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Deep learning has been widely recog-
nized as the representative advances of
machine learning or artificial intelligence
in general nowadays [1,2]. This can be
attributed to the recent breakthroughs
made by deep learning on a series of
challenging applications. A deep-learning
approach improves the accuracy rate
of face recognition to be higher than
99%, beating the human level [3]. For
speech recognition and machine trans-
lation, deep learning is approaching the
performance level of a simultaneous in-
terpreter [4]. For the game of ‘go’,
it successfully beats the human world
champion [5]. For diagnosis of some spe-
cific diseases, it has matched the level of
mediumor senior professional physicians
[6]. Until now, it has been hard to find
areas in which the deep-learning tech-
nique has not been tried in their respec-
tive tasks.

One can observe that these break-
throughs always take place in large IT
companies or specializedR&D institutes,
such as Google, Microsoft, Facebook,
etc. This is because deep-learning ap-
plications require some prerequisites,
such as a huge volume of labeled data,
sufficient computational resources and
the engineering experiences in determin-
ing the network topology, including the
number of layers, number of neurons
per layer and non-linear transforms of
neurons. Due to these prerequisites, it
requires sufficient knowledge and en-
gineering experience in neural network
design, and takes a long time in accu-
mulating and labeling data. Professional
IT companies and specialized R&D
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Figure 1.Model-driven deep-learning approach.

institutions can obviously match these
requirements.

With the arrival of the big data era,
data requirements are graduallyno longer
an obstacle (at least for many areas), but
the determination of network topology
is still a bottleneck. This is mainly due
to the lack of theoretical understandings
of the relationship between the network
topology and performance. In the cur-
rent state, the selection of network topol-
ogy is still an engineering practice instead
of scientific research, leading to the fact
that most of the existing deep-learning
approaches lack theoretical foundations.
The difficulties in network design and its
interpretation, and a lack of understand-
ing in its generalization ability are the
common limitations of the deep-learning
approach. These limitations may prevent
its widespread use in the trends of ‘stan-
dardization, commercialization’ of ma-
chine learning and artificial intelligence
technology.

A natural question is whether we can
design network topology with theoretical
foundations, and make the network
structure explainable and predictable.
We believe that it is possible to provide a
positive answer to this question through
combing the model-driven approach
and data-driven deep-learning approach.
Here we take the deep-learning approach

as a data-driven approach because it
uses a standard network architecture
as a black box, heavily relying on huge
data to train the black box. In contrast,
the model-driven approach here refers
to the method using a model (e.g. a
loss function) constructed based on
the objective, physical mechanism and
domain knowledge for a specific task. A
prominent feature of the model-driven
approach is that, when the model is
sufficiently accurate, the solution can be
generally expected to be optimal, and the
minimization algorithm is commonly
deterministic. A fatal flaw of the model-
driven approach lies in the difficulty in
accurately modeling for a specific task
in real applications, and sometimes the
pursuit of accurate modeling is a luxury
expectation. In recent years, we have
studied and implemented a series of
model-driven deep-learning methods
[7–10] combining the modeling-based
and deep-learning-based approaches,
which showed their feasibilities and
effectiveness in real applications.

Given a specific task, the basic proce-
dures of our model-driven deep-learning
method are shown in Fig. 1 and explained
as follows:
(1) A model family is first constructed

based on the task backgrounds (e.g.
objective, physical mechanism and
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Figure 2. Topology of ADMM-Net [7]: given under-sampled k-space data, it outputs the reconstructed MRI image after T stages of processing.

prior knowledge). The model family
is a family of functions with a large
set of unknown parameters, amount-
ing to the hypothesis space in ma-
chine learning. Differently from the
accurate model in the model-driven
approach, this model family only
provides a very rough and broad def-
inition of the solution space. It has
the advantage of a model-driven ap-
proach but greatly reduces the pres-
sure of accurate modeling.

(2) An algorithm family is then designed
for solving the model family and the
convergence theory of the algorithm
family is established. The algorithm
family refers to the algorithm with
unknown parameters for minimiz-
ing the model family in the func-
tion space. The convergence theory
should include the convergence rate
estimation and the constraints on the
parameters that assure the conver-
gence of the algorithm family.

(3) The algorithm family is unfolded to
a deep network with which parame-
ter learning is performed as a deep-
learning approach. The depth of the
network is determined by the con-
vergence rate estimation of the al-
gorithm family.The parameter space
of the deep network is determined
by the parameter constraints. All the
parameters of the algorithm family
are learnable. In this way, the topol-
ogy of the deep network is deter-
mined by the algorithm family, and
the deep network can be trained
through back-propagation.

