Abstract

Introduction:

DRD4 Exon III Variable Number of Tandem Repeat (VNTR) variation was found to interact with bupropion to influence prospective smoking abstinence, in a recently published longitudinal analyses of N = 331 individuals from a randomized double-blind placebo-controlled trial of bupropion and intensive cognitive–behavioral mood management therapy.

Methods:

We used univariate, multivariate, and longitudinal logistic regression to evaluate gene, treatment, time, and interaction effects on point prevalence and continuous abstinence at end of treatment, 6 months, and 12 months, respectively, in N = 416 European ancestry participants in a double-blind pharmacogenetic efficacy trial randomizing participants to active or placebo bupropion. Participants received 10 weeks of pharmacotherapy and 7 sessions of behavioral therapy, with a target quit date 2 weeks after initiating both therapies. VNTR genotypes were coded with the long allele dominant resulting in 4 analysis categories. Covariates included demographics, dependence measures, depressive symptoms, and genetic ancestry. We also performed genotype-stratified secondary analyses.

Results:

We observed significant effects of time in longitudinal analyses of both abstinence outcomes, of treatment in individuals with VNTR long allele genotypes for both abstinence outcomes, and of covariates in some analyses. We observed non-significantly larger differences in active versus placebo effect sizes in individuals with VNTR long allele genotypes than in individuals without the VNTR long allele, in the directions previously reported.

Conclusions:

VNTR by treatment interaction differences between these and previous analyses may be attributable to insufficient size of the replication sample. Analyses of multiple randomized clinical trials will enable identification and validation of factors mediating treatment response.

INTRODUCTION

Bupropion hydrochloride is an antidepressant approved as an aid to smoking cessation treatment in its sustained release form. Bupropion’s efficacy was twice that of placebo in the first randomized controlled trial reporting results (Hurt et al., 1997) and in large meta-analyses (Fiore et al., 2008). Bupropion is rapidly metabolized by CYP2B6 to hydroxybupropion, an active metabolite (Damaj et al., 2004), and CYP2B6 polymorphisms significantly influence treatment effectiveness (Lee et al., 2007). Bupropion is a dual norepinephrine–dopamine reuptake inhibitor and a nicotinic acetylcholine receptor (nAChR) noncompetitive antagonist (Damaj et al., 2004; Learned-Coughlin et al., 2003). Catecholamine transporter and receptor genes and nAChR genes are candidate genes for pharmacogenetic investigation of bupropion effects on smoking cessation (Conti et al., 2008). The promise of pharmacogenetic analysis of nicotine addiction treatment includes the individualization of smoking cessation treatment leading to improved treatment outcomes (Lerman & Niaura, 2002).

Recently, Leventhal et al. (2012) reported a gene by treatment interaction in association with smoking abstinence with the DRD4 Exon III Variable Number of Tandem Repeat (VNTR) polymorphism (Van Tol et al., 1992). The analysis sample (N = 331) was drawn from a randomized double-blind placebo-controlled clinical trial of pharmacotherapy and behavioral therapy (Brown et al., 2007). The Brown et al. (2007) trial compared the effects of bupropion versus placebo and cognitive–behavioral treatment for depression added to standard cognitive–behavioral smoking cessation treatment versus standard cognitive–behavioral smoking cessation treatment on 7-day point prevalence abstinence, at four timepoints, in a sample of 524 smokers. Using longitudinal analyses (Zeger & Liang, 1986), Brown et al. (2007) reported a significantly increased effect of bupropion on abstinence (OR = 1.97, p = .03), consistent with previously observed bupropion effect sizes. In addition, Brown et al. (2007) reported significant negative effects of cigarettes smoked per week, time, and a treatment by time interaction on abstinence, but no additional significant interactions of pharmacotherapy nor significant or interactive effects of behavioral therapy. Brown et al. (2007) concluded that bupropion does not exhibit differential effects on abstinence among individuals with a history of depression or with elevated depressive symptoms, nor did specialized behavioral therapy for depression have significant effects on abstinence overall or among individuals with a depression history.

The DRD4 Exon III VNTR is a 48-base-pair coding region sequence exhibiting polymorphism in the number (Van Tol et al., 1992) and in the sequence of repeated units (Lichter et al., 1993). Two-, four-, and seven-repeat alleles are the most prevalent alleles, where the prevalence differs by ancestry (Chang, Kidd, Livak, Pakstis, & Kidd, 1996). In vitro evidence suggests that the seven-repeat receptor requires more dopamine to inhibit cyclic adenosine monophosphate (Asghari et al., 1995), and that the seven-repeat allele sequence suppresses transcription in engineered constructs (Schoots & Van Tol, 2003). The seven-repeat allele is somewhat less expressed in postmortem human brain samples (Simpson, Vetuz, Wilson, Brookes, & Kent, 2010). Haplotype and sequence analyses suggest that the seven-repeat allele has been subject to positive selection over the past 40- to 50,000 years (Ding et al., 2002; Wang et al., 2004).

Leventhal et al. (2012) utilized a sample of 331 individuals from the Brown et al. (2007) trial who consented to genotyping and who self-identified as White, genotyped the VNTR, and grouped individuals by treatment and by genotype to evaluate the effect of predictors and covariates on abstinence at four timepoints. Leventhal et al. (2012) utilized a dominant coding of alleles with seven or more 48-base-pair repeats and reported results from a series of unadjusted and adjusted longitudinal analyses. As expected (Brown et al., 2007), Leventhal et al. (2012) report significant effects of treatment (OR = 1.16, 95% CI: 1.07–1.26, p = .0004) and time (OR = 0.91, 95% CI: 0.89–0.92, p < .0001). They also report a significant gene by treatment interaction (OR = 1.24, 95% CI: 1.05–1.46, p = .014). The interaction reflects significantly increased abstinence observed in VNTR long allele carriers randomized to bupropion compared to placebo (OR [95% CI] of 5.70 [2.39–13.62], 5.50 [2.14–14.16], 10.36 [2.80–38.31], and 2.83 [0.89–9.00], respectively, for the four timepoints considered), compared to abstinence rates that do not significantly differ by treatment in individuals without the long allele, except at the first timepoint (1.79 [1.06–3.02], 1.58 [0.92–2.73], 1.12 [0.61–2.05], and 0.92 [0.48–1.74]).

