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ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has an extremely broad host range that
includes hippopotami, which are phylogenetically closely related to whales.The cellular ACE2 receptor is
one of the key determinants of the host range. Here, we found that ACE2s from several marine mammals
and hippopotami could efficiently bind to the receptor-binding domain (RBD) of both SARS-CoV and
SARS-CoV-2 and facilitate the transduction of SARS-CoV and SARS-CoV-2 pseudoviruses into
ACE2-expressing cells. We further resolved the cryo-electron microscopy complex structures of the minke
whale ACE2 and sea lion ACE2, respectively, bound to the RBDs, revealing that they have similar binding
modes to human ACE2 when it comes to the SARS-CoV-2 RBD and SARS-CoV RBD. Our results indicate
that marine mammals could potentially be new victims or virus carriers of SARS-CoV-2, which deserves
further careful investigation and study. It will provide an early warning for the prospective monitoring of
marine mammals.

Keywords:marine animals, SARS-CoV-2, cross-species recognition, cryo-EM structure

INTRODUCTION
Finding out the origin, together with the host range,
of a virus causing emerging and re-emerging in-
fectious diseases, is vital, and may provide guid-
ance for disease control, and understanding of virus
spillover in the future [1,2].The current coronavirus
disease 2019 (COVID-19) pandemic is caused by
the infection of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), which belongs to
the betacoronavirus (BetaCoV) genus of the fam-
ily Coronaviridae. This family consists of four gen-
era: alphaCoV, betaCoV, gammaCoV and delta-
CoV. Since its identification, natural infections of
SARS-CoV-2 in various species have been reported
in multiple animals, including cats, dogs, minks,
tigers, African lions, ferrets, pumas, gorillas, snow

leopards, white-tailed deers [3,4] and, most re-
cently, hippopotami (https://www.bbc.com/news/
world-europe-59516896).

Additionally, salmon carcasses were suspected
to be carriers of SARS-CoV-2, and triggered a local
outbreak of COVID-19 in Beijing, China in June
2020 [5]. It is reported that the surfaces of salmon
carcasses were found to be SARS-CoV-2-positive
during cold-chain transportation in Xinfadi Market
[5]. However, no live SARS-CoV-2 was isolated
and the role of salmon carcasses in the outbreak
remains elusive. In another report, it was found that
a live virus was isolated from cold-chain materials,
including seafood [5,6]. These events a reminders
that additional attention should be paid to marine
animals, since the ocean covers 70% of the Earth’s
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surface and harbors a huge number of lives, from the
shoreline to the deepest sea floor. Marine mammals
carry coronaviruses (CoVs). The first one was iden-
tified in a beluga whale in 2008 and was genetically
related to gammaCoV [7]. In 2013, Yuan et al.
identified another CoV in the bottlenose dolphin
that resembles the beluga whale CoV and proposed
that they be classified as a distinct species, Cetacean
coronavirus [8]. Marine mammals are sentinels for
oceans and human health. If SARS-CoV-2 spreads
to marine mammals and circulates among marine
species, it would pose an ‘underwater’ threat to
pandemic control.

Before the outbreak of COVID-19, another
CoV, severe acute respiratory syndromecoronavirus
(SARS-CoV), caused an epidemic with a short du-
ration two decades ago [9]. Since its outbreak, ex-
tensive research has been conducted into its ori-
gin and interspecies transmission [10,11]. SARS-
CoV and SARS-CoV antibodies were detected in
masked palm civets (Paguma larvata) and animal
handlers in amarket [12,13], suggesting civetsmight
be intermediate hosts. However, subsequent wide-
ranging investigations into farmed and wild civets
indicated that they were clear of SARS-CoV, and
SARS-CoVwasmore likely to have been transmitted
to them from other natural hosts or even from hu-
mans [13,14].Reports onnovelCoVs closely related
to SARS-CoV (SARSr-CoVs) in horseshoe bats in-
dicate that bats might be the natural hosts [15,16].
Host adaptation of the spike (S) protein in SARS-
CoV isolated fromhumans or civets has consistently
been reported, with K479N and S478T being the
key changes for adapting to the human receptor
[10,17]. Similarly to SARS-CoV-2, SARS-CoV also
has a broad potential host range. Strangely, no fur-
ther case of infection has been reported after the
SARS epidemic in 2004 [18]. Where SARS-CoV
went remains a mystery.