Taking [7] as an example, we apply
the above model-driven deep-learning
approach to compressive sensing mag-
netic resonance imaging (CS-MRI), i.e.
recovering the high-quality MR image

using sub-sampled k-space data lower
than the Nyquist rate. The model family
is defined as:

x̂ = arg min
x

{
1
2

‖Ax − y‖22

+
∑L

l=1
λl g (Dl x)

}
, (1)

where A = P F is the measurement
matrix, P is the sampling matrix, F is
the Fourier transform matrix, Dl is lin-
ear transform for convolution, g (·) is the
regularization function, λl is the regular-
ization parameter and L is the number
of linear transforms. All the parameters of
(Dl , g , λl , L) are unknownand reflect
the uncertainty in modeling (notice that
these parameters are known and fixed
in traditional CS-MRI models). Accord-
ing to theADMM(AlternatingDirection
Method of Multipliers) method, the al-
gorithm family for solving themodel fam-
ily can be designated as:
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(2)

where S(·) is a non-linear transform re-
lating to g (·). According to the ADMM
convergence theory, this algorithm is
linearly convergent. By unfolding the
algorithm family to a deep network, we
design an ADMM-Net composed of T
successive stages, as shown in Fig. 2. Each
stage consists of a reconstruction layer
(R), a convolution layer (C), a non-
linear transform layer (Z) and a mul-
tiplier update layer (M). We learn the
parameters of (S, Dl , λl , ρl , ηl ) using
a back-propagation algorithm. In [7],
we reported the state-of-the-art CS-MRI

results using this model-driven deep-
learning method.

The above model-driven deep-
learning approach obviously retains the
advantages (i.e. determinacy and theo-
retical soundness) of the model-driven
approach, and avoids the requirement
for accurate modeling. It also retains
the powerful learning ability of the
deep-learning approach, and overcomes
the difficulties in network topology
selection. This makes the deep-learning
approach designable and predictable,
and it balances well versatility and
pertinence in real applications.

We point out that the model-driven
approach and data-driven approach are
not opposed to each other. If the model
is accurate, it provides the essential
description of the problem solutions,
from which infinite ideal samples can
be generated, and vice versa: when the
sufficient samples are provided, the
model of the problem is fully (but in
discretized form) represented. This is
the essential reason for the effectiveness
of the model-driven deep-learning
approach.

Please refer to [2,8] for the previ-
ous investigations of the model-driven
deep-learning approach. The recent ad-
vances can be found in [7,9–11]. Most
of these successful applications lie in the
inverse problems in imaging sciences,
for which there exists domain knowl-
edge that can be well modeled in the
model family.Webelieve that thismodel-
driven deep-learning approach can be
widely applied to the applications where
we can design the model family by
incorporating domain knowledge and
then the deep architecture can be corre-
spondingly designed following the above
procedures.
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Deep learning for natural language processing: advantages
and challenges
Hang Li

INTRODUCTION
Deep learning refers to machine learning
technologies for learning and utilizing
‘deep’ artificial neural networks, such
as deep neural networks (DNN), con-
volutional neural networks (CNN)
and recurrent neural networks (RNN).
Recently, deep learning has been suc-
cessfully applied to natural language
processing and significant progress
has been made. This paper summa-
rizes the recent advancement of deep
learning for natural language process-
ing and discusses its advantages and
challenges.

We think that there are five major
tasks in natural language processing, in-
cluding classification, matching, transla-
tion, structured prediction and the se-
quential decision process. For the first
four tasks, it is found that the deep learn-
ing approach has outperformed or sig-
nificantly outperformed the traditional
approaches.

End-to-end training and represen-
tation learning are the key features of
deep learning that make it a powerful
tool for natural language process-
ing. Deep learning is not almighty,

however. It might not be sufficient for
inference and decision making, which
are essential for complex problems like
multi-turn dialogue. Furthermore, how
to combine symbolic processing andneu-
ral processing, how to deal with the long
tail phenomenon, etc. are also challenges
of deep learning for natural language
processing.

PROGRESS IN NATURAL
LANGUAGE PROCESSING
In our view, there are five major tasks in
natural language processing, namely clas-
sification, matching, translation, struc-
tured prediction and the sequential deci-
sionprocess.Most of theproblems innat-
ural language processing can be formal-
ized as these five tasks, as summarized in
Table 1. In the tasks, words, phrases, sen-
tences, paragraphs and even documents
are usually viewed as a sequenceof tokens
(strings) and treated similarly, although
they have different complexities. In fact,
sentences are the most widely used pro-
cessing units.

It has been observed recently
that deep learning can enhance the

performances in the first four tasks and
becomes the state-of-the-art technology
for the tasks (e.g. [1–8]).

Table 2 shows the performances of
example problems in which deep learn-
ing has surpassed traditional approaches.
Among all the NLP problems, progress
in machine translation is particularly
remarkable. Neural machine translation,
i.e. machine translation using deep
learning, has significantly outperformed
traditional statisticalmachine translation.
The state-of-the art neural translation
systems employ sequence-to-sequence
learning models comprising RNNs
[4–6].

Deep learning has also, for the first
time, made certain applications possi-
ble. For example, deep learning has been
successfully applied to image retrieval
(also known as text to image), in which
query and image are first transformed
into vector representations with CNNs,
the representations are matched with
DNN and the relevance of the image to
the query is calculated [3]. Deep learn-
ing is also employed in generation-based
natural languagedialogue, inwhich, given
an utterance, the system automatically
generates a response and the model
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