We selected a pharmacogenetic efficacy trial (Lerman et al., 2003) that randomized treatment-seeking smokers to active or placebo bupropion in a double-blind manner (the Lerman et al. (2003) trial), genotyped the VNTR, and assessed association of VNTR genotype, treatment, and genotype by treatment interaction with end-of-treatment (EOT), 6-month (6MO), and 12-month (12MO) point prevalence or continuous abstinence in multivariate logistic and longitudinal regression analyses. We performed genotype-stratified analyses as secondary analyses. We compared our results to those of Leventhal et al. (2012) and considered what participant characteristics, trial treatments, and analysis approaches might explain differences in significant findings.

METHODS

Participants

Lerman et al. (2003) recruited treatment-seeking smokers through advertisements in Washington, DC, and in Buffalo, NY, for a pharmacogenetic efficacy trial (Lerman et al., 2003). Research protocols were approved by Institutional Review Boards (IRBs) at Georgetown University and at the University at Buffalo, State University of New York. Inclusion criteria included ≥10 cigarettes smoked per day (CPD) for the past year, age ≥18 years, and informed consent for both genotyping and treatment. Exclusion criteria included pregnancy or lactation, uncontrolled hypertension, unstable angina, heart attack or stroke within the past 6 months, current treatment or recent diagnosis of cancer, drug or alcohol dependence, current diagnosis or history of a psychiatric disorder, seizure disorder, and current use of bupropion- or nicotine-containing products other than cigarettes. The trial randomized treatment-seeking smokers who were eligible to participate in bupropion or placebo treatment in double-blind fashion, and all participants received up to seven sessions of counseling that took place during clinic visits. Subjects started assigned medication (150mg the first week and 300mg thereafter) 2 weeks before, and continued with the medication for 8 weeks after, the target quit day. Abstinence was assessed via self-report at clinic visits and phone interviews using the calendar and timeline followback methods and verified by carbon monoxide testing and cotinine measurement. Blood was collected for pharmacogenetic analyses from all participants and approval for pharmacogenetic analyses was provided by IRBs at the University of Pennsylvania, the University of California San Francisco, and SRI International.

Genotyping of the VNTR and Ancestry Informative Markers

We interrogated the VNTR using primers A2 (5′-PET-GCTCATGCTGCTGCTCTACTGGGC-3′) and A1 (5′-CTGC GGGTCTGCGGTGGAGTCTGG-3′) (George, Cheng, Nguyen, Israel, & O’Dowd, 1993). The polymerase chain reaction mix contained 50ng of genomic DNA, 250nM of each primer, 0.5U of Failsafe DNA polymerase (Epicentre Technologies), 100 µM of 7-deaza-2′-deoxyguanosine 5′-triphosphate in 1X-G FailSafe buffer, in a total volume of 21 µl. Cycling conditions were initial denaturation at 95 °C for 10min, followed by 33 cycles of 60 s at 95 °C, 60 s at 66 °C, 1.5min at 72 °C, and a final elongation step for 4min at 72 °C. PCR products were assayed on an Applied Biosystems Prism® 3130xl Genetic Analyzer with GS600 LIZ size standard and Hi-Di Formamide (all Applied Biosystems) and analyzed using GeneMarker® v1.5 (SoftGenetics) software. Individuals with VNTR genotypes with 7R, 8R, or 9R alleles were coded as L+, while those without these alleles were coded as SS (Supplementary Table 1).

We genotyped single nucleotide polymorphisms (SNPs) at ancestry informative markers (AIMs), for analysis using STRUCTURE (Pritchard & Rosenberg, 1999) and Eigenstrat (Price et al., 2006), to identify coefficients of ancestry and principal components of population genetic variation and select individuals for analysis in association studies (Conti et al., 2008) with smoking-related phenotypes (Thomas et al., 2009). We selected self-identified and genetically confirmed individuals of European ancestry for this genotype–phenotype analysis as described (Conti et al., 2008).

Analysis of Predictors and Covariates

Multiple imputation by chained equations (Ambler, Omar, & Royston, 2007) was used to impute covariate missing values 20 times for education, marital status, CPD, Fagerström Test for Nicotine Dependence (FTND) score (Heatherton, Kozlowski, Frecker, & Fagerstrom, 1991), and the principal components of population genetic variation (four to seven individuals each). Using logistic regression, we performed univariate analyses of demographic variables, dependence measures, and depressive symptom associations with 7-day point prevalence abstinence (abstinence) at EOT, 6MO, and 12MO in the four categories defined by genotype and treatment. We performed multivariate analyses and longitudinal analyses using generalized estimating equations to analyze associations of genotype, treatment, time, genotype by treatment interaction, and with and without interaction with time (VNTR, treatment, and VNTR and treatment, with time, respectively), with abstinence. All analyses of abstinence used the intent-to-treat approach. Regression analyses were performed on each imputed dataset and the results were combined with adjustment to the variance of regression parameters to reflect the additional variance attributable to the imputations (Rubin, 1987). Each regression analysis included variables for the effects of demographics (age [age and age squared], education [presence or absence of college degree], gender, marital status [married or other]); dependence measures (FTND and CPD, coded as in the FTND) and interactions with demographic variables (CPD × age, CPD × gender, and FTND × gender); Center for Epidemiological Studies-Depression (CES-D) scores (Radloff, 1977), and the first 10 principal components of population genetic variation calculated from 45 AIMs. The demographic, dependence, and population genetic variables were chosen based on prior integrated analyses of eight randomized clinical trials of smoking cessation therapy (data not shown). Statistical power was estimated using QUANTO and the unmatched case–control gene by environment binary outcome model (Gauderman & Morrison, 2006). The threshold for declaring significance in all tests was an alpha of .05. Secondary analyses were performed using continuous abstinence as the outcome. Genotype-stratified longitudinal analyses of point prevalence abstinence and continuous abstinence were performed to evaluate treatment effects within VNTR genotype categories.

RESULTS

In the bupropion treatment (BUP) group, there were 59 and 164 individuals with a L+ and with a SS VNTR genotype, respectively, and with EOT, 6MO, and 12MO point prevalence abstinence, demographic, and dependence data available for analysis (Table 1). In the placebo treatment (PLA) group, the corresponding counts were 69 and 124, respectively. In univariate analyses across the four categories of treatment and genotype (Table 1), we observed no statistically significant differences in abstinence or differences in demographics, dependence measures, or depressive symptoms at EOT, 6MO, and 12MO. In multivariate analysis of point prevalence abstinence at EOT, 6MO, and 12MO (Table 2), there were no significant effects of genotype, treatment, their interaction, or covariates, with the exception of a significant effect of marital status being associated with increased abstinence at 12MO (p = .028). In longitudinal analyses of point prevalence abstinence (Table 3), time was significantly negatively associated with abstinence (p = .028 at 12MO), and more significantly so when interactions of time and treatment, time and genotype, and three way interactions were not included in the analysis (p = .002 and p < .001 at 6MO and 12MO, respectively). There were no other significant associations of genotype, treatment, their interaction, or covariates, with point prevalence abstinence.