CoV infection is initiated by the binding of the S
protein on the viral particle to host surface cellular
receptors. SARS-CoV-2 uses the receptor-binding
domain (RBD) in the S protein to interact with
angiotensin-converting enzyme 2 (ACE2), which is
also the receptor of SARS-CoV [19]. The gain-of-
function of a virus to bind to receptor orthologs in
other species is a prerequisite for inter-species trans-
mission. Reciprocally, screening receptor orthologs
from different species for interaction with the S
protein or RBDwould narrow down the susceptible
intermediate or natural hosts. By comparative anal-
ysis of ACE2 orthologs, especially the cross-species
conservation of the key residues participating in
the interaction between ACE2 and RBDs, several
studies have predicted the potential host range
of SARS-CoV-2 in multiple species by evaluating

the binding propensity [4,20–24]. The results are
highly consistent with the known natural infection
host range. Among these predictions, many marine
mammals (27/36) are predicted to have a high
or very high risk of SARS-CoV-2 infection [23].
However, a real binding test and a pseudovirus
infection assay concentrating on marine mammals
are elusive, and deserve further analysis.

In this study, we tested the binding capacities of
the SARS-CoV-2 RBD and SARS-CoVRBD to nine
typical marine species, including both mammals
and salmonids. We found that ACE2s from sperm
whales, minke whales, dolphins, sea lions, fur seals
and hippopotami could efficiently bind to the RBD
of both SARS-CoV and SARS-CoV-2 and facilitate
the transduction of SARS-CoV and SARS-CoV-2
pseudoviruses into ACE2-expressing cells.Then, we
chose minke whale ACE2 and sea lion ACE2, which
displayed high binding affinities to both RBDs, for
further study anddetermined their cryo-electronmi-
croscopy (cryo-EM) structures in complex with ei-
ther SARS-CoV-2 RBD or SARS-CoV RBD. Our
work sheds light on the potential susceptibility of
marinemammals to SARS-CoV-2 and highlights the
need to strengthen surveillance of marine mammals
to prevent potential spillovers and transmission.

RESULTS
Binding capacity of SARS-CoV-2 and
SARS-CoV RBDs to marine animal ACE2
orthologs and pseudovirus transduction
mediated by their interactions
To evaluate the susceptibility ofmarinemammals to
SARS-CoV and SARS-CoV-2, we chose six animals
covering representative species ofmarinemammals:
sperm whale, minke whale, dolphin, fur seal, sea
lion and sea otter (Supplementary Fig. 1). We also
included three salmonids, as salmon carcasses have
been found to be SARS-CoV-2-positive during cold-
chain transportation [5,6]. Additionally, animals
that have been reported to have been naturally in-
fected with SARS-CoV-2 (gorillas, cats, dogs, tigers,
ferrets, minks, white tailed deer and hippopotami),
and those with clear binding mechanisms to the
SARS-CoV-2 RBD (Malayan pangolin and big-
eared horseshoe bat), as well as masked palm
civets and the identified bat reservoir species for
SARS-CoV [25], were also included to investigate
their evolutionary relationships. Based on ACE2
sequences, a phylogenetic tree was constructed
(Supplementary Fig. 1). Dogs, cats, sea otters, fur
seals and sea lions are all classified as members
of the order Carnivora. Whales and hippopotami
belong to the orderArtiodactyla. We highlighted the
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SARS-CoV-2- and SARS-CoV-RBD-interacting
residues on hACE2 [19], respectively, and com-
pared them among the selected species (Supple-
mentary Figs 1 and 2). Compared to hACE2, the
number of amino acid changes in ACE2 orthologs
frommammals ranges from0 to 16,whereas those of
salmonid ACE2 orthologs are 15 or 16, reflecting a
large evolutionary distance. Among the binding site
residues, S19, F28, D355, R357 and R393 are com-
pletely conserved. F28, as explained in our previous
report [21], forms a hydrophobic interaction with
Y83/F83 and stabilizes the two N-terminal helices
of ACE2. When salmonids and masked palm civets
were excluded, E37 and K353 were also strictly
conserved. We conducted fluorescence-activated
cell sorting (FACS) and surface plasmon resonance
(SPR) assays to test the binding capacity of marine
animal ACE2 orthologs to either SARS-CoV-2 RBD
or SARS-CoV RBD.The FACS results demonstrate
that both RBDs could bind to ACE2 orthologs from
the selected marine animals, except for sea otter
and salmonid ACE2s (Fig. 1A). The percentage
of RBD-bound ACE2-expressing cells is shown
in Supplementary Fig. 3. SPR assay results were
consistent with the two RBDs displaying no binding
to salmonid ACE2s. However, marine mammal
and hippopotamus ACE2s, except for the sea otter
ACE2, all had high binding affinities. Notably,
MW-ACE2 showed even higher binding affinity
with SARS-CoV RBD than hACE2 (Fig. 1B and C).

Next, to test the ability of ACE2 orthologs
to support viral invasion, we transfected BHK-21
cells with plasmids containing enhanced green flu-
orescent protein (EGFP)-tagged ACE2s from ma-
rine mammals, hippopotami and sea trout, respec-
tively. The EGFP-positive cells were sorted into 96-
well plates and then incubated with pseudotyped
SARS-CoV-2 and SARS-CoV, respectively. As a re-
sult, ACE2s from these marine mammals supported
SARS-CoV-2 and SARS-CoVpseudotyped virus en-
try into ACE2-expressing BHK-21 cells, whereas
sea trout ACE2 did not (Fig. 1D). Notably, hip-
popotamusACE2 readilymediated the entry of both
pseudoviruses.

