved by the addition of these 
imaging features in the future. Improvements in IDH predic-
tion, however, would have to be balanced with the added 
complexity of obtaining MR spectroscopy and perfusion 
imaging (not currently part of standard imaging protocol) 
when optimizing for clinical utility. The features utilized in the 
current model are extracted from conventional MRI only.

There are several other important limitations to our study. 
Few IDH-WT grade III gliomas (n = 3) were included in these 
analyses due to strict eligibility requirements for both genetic 
and MRI data. All IDH-WT gliomas in our cohort had sequenc-
ing data to avoid inclusion of tumors with IDH mutations not 
detected by immunochemistry. Our model was also gener-
ated based on single-institution, retrospectively collected 
data, and its generalizability depends on feature stability that 
can be impacted by differences in imaging acquisition proto-
cols as well as the reproducibility of image postprocessing 
and tumor segmentation. Our model needs, therefore, to be 
further validated using independent data. In addition, while 
a large number of imaging features have been incorporated 
into our model, our machine-learning approach did not pro-
vide the biological significance of individual features and 
how they interact with each other. Further work is needed to 
characterize and refine these features to potentially improve 
model performance. Finally, the processing time required to 
generate our model may also be a limitation to its clinical 
adoption, but hopefully this can be reduced with availability 
of validated, automated tumor segmentation algorithms.

The current study used machine-learning algorithms 
to generate a model that predicted IDH genotype in high-
grade gliomas based on patient age as well as quantita-
tive imaging features derived from standard, preoperative 
MRI. Our model achieved an accuracy of 89% in the valida-
tion cohort and may have the potential to serve as a nonin-
vasive tool that provides important prognostic information 
and aids operative planning.

Supplementary Material

Supplementary material is available online at Neuro-
Oncology (http://neuro-oncology.oxfordjournals.org/).

Fig.  4 Random forest classifier scores for IDH-wild-type and 
-mutated (A) WHO grade III gliomas in the training cohort, (B) WHO 
grade IV gliomas in the training cohort, and (C) WHO grade IV glio-
mas in the validation cohort. The area under the curve could not be 
calculated for WHO grade III tumors in the validation cohort due to 
small sample size.
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