Table 1.

Univariate Characteristics of the Lerman et al. Sample by Treatment and Genotype, Point Prevalence Abstinence

 All BUP/L+ BUP/SS PLA/L+ PLA/SS p equality 
N 416 59 164 69 124 – 
Outcomes 
    EOT point prevalence abstinence 0.274 0.390 0.299 0.203 0.225 .057 
    6MO point prevalence abstinence 0.221 0.322 0.238 0.159 0.186 .109 
    12MO point prevalence abstinence 0.171 0.220 0.171 0.145 0.161 .699 
Demographics 
    Age, years M (SD44.5 (11.5) 45.2 (10.8) 44.0 (11.9) 42.0 (11.3) 46.1 (11.0) .109 
    BMI, M (SD)a 26.5 (4.7) 27.5 (5.6) 26.1 (4.5) 26.3 (4.7) 26.5 (4.3) .272 
    Education (college degree) (%)b 46.4 (50.0) 50.0 (50.4) 47.2 (50.1) 47.8 (50.3) 42.7 (49.7) .786 
    Female (%) 54.3 (49.9) 50.8 (50.4) 56.1 (49.8) 55.1 (50.1) 53.2 (50.1) .904 
    Married (%)b 47.1 (50.0) 46.7 (50.3) 43.5 (49.7) 49.3 (50.4) 50.1 (50.2) .642 
Dependence measures 
    FTND, M (SD)c 5.1 (2.1) 5.2 (2.3) 5.1 (2.0) 4.8 (2.2) 5.4 (2.1) .363 
    CPD, M (SD)b 21.8 (9.4) 22.4 (11.8) 21.4 (8.0) 20.9 (6.8) 22.5 (10.8) .582 
Depressive symptoms 
    CES-D scoreb 12.2 (8.4) 12.9 (8.3) 12.9 (9.0) 10.9 (7.7) 11.6 (8.0) .284 
 All BUP/L+ BUP/SS PLA/L+ PLA/SS p equality 
N 416 59 164 69 124 – 
Outcomes 
    EOT point prevalence abstinence 0.274 0.390 0.299 0.203 0.225 .057 
    6MO point prevalence abstinence 0.221 0.322 0.238 0.159 0.186 .109 
    12MO point prevalence abstinence 0.171 0.220 0.171 0.145 0.161 .699 
Demographics 
    Age, years M (SD44.5 (11.5) 45.2 (10.8) 44.0 (11.9) 42.0 (11.3) 46.1 (11.0) .109 
    BMI, M (SD)a 26.5 (4.7) 27.5 (5.6) 26.1 (4.5) 26.3 (4.7) 26.5 (4.3) .272 
    Education (college degree) (%)b 46.4 (50.0) 50.0 (50.4) 47.2 (50.1) 47.8 (50.3) 42.7 (49.7) .786 
    Female (%) 54.3 (49.9) 50.8 (50.4) 56.1 (49.8) 55.1 (50.1) 53.2 (50.1) .904 
    Married (%)b 47.1 (50.0) 46.7 (50.3) 43.5 (49.7) 49.3 (50.4) 50.1 (50.2) .642 
Dependence measures 
    FTND, M (SD)c 5.1 (2.1) 5.2 (2.3) 5.1 (2.0) 4.8 (2.2) 5.4 (2.1) .363 
    CPD, M (SD)b 21.8 (9.4) 22.4 (11.8) 21.4 (8.0) 20.9 (6.8) 22.5 (10.8) .582 
Depressive symptoms 
    CES-D scoreb 12.2 (8.4) 12.9 (8.3) 12.9 (9.0) 10.9 (7.7) 11.6 (8.0) .284 

Note. BMI = body mass index; BUP = bupropion; CES-D = Center for Epidemiological Studies-Depression; CPD = cigarettes smoked per day; EOT = end-of-treatment; FTND = Fagerström Test for Nicotine Dependence; 6MO = 6 months; 12MO = 12 months.

aN = 414, BUP/L+ N = 59, BUP/SS N = 163, PLA/L+ = 69, PLA/SS = 123.

bN = 412, BUP/L+ N = 58, BUP/SS N = 161, PLA/L+ = 69, PLA/SS = 124.

cN = 411, BUP/L+ N = 58, BUP/SS N = 160, PLA/L+ = 69, PLA/SS = 124.

Table 2.

Multivariate Logistic Analysis of Point Prevalence Abstinence at EOT, 6MO, and 12MO