Overall architectures of both MW-ACE2
and SL-ACE2 bound to either the
SARS-CoV-2 RBD or SARS-CoV RBD
To reveal the molecular mechanisms behind the
high-affinity binding of marine mammal ACE2s to
SARS-CoV-2 RBD or SARS-CoV RBD, we chose
MW-ACE2 and SL-ACE2, which had the high-
est binding affinities with both RBDs. Further,
these species also represent two types of high-risk

mammals: whales, which live social lives, thus en-
abling virus circulation within their population; and
sea lions, which live near the coast and are at
risk of contact with humans and coastal birds or
bats. We prepared complexes of MW-ACE2/SARS-
CoV-2 RBD, MW-ACE2/SARS-CoV RBD, SL-
ACE2/SARS-CoV-2 RBD and SL-ACE2/SARS-
CoV RBD, and solved their structures at resolu-
tions of 2.87, 2.93, 3.03 and 2.89 Å, respectively
(Supplementary Table 1). MW-ACE2/SARS-CoV-
2 RBD and SL-ACE2/SARS-CoV-2 RBD display
similar architectures to hACE2 in complex with
SARS-CoV-2 RBD [19,26], with rootmean squared
deviations (RMSDs) of 0.995 Å and 0.594 Å, re-
spectively (Fig. 2A and C). However, the MW-
ACE2/SARS-CoV RBD and SL-ACE2/SARS-CoV
RBD complexes showed more divergent architec-
ture with hACE2 complexed with SARS-CoV RBD,
with RMSD of 1.598 Å and 2.069 Å, respectively
(Fig. 2B and D).

The external subdomains of SARS-CoV-2 RBD
and SARS-CoV RBD, consisting of a loop between
two short beta-sheets, are responsible for ACE2
recognition. The total numbers of interactions be-
tween theRBDsof SARS-CoV-2 andSARS-CoV, re-
spectively, with MW-ACE2 and SL-ACE2, are 307,
285, 280 and 286, including 8, 10, 7 and 7 H-
bonds, respectively (Supplementary Table 2 and 3).
Notably, MW-ACE2 forms significantly more van
derWaals (vdw) contacts and comparable H-bonds
with SARS-CoV RBD than hACE2, which explains
its stronger binding to the SARS-CoV RBD.

The interacting residues on the SARS-CoV-2
RBD and SARS-CoV RBD in the four complexes,
similar to those in the hACE2/SARS-CoV-2 RBD
complex [19], can be divided into two patches. In
patch 1, Q24 and Y83 on MW-ACE2 form an H-
bond network with N487 and Y489 on the SARS-
CoV-2 RBD in the MW-ACE2/SARS-CoV-2 RBD
complex (Fig. 2A), whereas in the other three com-
plexes, only Y83 forms an H-bond with N473 or
N487 (Fig. 2B–D). In patch 2, H34, D38, Y41 and
K352 (corresponding to K353 in hACE2) on MW-
ACE2 form an H-bond network with S494, Y449,
T500, G496 and G502 on the SARS-CoV-2 RBD,
respectively. When bound to the SARS-CoV RBD,
R42 (corresponding to Q42 in hACE2), E325 (cor-
responding to G326 in hACE2) and N329 (corre-
sponding to N330 in hACE2) on MW-ACE2 form
additional H-bonds (Fig. 2A and B). In comparison,
E38, Y41, Q42, K353 and H354 on SL-ACE2 form
an H-bond network with Y449 and Q498, T500,
Y449,G502 andD405on the SARS-CoV-2RBD, re-
spectively, while H354 on SL-ACE2 is not involved
in an H-bond network with the SARS-CoV RBD
(Fig. 2C and D).
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Species
Binding affinity (nM)

