To our knowledge, this is the first long-term follow-up study of high-dose single-session irradiation to the human brain and provides new data concerning late tissue reactions after irradiation to small target volumes. The long-term lesional brain changes in 14 patients subjected to bilateral gamma knife capsulotomy for otherwise intractable anxiety disorders were retrospectively analyzed by magnetic resonance imaging.


The prototype gamma unit was used for the radiosurgical procedure, and the collimators provided rectangular cross-sectional fields with an anteroposterior diameter of 3 mm and a transverse diameter of 5 or 11 mm. Maximum target doses were 120 to 180 Gy. Magnetic resonance imaging was performed 15 to 18 years (mean, 17 yr) after treatment, and dose-volume histograms were calculated for the dose distributions.


One patient had been irradiated twice on one side. In all but one of the remaining 27 targets, lesions with a volume of less than 100 mm3 were revealed by magnetic resonance imaging. The volumes of the lesions were confined within the volume corresponding to a minimum dose of approximately 110 Gy, with one exception. In one of three targets receiving a maximum dose of 120 Gy, no lesion was detected. There were no late radiation effects such as cyst formations, telangiectasias, hemorrhagic infarctions, or neoplasms.


This investigation indicates that a minimum dose of 110 Gy, with the currently used 4-mm collimator, to the edge of the target volume is required to create a lesion. The results prove that gamma knife surgery can be used in functional neurosurgery for producing small permanent lesions in the normal human brain.