 EOT 6MO 12MO 
β LCI UCI p value β LCI UCI p value β LCI UCI p value 
DRD4 L+ −0.26 −1.02 0.50 .501 −0.29 −1.12 0.53 .488 −0.19 −1.06 0.68 .665 
BUP 0.33 −0.23 0.90 .248 0.30 −0.31 0.92 .330 0.06 −0.61 0.73 .859 
Age 0.00 −0.25 0.26 .969 0.13 −0.14 0.40 .355 0.03 −0.26 0.33 .815 
Age squared −0.12 −0.33 0.08 .238 −0.08 −0.29 0.13 .454 −0.03 −0.25 0.20 .811 
Gender −0.22 −0.45 0.02 .070 −0.04 −0.29 0.21 .770 0.12 −0.16 0.40 .396 
Education 0.07 −0.16 0.30 .546 0.05 −0.20 0.29 .708 0.08 −0.20 0.35 .586 
Marital status 0.10 −0.13 0.34 .392 0.26 0.00 0.51 .051 0.32 0.03 0.60 .028 
CES-D 0.00 −0.03 0.03 .914 0.01 −0.02 0.04 .715 0.01 −0.02 0.04 .589 
CPD −0.07 −0.37 0.23 .654 −0.14 −0.46 0.18 .380 −0.16 −0.51 0.20 .388 
FTND −0.17 −0.45 0.12 .255 −0.05 −0.36 0.25 .729 −0.08 −0.41 0.25 .639 
CPD × age −0.06 −0.32 0.19 .634 −0.09 −0.36 0.17 .494 0.00 −0.29 0.28 .977 
CPD × gender 0.08 −0.24 0.40 .627 0.15 −0.20 0.49 .398 0.31 −0.08 0.70 .124 
FTND × gender −0.15 −0.45 0.14 .301 −0.06 −0.38 0.26 .704 −0.05 −0.40 0.29 .764 
DRD4 × BUP 0.65 −0.35 1.65 .203 0.71 −0.37 1.78 .198 0.41 −0.76 1.58 .490 
PC1 36.95 −24.85 98.76 .241 42.37 −24.45 109.18 .214 16.60 −58.72 91.93 .666 
PC2 −5.00 −28.45 18.45 .676 −10.27 −35.31 14.77 .421 −4.42 −31.98 23.13 .753 
PC3 −1.22 −15.93 13.49 .871 −2.01 −17.63 13.61 .801 −7.48 −24.93 9.97 .401 
PC4 −4.19 −18.56 10.18 .568 0.75 −14.67 16.17 .924 −6.49 −23.43 10.45 .453 
PC5 −3.45 −18.21 11.30 .646 −2.85 −18.49 12.79 .721 −2.20 −19.21 14.81 .800 
PC6 5.64 −9.31 20.60 .460 4.95 −10.96 20.87 .542 2.29 −15.34 19.92 .799 
PC7 −4.92 −18.76 8.92 .486 −4.90 −19.64 9.84 .515 −2.95 −19.36 13.46 .724 
PC8 −0.99 −14.30 12.31 .884 −12.56 −26.97 1.85 .088 −7.34 −23.31 8.64 .368 
PC9 −3.63 −17.74 10.48 .614 −3.74 −18.93 11.44 .629 2.61 −14.18 19.40 .761 
PC10 7.37 −6.16 20.90 .285 9.36 −5.08 23.80 .204 18.67 2.70 34.64 .022 
Constant −0.84 −1.57 −0.11 .024 −1.16 −1.93 −0.38 .003 −1.63 −2.49 −0.76 .000 
 EOT 6MO 12MO 
β LCI UCI p value β LCI UCI p value β LCI UCI p value 
DRD4 L+ −0.26 −1.02 0.50 .501 −0.29 −1.12 0.53 .488 −0.19 −1.06 0.68 .665 
BUP 0.33 −0.23 0.90 .248 0.30 −0.31 0.92 .330 0.06 −0.61 0.73 .859 
Age 0.00 −0.25 0.26 .969 0.13 −0.14 0.40 .355 0.03 −0.26 0.33 .815 
Age squared −0.12 −0.33 0.08 .238 −0.08 −0.29 0.13 .454 −0.03 −0.25 0.20 .811 
Gender −0.22 −0.45 0.02 .070 −0.04 −0.29 0.21 .770 0.12 −0.16 0.40 .396 
Education 0.07 −0.16 0.30 .546 0.05 −0.20 0.29 .708 0.08 −0.20 0.35 .586 
Marital status 0.10 −0.13 0.34 .392 0.26 0.00 0.51 .051 0.32 0.03 0.60 .028 
CES-D 0.00 −0.03 0.03 .914 0.01 −0.02 0.04 .715 0.01 −0.02 0.04 .589 
CPD −0.07 −0.37 0.23 .654 −0.14 −0.46 0.18 .380 −0.16 −0.51 0.20 .388 
FTND −0.17 −0.45 0.12 .255 −0.05 −0.36 0.25 .729 −0.08 −0.41 0.25 .639 
CPD × age −0.06 −0.32 0.19 .634 −0.09 −0.36 0.17 .494 0.00 −0.29 0.28 .977 
CPD × gender 0.08 −0.24 0.40 .627 0.15 −0.20 0.49 .398 0.31 −0.08 0.70 .124 
FTND × gender −0.15 −0.45 0.14 .301 −0.06 −0.38 0.26 .704 −0.05 −0.40 0.29 .764 
DRD4 × BUP 0.65 −0.35 1.65 .203 0.71 −0.37 1.78 .198 0.41 −0.76 1.58 .490 
PC1 36.95 −24.85 98.76 .241 42.37 −24.45 109.18 .214 16.60 −58.72 91.93 .666 
PC2 −5.00 −28.45 18.45 .676 −10.27 −35.31 14.77 .421 −4.42 −31.98 23.13 .753 
PC3 −1.22 −15.93 13.49 .871 −2.01 −17.63 13.61 .801 −7.48 −24.93 9.97 .401 
PC4 −4.19 −18.56 10.18 .568 0.75 −14.67 16.17 .924 −6.49 −23.43 10.45 .453 
PC5 −3.45 −18.21 11.30 .646 −2.85 −18.49 12.79 .721 −2.20 −19.21 14.81 .800 
PC6 5.64 −9.31 20.60 .460 4.95 −10.96 20.87 .542 2.29 −15.34 19.92 .799 
PC7 −4.92 −18.76 8.92 .486 −4.90 −19.64 9.84 .515 −2.95 −19.36 13.46 .724 
PC8 −0.99 −14.30 12.31 .884 −12.56 −26.97 1.85 .088 −7.34 −23.31 8.64 .368 
PC9 −3.63 −17.74 10.48 .614 −3.74 −18.93 11.44 .629 2.61 −14.18 19.40 .761 
PC10 7.37 −6.16 20.90 .285 9.36 −5.08 23.80 .204 18.67 2.70 34.64 .022 
Constant −0.84 −1.57 −0.11 .024 −1.16 −1.93 −0.38 .003 −1.63 −2.49 −0.76 .000 

Note. BUP = bupropion; CES-D = Center for Epidemiological Studies-Depression; CPD = cigarettes smoked per day; EOT = end-of-treatment; FTND = Fagerström Test for Nicotine Dependence; LCI = 95% lower confidence interval; UCI = 95% upper confidence interval; 6MO = 6 months; 12MO = 12 months. Bold text represents a p value < .05.

Table 3.