Human 25.68±6.82 54.83±8.76 

Fur seal 129.11±9.85 2387.53±160.37 

Sea lion 170.69±32.24 161.53±41.40 

Sea otter -- --

Hippopotamus 66.70±2.51 15.23±0.71 

Sperm whale 234.31±27.68 76.17±13.20 

Minke whale 174.98±40.81 17.72±1.02 

Dolphin 562.20±21.65 183.66±29.25 
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Figure 1. Binding between ACE2s and SARS-CoV-2 or SARS-CoV RBD, and the transduction of pseudotyped SARS-CoV-2 or pseudotyped SARS-CoV into
BHK-21 cells expressing the relevant ACE2s. (A) His-tagged SARS-CoV-2 RBD, SARS-CoV RBD or SARS-CoV-2 N-terminal domain (NTD) proteins were
incubated with BHK-21 cells expressing EGFP-tagged ACE2s, respectively. Anti-His/APC antibodies were used to detect the His-tagged protein binding
to the cells. Cells stained with the SARS-CoV-2 RBD, the SARS-CoV RBD and the SARS-CoV-2 NTD proteins are shown in bright blue, pink and brown,
respectively. The mean fluorescence values of APC are presented. The SARS-CoV-2 NTD was used as the negative control. (B) The mFc-tagged ACE2s
in the supernatants were captured by anti-mIgG Fc antibodies immobilized on the CM5 chip, and their binding was sequentially tested with serially
diluted SARS-CoV-2 RBD or SARS-CoV RBD. The raw and fitted curves are displayed in dotted and solid lines, respectively. (C) The binding affinities
between ACE2s and SARS-CoV-2 RBD or SARS-CoV RBD are shown as the means ± SD of three independent experiments. (D and E) Transduction of
the pseudotyped SARS-CoV-2 and SARS-CoV on BHK-21 cells expressing the respective mammal ACE2 or hACE2. Error bars represent the SD from six
replicates. P values were analyzed using the student’s t test (∗∗∗ P< 0.001, ∗∗∗∗ P< 0.0001).
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Figure 2. Overall architectures of the MW-ACE2/SARS-CoV-2 RBD, MW-ACE2/SARS-CoV RBD, SL-ACE2/SARS-CoV-2 RBD and SL-ACE2/SARS-CoV
RBD complexes. Overall structure of the (A) MW-ACE2/SARS-CoV-2 RBD, (B) MW-ACE2/SARS-CoV RBD, (C) SL-ACE2/SARS-CoV-2 RBD and (D) SL-
ACE2/SARS-CoV RBD complexes. Boxes indicate the interaction patches. The hydrogen bonds network of Patch 1 and Patch 2 are shown. A cartoon
representation of the complex structure is shown, and residues participating in hydrogen bond formation are shown as sticks.

We then compared the interface residues among
the six complexes: hACE2/SARS-CoV-2 RBD,
hACE2/SARS-CoV RBD, MW-ACE2/SARS-
CoV-2 RBD, MW-ACE2/SARS-CoV RBD, SL-
ACE2/SARS-CoV-2 RBD and SL-ACE2/SARS-
CoV RBD. When bound to the SARS-CoV-2 RBD,
MW-ACE2 exhibits four substitutions compared
to hACE2, namely D30Q, Q42R, L79I and M82T.
E325 inMW-ACE2 is involved in RBD recognition,
whereas the counterpart G326 on hACE2 is not
(Fig. 3A, C and H). On the SARS-CoV-2 RBD,
E484 and F490 exclusively interact with hACE2,
while S477, S494, Y495, V503 and Q506 only

interact with MW-ACE2 but not hACE2 (Fig. 3A,
C and G). Regarding the SL-ACE2 interface, seven
substitutions are found, namelyQ24L,D30E,H34S,
D38E, L79Q, M82T and G354H. M82 on hACE2
interacts with the SARS-CoV-2 RBD, whereas its
sea lion counterpart (T82) is irrelevant (Fig. 3E and
H). Notably, R18 on SL-ACE2 participates in the
SARS-CoV-2 RBD interaction. E484 and F490 on
the SARS-CoV-2 RBD interact with hACE2, and
S477, D405 and G504 interact with SL-ACE2 but
not with hACE2 (Fig. 3A, E and H).

When bound to the SARS-CoV RBD, MW-
ACE2 shows five substitutions, including D30Q,
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Figure 3. Interface comparison among RBDs of SARS-CoV-2 and SARS-CoV with ACE2 orthologs. Binding interface of (A) hACE2/SARS-CoV-2 RBD,
(B) hACE2/SARS-CoV RBD, (C) MW-ACE2/SARS-CoV-2 RBD, (D) MW-ACE2/SARS-CoV RBD, (E) SL-ACE2/SARS-CoV-2 RBD and (F) SL-ACE2/SARS-CoV
RBD. Venn diagrams of key residues on (G) SARS-CoV-2 RBD and (I) SARS-CoV RBD that are involved in the interaction with the three ACE2s. Key
residues on hACE2, MW-ACE2 and SL-ACE2 participate in the interaction with (H) SARS-CoV-2 RBD and (J) SARS-CoV RBD. In panels C–F, residues
in blue indicate that they are only involved in RBD binding by hACE2 but not in the referred ACE2 ortholog. Residues in red indicate that they are only
involved in the RBD interaction of the referred ACE2 ortholog but not in hACE2. Residues in yellow indicate that a substitution was observed on the
ACE2 interface compared with hACE2.