Longitudinal Analysis of Point Prevalence Abstinence With and Without Interactions With Time

 With interactions with time Without interactions with time 
β LCI UCI p value β LCI UCI p value 
DRD4 L+ −0.253 −1.005 0.498 .509 −0.272 −0.980 0.436 .451 
6MO −0.254 −0.622 0.113 .175 −0.301 −0.492 −0.111 .002 
12MO −0.427 −0.807 −0.047 .028 −0.639 −0.843 −0.436 .000 
BUP 0.343 −0.219 0.905 .232 0.283 −0.244 0.810 .293 
Age 0.053 −0.183 0.288 .662 0.055 −0.181 0.291 .648 
Age squared −0.102 −0.290 0.086 .289 −0.101 −0.290 0.087 .291 
Gender −0.111 −0.327 0.106 .316 −0.120 −0.337 0.097 .277 
Education 0.069 −0.144 0.283 .525 0.063 −0.151 0.276 .566 
Marital status 0.175 −0.046 0.396 .121 0.177 −0.044 0.399 .116 
CES-D 0.004 −0.022 0.030 .754 0.004 −0.022 0.030 .757 
CPD −0.095 −0.368 0.178 .494 −0.087 −0.360 0.187 .535 
FTND −0.120 −0.386 0.146 .376 −0.127 −0.393 0.139 .348 
CPD × age −0.071 −0.304 0.163 .554 −0.059 −0.292 0.175 .622 
CPD × gender 0.114 −0.182 0.410 .450 0.124 −0.172 0.420 .412 
FTND × gender −0.109 −0.381 0.163 .431 −0.128 −0.400 0.144 .355 
DRD4 × BUP 0.634 −0.358 1.626 .210 0.639 −0.289 1.567 .177 
BUP × 6MO −0.073 −0.544 0.397 .759     
BUP × 12MO −0.335 −0.831 0.161 .185     
DRD4 × 6MO −0.051 −0.686 0.584 .875     
DRD4 × 12MO 0.006 −0.648 0.659 .986     
DRD4 × BUP × 6MO 0.066 −0.767 0.900 .876     
DRD4 × BUP × 12MO −0.096 −0.972 0.779 .829     
PC1 32.676 −25.282 90.635 .269 34.983 −22.878 92.845 .236 
PC2 −5.949 −27.723 15.825 .592 −5.745 −27.515 16.026 .605 
PC3 −2.347 −15.983 11.289 .736 −1.734 −15.371 11.902 .803 
PC4 −3.017 −16.371 10.337 .658 −3.275 −16.640 10.091 .631 
PC5 −3.239 −16.868 10.389 .641 −2.364 −15.993 11.264 .734 
PC6 5.856 −8.039 19.751 .409 5.085 −8.791 18.961 .473 
PC7 −4.589 −17.477 8.299 .485 −4.379 −17.258 8.500 .505 
PC8 −6.284 −18.710 6.142 .322 −5.864 −18.270 6.541 .354 
PC9 −2.960 −16.113 10.193 .659 −2.509 −15.656 10.638 .708 
PC10 9.766 −2.797 22.329 .128 9.647 −2.924 22.218 .133 
Constant −0.909 −1.604 −0.214 .010 −0.863 −1.544 −0.182 .013 
 With interactions with time Without interactions with time 
β LCI UCI p value β LCI UCI p value 
DRD4 L+ −0.253 −1.005 0.498 .509 −0.272 −0.980 0.436 .451 
6MO −0.254 −0.622 0.113 .175 −0.301 −0.492 −0.111 .002 
12MO −0.427 −0.807 −0.047 .028 −0.639 −0.843 −0.436 .000 
BUP 0.343 −0.219 0.905 .232 0.283 −0.244 0.810 .293 
Age 0.053 −0.183 0.288 .662 0.055 −0.181 0.291 .648 
Age squared −0.102 −0.290 0.086 .289 −0.101 −0.290 0.087 .291 
Gender −0.111 −0.327 0.106 .316 −0.120 −0.337 0.097 .277 
Education 0.069 −0.144 0.283 .525 0.063 −0.151 0.276 .566 
Marital status 0.175 −0.046 0.396 .121 0.177 −0.044 0.399 .116 
CES-D 0.004 −0.022 0.030 .754 0.004 −0.022 0.030 .757 
CPD −0.095 −0.368 0.178 .494 −0.087 −0.360 0.187 .535 
FTND −0.120 −0.386 0.146 .376 −0.127 −0.393 0.139 .348 
CPD × age −0.071 −0.304 0.163 .554 −0.059 −0.292 0.175 .622 
CPD × gender 0.114 −0.182 0.410 .450 0.124 −0.172 0.420 .412 
FTND × gender −0.109 −0.381 0.163 .431 −0.128 −0.400 0.144 .355 
DRD4 × BUP 0.634 −0.358 1.626 .210 0.639 −0.289 1.567 .177 
BUP × 6MO −0.073 −0.544 0.397 .759     
BUP × 12MO −0.335 −0.831 0.161 .185     
DRD4 × 6MO −0.051 −0.686 0.584 .875     
DRD4 × 12MO 0.006 −0.648 0.659 .986     
DRD4 × BUP × 6MO 0.066 −0.767 0.900 .876     
DRD4 × BUP × 12MO −0.096 −0.972 0.779 .829     
PC1 32.676 −25.282 90.635 .269 34.983 −22.878 92.845 .236 
PC2 −5.949 −27.723 15.825 .592 −5.745 −27.515 16.026 .605 
PC3 −2.347 −15.983 11.289 .736 −1.734 −15.371 11.902 .803 
PC4 −3.017 −16.371 10.337 .658 −3.275 −16.640 10.091 .631 
PC5 −3.239 −16.868 10.389 .641 −2.364 −15.993 11.264 .734 
PC6 5.856 −8.039 19.751 .409 5.085 −8.791 18.961 .473 
PC7 −4.589 −17.477 8.299 .485 −4.379 −17.258 8.500 .505 
PC8 −6.284 −18.710 6.142 .322 −5.864 −18.270 6.541 .354 
PC9 −2.960 −16.113 10.193 .659 −2.509 −15.656 10.638 .708 
PC10 9.766 −2.797 22.329 .128 9.647 −2.924 22.218 .133 
Constant −0.909 −1.604 −0.214 .010 −0.863 −1.544 −0.182 .013 

Note. BUP = bupropion; CES-D = Center for Epidemiological Studies-Depression; CPD = cigarettes smoked per day; EOT = end-of-treatment; FTND = Fagerström Test for Nicotine Dependence; LCI = 95% lower confidence interval; UCI = 95% upper confidence interval; 6MO = 6 months; 12MO = 12 months. Bold text represents a p value < .05.

In univariate analyses of continuous abstinence, outcome data were available for 410 individuals, 59 and 164 individuals with a L+ and with a SS VNTR genotype randomized to BUP, and 69 and 121 individuals randomized to PLA, respectively (Table 3). In univariate analyses, we observed statistically significant differences in continuous abstinence prevalence at 6MO by treatment–genotype strata (p = .045), but no significant differences in continuous abstinence prevalence at EOT or 12MO. There were no significant differences in demographics, dependence measures, or depressive symptoms by treatment–genotype strata. In multivariate analyses of continuous abstinence at EOT, 6MO, and 12MO, we observed significant effects of gender on continuous abstinence at EOT and 6MO (p = .001 and p = .016, respectively), and depressive symptoms at baseline on continuous abstinence at 12MO (p = .049) (Table 4). In longitudinal analyses of continuous abstinence (Table 5), we observed highly statistically significant effects of time on continuous abstinence whether or not interactions between time, genotype, and/or treatment were included (p < .001 at 6MO and 12MO). We also observed a statistically significant effect of gender on continuous abstinence in longitudinal analysis (p = .001, with or without interactions with time). Two principal components of population genetic variation were observed to be significantly associated with continuous abstinence in multivariate analyses, and one of these was significant in longitudinal analyses.

Table 4.

Univariate Characteristics of the Lerman et al.* Sample by Treatment and Genotype, Continuous Abstinence

Cohort 3B All BUP/L+ BUP/SS PLA/L+ PLA/SS p equality 
N 410 57 163 69 121 – 
    EOT continuous abstinence 0.234 0.298 0.276 0.130 0.207 .056 
    6MO continuous abstinence 0.163 0.246 0.196 0.101 0.116 .045 
    12MO continuous abstinence 0.110 0.175 0.117 0.087 0.083 .276 
Demographics 
    Age, years M (SD44.6 (11.4) 45.5 (10.9) 44.1 (12.0) 42.0 (11.3) 46.2 (10.8) .082 
    BMI, M (SD)a 26.5 (4.6) 27.6 (5.6) 26.1 (4.5) 26.3 (4.7) 26.4 (4.01) .180 
    Education (%)b 46.1 (50.0) 48.2 (50.4) 47.5 (50.1) 47.8 (50.3) 42.1 (49.6) .786 
    Female (%) 54.1 (49.9) 50.9 (50.4) 55.8 (49.8) 55.1 (50.1) 52.9 (50.1) .913 
    Married (%)b 47.2 (50.0) 48.2 (50.4) 43.1 (49.7) 49.3 (50.4) 51.2 (50.2) .575 
Dependence measures 
    FTND, M (SD)c 5.2 (2.1) 5.4 (2.2) 5.1 (2.1) 4.8 (2.2) 5.3 (2.1) .363 
    CPD, M (SD)b 21.8 (9.3) 22.7 (11.9) 21.3 (8.0) 20.9 (6.7) 22.5 (10.9) .525 
Depressive symptoms 
    CES-D scoreb 12.1 (8.4) 13.0 (8.4) 12.9 (9.0) 10.9 (7.7) 11.5 (7.9) .257 
Cohort 3B All BUP/L+ BUP/SS PLA/L+ PLA/SS p equality 
N 410 57 163 69 121 – 
    EOT continuous abstinence 0.234 0.298 0.276 0.130 0.207 .056 
    6MO continuous abstinence 0.163 0.246 0.196 0.101 0.116 .045 
    12MO continuous abstinence 0.110 0.175 0.117 0.087 0.083 .276 
Demographics 
    Age, years M (SD44.6 (11.4) 45.5 (10.9) 44.1 (12.0) 42.0 (11.3) 46.2 (10.8) .082 
    BMI, M (SD)a 26.5 (4.6) 27.6 (5.6) 26.1 (4.5) 26.3 (4.7) 26.4 (4.01) .180 
    Education (%)b 46.1 (50.0) 48.2 (50.4) 47.5 (50.1) 47.8 (50.3) 42.1 (49.6) .786 
    Female (%) 54.1 (49.9) 50.9 (50.4) 55.8 (49.8) 55.1 (50.1) 52.9 (50.1) .913 
    Married (%)b 47.2 (50.0) 48.2 (50.4) 43.1 (49.7) 49.3 (50.4) 51.2 (50.2) .575 
Dependence measures 
    FTND, M (SD)c 5.2 (2.1) 5.4 (2.2) 5.1 (2.1) 4.8 (2.2) 5.3 (2.1) .363 
    CPD, M (SD)b 21.8 (9.3) 22.7 (11.9) 21.3 (8.0) 20.9 (6.7) 22.5 (10.9) .525 
Depressive symptoms 
    CES-D scoreb 12.1 (8.4) 13.0 (8.4) 12.9 (9.0) 10.9 (7.7) 11.5 (7.9) .257 

Note. BMI = body mass index; BUP = bupropion; CES-D = Center for Epidemiological Studies-Depression; CPD = cigarettes smoked per day; EOT = end-of-treatment; FTND = Fagerström Test for Nicotine Dependence; 6MO = 6 months; 12MO = 12 months. Bold text represents a p value < .05.

aN = 408, BUP/L+ N = 57, BUP/SS N = 162, PLA/L+ = 69, PLA/SS = 120.

bN = 406, BUP/L+ N = 56, BUP/SS N = 160, PLA/L+ = 69, PLA/SS = 121.

cN = 405, BUP/L+ N = 56, BUP/SS N = 159, PLA/L+ = 69, PLA/SS = 121. *Lerman et al. (2003).

Table 5.