Q42R, L79I, M82T and E329V (328 in MW-ACE2
numbering). V328 (329 in hACE2 numbering) and
R392 (393 in hACE2 numbering) are no longer
involved in RBD recognition (Fig. 3B, D and J).
On the SARS-CoV RBD, S432, T433, D463, D480,
T485 and Q492 interact with MW-ACE2 but not
with hACE2, and Y481 exclusively interacts with
hACE2 (Fig. 3B, D and I). Where SL-ACE2 is con-
cerned, the same seven substitutions are also ob-
served. D23, N33, E35 and T324 on SL-ACE2, but
not on hACE2, interact with the SARS-CoV RBD
(Fig. 3B, F and J). M82, E329 and R393 on hACE2
are involved in the interaction while their counter-
parts on SL-ACE2 are not (Fig. 3J). When com-
paring the interface residues of SL-ACE2/SARS-

CoVRBDandhACE2/SARS-CoVRBDcomplexes,
Y440 on the SARS-CoV RBD exclusively binds to
hACE2 while D463 and D480 bind to SL-ACE2
(Fig. 3B, F and I).

Distinctive binding sites on
MW-/SL-/hACE2 in complex with the
SARS-CoV-2 RBD and SARS-CoV RBD
To analyze the effect of MW-ACE2 and SL-ACE2
substitutions on the RBDs’ interactions, we aligned
the α1 and α2 helices of the MW-ACE2/SARS-
CoV-2 RBD and SL-ACE2/SARS-CoV-2 RBD
complexes to helices of the hACE2/SARS-CoV-2
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Figure 4. Structural details of MW-ACE2/SARS-CoV-2 RBD, MW-ACE2/SARS-CoV RBD, SL-ACE2/SARS-CoV-2 RBD and SL-ACE2/SARS-CoV RBD. (A
and B) Structural alignment of hACE2/SARS-CoV-2 RBD (wheat) with MW-ACE2/SARS-CoV-2 RBD (purple, A), or with SL-ACE2/SARS-CoV-2 RBD (cyan,
B). Substitutions of hACE2 with MW-ACE2 or SL-ACE2 are labeled above the figure. Residues involved in the interaction are presented as sticks, and
polar interactions are presented by red dashes. (C and D) Structural alignment of hACE2/SARS-CoV RBD (yellow) with MW-ACE2/SARS-CoV-2 RBD
(purple, C) or with SL-ACE2/SARS-CoV-2 RBD (cyan, D). Substitutions of hACE2 with MW-ACE2 or SL-ACE2 are labeled above the figure. Residues
involved in the interaction are presented as sticks and polar interactions are presented by red dashes.

RBD complex, respectively. Five substitutions were
observed on the MW-ACE2 binding interface to
SARS-CoV-2 RBD, compared to hACE2, namely
D30Q, Q42R, L79I, M82T and G326E (Fig. 4A).
Structural analysis indicated that D30Q loses the
salt bridge between K417 and D30, which may
lead to decreased binding affinity. The side chain
of R42 on MW-ACE2, though much longer than
Q42 on hACE2, is bent away from its interacting
residues on the SARS-CoV-2 RBD and fails to form
any polar interactions, while Q42 on hACE2 forms
three H-bonds with the RBD (Supplementary
Fig. 5). On hACE2, both L79 and M82 participate
in the hydrophobic patch consisting of Y489 and
F486 in the SARS-CoV-2 RBD and F28, L79,
M82 and Y83 on hACE2 [19]. Substitution of
M82 with T82 (hydrophilic) might undermine
the hydrophobic patch, while that of L79 with I79

should not have a significant impact. Substitution of
G326 on hACE2 with its MW-ACE2 counterpart
E325 brings with it a longer side chain, which forms
additional interactions with the RBD and expands
the binding interface (Fig. 4A).

The SARS-CoV-2 RBD binding interface of
SL-ACE2 carries seven substitutions (Fig. 4B). As
a polar amino acid, Q24 of hACE2 forms a new
H-bond with N487, which may strengthen the
RBD binding. The Q24L substitution decreases the
binding of SL-ACE2 with the SARS-CoV-2 RBD,
and both D30E andD38E confer longer side chains.
However, the side chain of E30 is bent and does not
form a salt bridge with K417, while E38 forms an
additional H-bond with Q498. H34 of SL-ACE2
forms an H-bond with Y453 and may facilitate RBD
binding. The M82T substitution plays a similar role
in the hydrophobic patch to that of M82T in the
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MW-ACE2/SARS-CoV-2 RBD complex, and
L79Q, with its longer chain and polarity, might
undermine the hydrophobic patch. Thus, the con-
formation of F486 on SL-ACE2 is shifted compared
to the counterpart residue on hACE2. Transition
fromG354 toH354 confers an additional salt bridge
with D405, strengthening the interaction.