Multivariate Logistic Analysis of Continuous Abstinence at EOT, 6MO, and 12MO

 EOT 6MO 12MO 
β LCI UCI p value β LCI UCI p value β LCI UCI p value 
DRD4 L+ −0.70 −1.57 0.18 .120 −0.13 −1.15 0.88 .796 0.22 −0.93 1.36 .711 
BUP 0.43 −0.17 1.03 .160 0.70 −0.02 1.43 .057 0.49 −0.38 1.37 .269 
Age 0.02 −0.26 0.31 .863 0.17 −0.16 0.50 .305 0.19 −0.23 0.60 .372 
Age squared −0.16 −0.39 0.08 .192 −0.14 −0.40 0.13 .311 −0.15 −0.48 0.18 .364 
Gender −0.42 −0.68 −0.16 .001 −0.36 −0.65 −0.07 .016 −0.30 −0.65 0.05 .093 
Education 0.09 −0.16 0.33 .490 0.13 −0.15 0.41 .357 0.07 −0.27 0.41 .675 
Marital status 0.09 −0.17 0.34 .499 0.02 −0.27 0.31 .885 0.28 −0.08 0.64 .122 
CES-D 0.01 −0.02 0.04 .585 0.01 −0.02 0.04 .516 0.04 0.00 0.08 .049 
CPD 0.01 −0.30 0.32 .954 −0.15 −0.50 0.20 .408 −0.14 −0.55 0.27 .495 
FTND −0.18 −0.50 0.13 .249 −0.02 −0.38 0.34 .906 −0.03 −0.46 0.40 .888 
CPD × age −0.13 −0.40 0.13 .325 −0.26 −0.57 0.06 .108 −0.15 −0.53 0.22 .416 
CPD × gender −0.07 −0.40 0.27 .700 0.02 −0.36 0.40 .909 0.06 −0.40 0.52 .803 
FTND × gender −0.05 −0.37 0.27 .760 −0.20 −0.57 0.17 .290 −0.15 −0.59 0.29 .504 
DRD4 × BUP 0.76 −0.37 1.89 .186 0.34 −0.93 1.61 .600 0.05 −1.42 1.52 .946 
PC1 −20.71 −92.84 51.41 .573 −20.60 −100.38 59.19 .613 −12.98 −107.58 81.62 .788 
PC2 −7.58 −33.26 18.10 .563 1.52 −28.07 31.11 .920 −6.34 −41.50 28.83 .724 
PC3 −12.32 −29.48 4.85 .160 −9.93 −29.12 9.25 .310 −11.61 −34.15 10.93 .313 
PC4 0.16 −15.29 15.61 .984 −0.41 −17.90 17.09 .964 0.37 −20.58 21.32 .972 
PC5 4.94 −11.15 21.04 .547 7.18 −10.90 25.25 .437 10.44 −11.18 32.07 .344 
PC6 13.53 −3.47 30.53 .119 19.58 0.02 39.14 .050 20.54 −3.43 44.51 .093 
PC7 3.13 −11.82 18.08 .682 −1.41 −18.54 15.72 .872 −2.30 −22.45 17.86 .823 
PC8 4.67 −9.70 19.04 .524 0.16 −15.98 16.31 .984 −0.12 −19.34 19.11 .990 
PC9 −18.98 −34.74 −3.23 .018 −10.52 −28.55 7.51 .253 2.83 −19.24 24.91 .801 
PC10 5.63 −9.21 20.47 .457 20.25 3.26 37.24 .020 41.93 20.57 63.29 .000 
Constant −1.48 −2.31 −0.65 .000 −2.32 −3.29 −1.35 .000 −3.20 −4.41 −2.00 .000 
 EOT 6MO 12MO 
β LCI UCI p value β LCI UCI p value β LCI UCI p value 
DRD4 L+ −0.70 −1.57 0.18 .120 −0.13 −1.15 0.88 .796 0.22 −0.93 1.36 .711 
BUP 0.43 −0.17 1.03 .160 0.70 −0.02 1.43 .057 0.49 −0.38 1.37 .269 
Age 0.02 −0.26 0.31 .863 0.17 −0.16 0.50 .305 0.19 −0.23 0.60 .372 
Age squared −0.16 −0.39 0.08 .192 −0.14 −0.40 0.13 .311 −0.15 −0.48 0.18 .364 
Gender −0.42 −0.68 −0.16 .001 −0.36 −0.65 −0.07 .016 −0.30 −0.65 0.05 .093 
Education 0.09 −0.16 0.33 .490 0.13 −0.15 0.41 .357 0.07 −0.27 0.41 .675 
Marital status 0.09 −0.17 0.34 .499 0.02 −0.27 0.31 .885 0.28 −0.08 0.64 .122 
CES-D 0.01 −0.02 0.04 .585 0.01 −0.02 0.04 .516 0.04 0.00 0.08 .049 
CPD 0.01 −0.30 0.32 .954 −0.15 −0.50 0.20 .408 −0.14 −0.55 0.27 .495 
FTND −0.18 −0.50 0.13 .249 −0.02 −0.38 0.34 .906 −0.03 −0.46 0.40 .888 
CPD × age −0.13 −0.40 0.13 .325 −0.26 −0.57 0.06 .108 −0.15 −0.53 0.22 .416 
CPD × gender −0.07 −0.40 0.27 .700 0.02 −0.36 0.40 .909 0.06 −0.40 0.52 .803 
FTND × gender −0.05 −0.37 0.27 .760 −0.20 −0.57 0.17 .290 −0.15 −0.59 0.29 .504 
DRD4 × BUP 0.76 −0.37 1.89 .186 0.34 −0.93 1.61 .600 0.05 −1.42 1.52 .946 
PC1 −20.71 −92.84 51.41 .573 −20.60 −100.38 59.19 .613 −12.98 −107.58 81.62 .788 
PC2 −7.58 −33.26 18.10 .563 1.52 −28.07 31.11 .920 −6.34 −41.50 28.83 .724 
PC3 −12.32 −29.48 4.85 .160 −9.93 −29.12 9.25 .310 −11.61 −34.15 10.93 .313 
PC4 0.16 −15.29 15.61 .984 −0.41 −17.90 17.09 .964 0.37 −20.58 21.32 .972 
PC5 4.94 −11.15 21.04 .547 7.18 −10.90 25.25 .437 10.44 −11.18 32.07 .344 
PC6 13.53 −3.47 30.53 .119 19.58 0.02 39.14 .050 20.54 −3.43 44.51 .093 
PC7 3.13 −11.82 18.08 .682 −1.41 −18.54 15.72 .872 −2.30 −22.45 17.86 .823 
PC8 4.67 −9.70 19.04 .524 0.16 −15.98 16.31 .984 −0.12 −19.34 19.11 .990 
PC9 −18.98 −34.74 −3.23 .018 −10.52 −28.55 7.51 .253 2.83 −19.24 24.91 .801 
PC10 5.63 −9.21 20.47 .457 20.25 3.26 37.24 .020 41.93 20.57 63.29 .000 
Constant −1.48 −2.31 −0.65 .000 −2.32 −3.29 −1.35 .000 −3.20 −4.41 −2.00 .000 

Note. BUP = bupropion; CES-D = Center for Epidemiological Studies-Depression; CPD = cigarettes smoked per day; EOT = end-of-treatment; FTND = Fagerström Test for Nicotine Dependence; LCI = 95% lower confidence interval; UCI = 95% upper confidence interval; 6MO = 6 months; 12MO = 12 months. Bold text represents a p value < .05.

Table 6.