When binding to the SARS-CoV RBD, MW-
ACE2 involves another substitution, E329V, which
negates a salt bridge between E329 and R426
(Fig. 4C). Notably, R42 of MW-ACE2 forms two
H-bonds with Y436 and Y484 of the SARS-CoV
RBD, and E325 of MW-ACE2 forms an H-bond
with Q492. However, its counterpart G326 does
not participate in RBD binding. L79I and M82T
function similarly in the hydrophobic patch to those
in the MW-ACE2/SARS-CoV-2 RBD complex
(Fig. 4C). The impact of substitutions in SL-ACE2
on the SARS-CoV RBD interaction is basically
similar to that of the SARS-CoV-2 RBD (Fig. 4D).
Notably, the main chain of H354 of SL-ACE2 forms
an H-bond with G488 on the SARS-CoV RBD
while G354 on hACE2 does not, which might result
from alteration of loop positioning.

DISCUSSION
CoVs such as SARS-CoV, SARS-CoV-2, RaTG13,
GD/1/2019 and GX/P2V/2017 broadly recognize
different ACE2 orthologs [27,28]. SARS-CoV-2 has
been reported to infect 14 species in nature so far
[4]. Recently, two hippopotami have tested positive
for SARS-CoV-2 at Antwerp Zoo in Belgium, and
are the first reported cases in this species (https://
www.bbc.com/news/world-europe-59516896).
However, the source of infection is unknown,
though human transmission is suspected. Notably,
genome evidence and phylogenetic analyses suggest
that hippopotami are close living relatives of whales.
The natural infection of hippopotami suggests that
whales and othermarinemammalsmay be in danger
of SARS-CoV-2 infection, especially the ones in
zoos, which have much more contact with human
beings than those in nature. Therefore, this led to
our hypothesis for this study.

Here, we identified that the ACE2s of whales,
dolphins, fur seals, sea lions and hippopotami could
efficiently bind to both SARS-CoV-2 and SARS-
CoV RBD proteins with different affinities. The
MW-ACE2 bound tighter to the SARS-CoV RBD
than to the hACE2 receptor. In contrast, the ACE2s
from sea trout, rainbow trout and Coho salmon,
which belong to the order Salmoniformes, did not
bind to either viral RBD. Moreover, the pseu-
doviruses incorporating the SARS-CoV-2 or SARS-
CoV S protein could also invade marine mammal,

but not salmonid, ACE2-expressing BHK-21 cells.
This indicates that whales, dolphins, fur seals and sea
lions are all at high risk of SARS-CoV-2 or SARS-
CoV virus infection.

Previous data by other groups, as well as ours, re-
ported the binding between SARS-CoV-2 RBD and
ACE2 in a broad range of animals, including dogs
and cats, in line with the epidemiology observation
that both dogs and cats are susceptible to SARS-
CoV-2 infection [21,29,30]. However, there are dif-
ferences between house pets (dogs and cats) and
marine mammals. Cats and dogs engage with hu-
man life, while marine mammals live in the ocean
and only occasionally come into contact with hu-
man beings. These occasional contacts include visi-
tors to coastal pinnipeds meeting with sea lions, for
instance. In some countries, whale hunting is still
permitted, thus increasing the opportunity for these
animals to come into contact with infected people.

Aside from direct contact with infected indi-
viduals, the viral shedding of SARS-CoV-2 in the
feces and urine of infected individuals were also
reported. This infectious-particle-containing raw
sewage usually ends up in rivers, lakes or even the
sea. Supportively, SARS-CoV-2 can be detected in
untreated wastewater and in rivers [31–33], mak-
ing waste a potential source of person-to-person
transmission and environment-based spreading
of COVID-19 [34,35], and increasing the oppor-
tunity for marine mammals to be infected by the
virus expelled into the sea. Notably, the discharge
of SARS-CoV-2-containing feces from shipping
vessels with SARS-CoV-2-infected individuals, into
the sea, may increase the infection risk for these
mammals. Thus, SARS-CoV-2-contaminated waste
water is probably an emerging concern with regard
to the exposure of marine mammals to the virus.
It is worth noting that marine mammals in zoos
are an exception, as they have much more contact
with human beings. Although no marine mammal
has been reported as being infected to date, our
results indicate the necessity of taking measures to
inactivate the virus in waste water, if there is any,
and strengthen virus surveillance on these marine
mammals, especially the ones in zoos.

When water is considered a potential vehicle for
spreading the virus, one obvious question is the
stability of SARS-CoV-2 in fresh and salt water.
Casanova et al. found that the time required for a
99% reduction in reagent-grade water is 22 days
for the transmissible gastroenteritis virus (TGEV)
and 17 days for mouse hepatitis virus (MHV) at
room temperature, both of them CoV members.
In pasteurized settled sewage, the time required for
a 99% reduction is 9 days for TGEV and 7 days
for MHV [36]. One modeling study suggests that
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SARS-CoV-2 viral particles may be stable for more
than 25 days [37] but another study indicates that
infectious SARS-CoV-2 is stable in river water for
2.3 days and 3.8 days at 20◦C and 4◦C, respec-
tively. In seawater, the decay time is 1.1 days and
2.2 days at 20◦C and 4◦C, respectively [38]. There
is no doubt that real environmental conditions are
much more complicated, but the fact that other
CoVs can be found in marine mammals indicates
that CoVs are stable enough for viral transmission in
or across species in the sea [7,8].

Previously, cross-species transmission of viruses
has been suggested, both between marine mammals
and between humans and marine mammals [39–
41]. Marine mammals are widely reported to host
the influenza virus [42]. The influenza A (H1N1)
virus has been detected in sea otters and seals. Of sea
otters captured off theWashington coast, 70% tested
positive for H1N1 IgG antibodies in one study,
though the origin and transmission route remain un-
known [43]. However, seals and humans are the
only known hosts of influenza B viruses [44]. In an-
other study, an H7N7 infected seal sneezed directly
into the face and right eye of one researcher, which
caused severe conjunctivitis in the exposed person.
However, no virus was isolated and no specific anti-
bodies were detected [41]. A subsequent animal ex-
periment revealed that intratracheal administration
of seal influenza virus in non-human primates could
induce symptoms almost similar to those of a human
influenza A virus infection [45].

Although there are some substitutions in
WM-ACE2 and SL-ACE2 compared to hACE2,
SARS-CoV and SARS-CoV-2 can also bind to these
two ACE2s with binding affinities comparable to
hACE2. The cryo-EM complex structures of MW-
ACE2/SARS-CoV-2 RBD,MW-ACE2/SARS-CoV
RBD, SL-ACE2/SARS-CoV-2 RBD and SL-
ACE2/SARS-CoV RBD revealed molecular
information about the receptor binding of SARS-
CoV-2 and SARS-CoV to two representative
marine mammals. Q42 on hACE2 plays a critical
role in the formation of the H-bond interaction
network with the SARS-CoV-2 RBD. Herein, the
Q42R substitution in MW-ACE2 has different
consequences in the MW-ACE2/SARS-CoV-2
RBD and MW-ACE2/SARS-CoV RBD complexes.
In the MW-ACE2/SARS-CoV-2 RBD complex,
R42 does not form an H-bond with the SARS-
CoV-2 RBD, on the contrary, Q42 in hACE2 forms
three H-bonds with the SARS-CoV-2 RBD. In
the MW-ACE2/SARS-CoV RBD complex, R42
of MW-ACE2 forms two H-bonds with Y436
and Y484 of SARS-CoV-RBD, respectively, but
Q42 on hACE2 only forms one H-bond. In the
hACE2/SARS-CoV-2 RBD complex, F486 of

the RBD forms strong hydrophobic interactions
with L79, M82 and Y83 of hACE2 [19]. In the
MW-ACE2/SARS-CoV-2 RBD complex, the
L79I and M82T substitutions do not change the
conformation of F486 on the SARS-CoV-2 RBD.
However, in the SL-ACE2/SARS-CoV-2 RBD
complex, L79Q andM82T change the hydrophobic
region to hydrophilic and push F486 away from the
binding surface (Fig. 4B).

Additionally, successive SARS-CoV-2 variants,
including the recently emerging Omicron variant,
have rapidly burst onto the scene. The highly
transmissible Omicron variant quickly became
dominant. Our previous study has revealed the
binding details of the Omicron (BA.1) RBD with
hACE2 and found that the Omicron (BA.1) RBD
binds to hACE2 at a similar affinity to that of
prototype RBD [46]. In this study, we have eval-
uated the binding affinities between the Omicron
BA.1 RBD and ACE2s of minke whales and sea
lions, and the results are shown in Supplementary
Fig. 6. The KD value for BA.1 RBD binding to
minke whale ACE2 is 253.67 ± 51.29 nM, which
is lower than the prototype RBD (KD = 155.50 ±
70.00 nM). In addition, BA.1 RBD lost the binding
to the sea lion ACE2, suggesting a lower potential
risk of inter-species transmission of SARS-CoV-2
Omicron than the prototype. The binding strength
between other Omicron subvariants and marine
mammal ACE2s needs further study. Regarding the
latest subvariants of Omicron, BA.4 and BA.5, more
studies are needed to evaluate their transmission
and pathogenicity. Residues at sites 493, 498 and
501 are known to be the determinants of the host
range [4]. Although an alignment of RBDs of
Variants of concern (VOCs) can provide some
information for predicting the binding of ACE2 to
RBD (Supplementary Fig. 7), further studies are
necessary to evaluate how easily viral infection in
marine mammals can occur, as rapid viral mutations
may break through the barriers between different
species during the co-evolution of the virus and host.

Indeed, there are some limitations to this work.
First, entry into cells through receptors is the first
step of virus infection, which is a clue when studying
the susceptibility of animals and inter-species
transmission of the virus. Besides the receptor,
many other viral and host factors also impact the
host tropism of CoVs. For instance, transmem-
brane serine protease 2 (TMPRSS2) cleaves the
S2 fusion machinery at the S2′ site to expose the
fusion peptide and promote SARS-CoV-2 infection
[47,48]. If the TMPRSS2 orthologs of these marine
mammals have similar functions to those in humans,
this would be another restrictive factor for inter-
species transmission. Also, in this study, we applied
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pseudovirus-based transduction, a relative qualita-
tivemethod, to evaluate the ability of specificACE2s
mediating the viral entry. The values are probably
influenced by multiple factors, including the expres-
sion level of the ACE2 on the target cells. Thus, a
likely contradiction was observed between the entry
of the pseudovirus and the binding affinities, which
was determined by SPR, a strictly quantitative evalu-
ationmethod. It would bemore accurate to evaluate
infectivity of authentic virus in marine mammals
and their cells. Even so, our study suggests the po-
tential risk of infection in marine mammals for both
SARS-CoV and SARS-CoV-2, and provides an early
warning for the potential spillover and inter-species
transmission of the viruses to marine mammals.

MATERIALS AND METHODS
SPR analysis
We tested the binding affinities between the
mFc-tagged ACE2s and SARS-CoV-2 RBD or
SARS-CoV RBD proteins by SPR using a BIAcore
8K (GE Healthcare) at 25◦C in single-cycle mode.
SARS-CoV-2 NTD protein was used as a negative
control. The HBS-EP buffer (20mM HEPES, pH
7.4, 150mM NaCl and 0.005% (v/v) Tween 20)
was used as the running buffer, and SARS-CoV-2
RBD, SARS-CoV RBD and SARS-CoV-2 NTD
proteins were exchanged into this buffer by gel
filtration before use. First, the anti-mFc antibodies
were immobilized on the CM5 biosensor chip (GE
Healthcare) using amine-coupling chemistry (GE
Healthcare). Then, the supernatants containing
mFc-tagged ACE2s were injected and captured re-
spectively at∼100–700 response units. SARS-CoV-
2 RBD, SARS-CoV RBD or SARS-CoV-2 NTD
protein was serially diluted and flowed through the
chip surface and the binding response was mea-
sured. The anti-mFc antibody was regenerated with
10mM Glycine-HCl (pH 1.7). The equilibrium
dissociation constants (KD) of each interaction
pair were calculated using BIAcore 8K Evaluation
Software (GE Healthcare) by fitting to a 1 : 1
Langmuir binding model. Supernatant containing
hACE2-mFc protein was used as a positive control.

Cryo-EM sample preparation, data
collection and image processing
For cryo-EM, the ACE2/RBD complex sample was
vitrified using a Vitrobot Mark IV (Thermo Fisher
Scientific) plunge freezing device. An aliquot sam-
ple was applied to a glow-discharged GOQuantifoil
grid. The grid was then blotted for 0.5 sec with blot

force set to 3 at a temperature of 4◦C and a humidity
level of>98%, and plunge frozen into liquid ethane.

For the four complexes, cryogenic specimens
were loaded onto a 300 kV FEI Titan Krios trans-
mission electron microscope for data collection.
Micrographs were collected using EPU at 105
000×magnification (physical pixel size 0.67 Å) over
a defocus range of−1.0μMto−2.0μMwith a total
accumulated dose of 60 e−/Å2.

The detailed data-processing workflow is sum-
marized in Supplementary Figs 8–11. All of the
raw dose-fractionated image stacks were 2×binned,
aligned, dose-weighted and summed using Motion-
Cor2.The contrast transfer function (CTF) estima-
tion, particle picking and extraction, 2D classifica-
tion, ab initiomodel generation, and 3D refinements
were performed in cryoSPARC v.3.3.1.

Model fitting and refinement
To model the four complexes, the atomic model of
hACE2, bound to the SARS-CoV-2 RBD (Protein
Data Bank (PDB) 6LZG), was fitted into the elec-
tron density map using Chimera. The initial struc-
ture model was refined against the cryo-EM den-
sity map in real space using Phenix, with secondary
structure restraints. The model was manually cor-
rected for local fit in COOT, and the sequence reg-
ister was updated based on alignment. The stereo-
chemical quality of the final model was assessed by
MolProbity. The statistics for image processing and
model refinement are summarized in Supplemen-
tary Table 1.

DATA AVAILABILITY
The atomic coordinates for the crystal structures
of the MW-ACE2/SARS-CoV-2 RBD (PDB code:
7WSE), MW-ACE2/SARS-CoV RBD (PDB code:
7WSF), SL-ACE2/SARS-CoV-2 RBD (PDB code:
7WSH) and SL-ACE2/SARS-CoV RBD (PDB
code: 7WSG) complexes have been deposited in
the PBD (https://www.rcsb.org/).

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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