Longitudinal Analysis of Continuous Abstinence With and Without Interactions With Time

 With interactions with time Without interactions with time 
β LCI UCI p value β LCI UCI p value 
DRD4 L+ −0.738 −1.619 0.143 .101 −0.827 −1.716 0.063 .069 
6MO −0.733 −1.109 −0.357 .000 −0.492 −0.673 −0.311 .000 
12MO −1.123 −1.557 −0.689 .000 −0.988 −1.197 −0.779 .000 
BUP 0.387 −0.212 0.985 .205 0.445 −0.144 1.035 .139 
Age 0.019 −0.254 0.293 .889 0.034 −0.241 0.308 .810 
Age squared −0.136 −0.360 0.088 .235 −0.128 −0.353 0.096 .262 
Gender −0.442 −0.693 −0.191 .001 −0.441 −0.694 −0.187 .001 
Education 0.125 −0.115 0.366 .308 0.103 −0.139 0.345 .406 
Marital status 0.061 −0.188 0.311 .629 0.058 −0.193 0.309 .653 
CES-D 0.006 −0.023 0.036 .671 0.002 −0.027 0.032 .878 
CPD −0.005 −0.309 0.300 .976 −0.002 −0.309 0.304 .989 
FTND −0.195 −0.502 0.113 .214 −0.210 −0.519 0.100 .184 
CPD × age −0.153 −0.415 0.109 .253 −0.149 −0.411 0.113 .265 
CPD × gender −0.058 −0.387 0.270 .728 −0.050 −0.381 0.281 .768 
FTND × gender −0.065 −0.374 0.245 .682 −0.097 −0.408 0.214 .541 
DRD4 × BUP 0.863 −0.268 1.993 .135 0.991 −0.132 2.114 .084 
BUP × 6MO 0.239 −0.226 0.703 .314     
BUP × 12MO −0.047 −0.592 0.498 .867     
DRD4 × 6MO 0.439 −0.220 1.099 .192     
DRD4 × 12MO 0.654 −0.062 1.370 .073     
DRD4 × BUP × 6MO −0.226 −1.058 0.606 .595     
DRD4 × BUP × 12MO −0.206 −1.120 0.708 .658     
PC1 −37.867 −108.995 33.261 .297 −29.090 −100.208 42.028 .423 
PC2 −6.313 −31.508 18.883 .623 −6.184 −31.458 19.089 .631 
PC3 −12.074 −28.963 4.815 .161 −11.444 −28.345 5.457 .184 
PC4 −0.526 −15.522 14.471 .945 −0.290 −15.369 14.790 .970 
PC5 5.018 −10.706 20.742 .532 5.455 −10.380 21.289 .500 
PC6 16.239 −0.406 32.884 .056 15.196 −1.499 31.891 .074 
PC7 2.751 −11.882 17.384 .712 3.355 −11.397 18.107 .656 
PC8 4.337 −9.729 18.403 .546 3.777 −10.323 17.877 .600 
PC9 −19.304 −34.652 −3.957 .014 −19.348 −34.756 −3.939 .014 
PC10 6.415 −8.104 20.934 .386 6.241 −8.320 20.803 .401 
Constant −1.591 −2.413 −0.769 .000 −1.531 −2.350 −0.713 .000 
 With interactions with time Without interactions with time 
β LCI UCI p value β LCI UCI p value 
DRD4 L+ −0.738 −1.619 0.143 .101 −0.827 −1.716 0.063 .069 
6MO −0.733 −1.109 −0.357 .000 −0.492 −0.673 −0.311 .000 
12MO −1.123 −1.557 −0.689 .000 −0.988 −1.197 −0.779 .000 
BUP 0.387 −0.212 0.985 .205 0.445 −0.144 1.035 .139 
Age 0.019 −0.254 0.293 .889 0.034 −0.241 0.308 .810 
Age squared −0.136 −0.360 0.088 .235 −0.128 −0.353 0.096 .262 
Gender −0.442 −0.693 −0.191 .001 −0.441 −0.694 −0.187 .001 
Education 0.125 −0.115 0.366 .308 0.103 −0.139 0.345 .406 
Marital status 0.061 −0.188 0.311 .629 0.058 −0.193 0.309 .653 
CES-D 0.006 −0.023 0.036 .671 0.002 −0.027 0.032 .878 
CPD −0.005 −0.309 0.300 .976 −0.002 −0.309 0.304 .989 
FTND −0.195 −0.502 0.113 .214 −0.210 −0.519 0.100 .184 
CPD × age −0.153 −0.415 0.109 .253 −0.149 −0.411 0.113 .265 
CPD × gender −0.058 −0.387 0.270 .728 −0.050 −0.381 0.281 .768 
FTND × gender −0.065 −0.374 0.245 .682 −0.097 −0.408 0.214 .541 
DRD4 × BUP 0.863 −0.268 1.993 .135 0.991 −0.132 2.114 .084 
BUP × 6MO 0.239 −0.226 0.703 .314     
BUP × 12MO −0.047 −0.592 0.498 .867     
DRD4 × 6MO 0.439 −0.220 1.099 .192     
DRD4 × 12MO 0.654 −0.062 1.370 .073     
DRD4 × BUP × 6MO −0.226 −1.058 0.606 .595     
DRD4 × BUP × 12MO −0.206 −1.120 0.708 .658     
PC1 −37.867 −108.995 33.261 .297 −29.090 −100.208 42.028 .423 
PC2 −6.313 −31.508 18.883 .623 −6.184 −31.458 19.089 .631 
PC3 −12.074 −28.963 4.815 .161 −11.444 −28.345 5.457 .184 
PC4 −0.526 −15.522 14.471 .945 −0.290 −15.369 14.790 .970 
PC5 5.018 −10.706 20.742 .532 5.455 −10.380 21.289 .500 
PC6 16.239 −0.406 32.884 .056 15.196 −1.499 31.891 .074 
PC7 2.751 −11.882 17.384 .712 3.355 −11.397 18.107 .656 
PC8 4.337 −9.729 18.403 .546 3.777 −10.323 17.877 .600 
PC9 −19.304 −34.652 −3.957 .014 −19.348 −34.756 −3.939 .014 
PC10 6.415 −8.104 20.934 .386 6.241 −8.320 20.803 .401 
Constant −1.591 −2.413 −0.769 .000 −1.531 −2.350 −0.713 .000 

Note. BUP = bupropion; CES-D = Center for Epidemiological Studies-Depression; CPD = cigarettes smoked per day; EOT = end-of-treatment; FTND = Fagerström Test for Nicotine Dependence; LCI = 95% lower confidence interval; UCI = 95% upper confidence interval; 6MO = 6 months; 12MO = 12 months. Bold text represents a p value < .05.

In multivariate analyses at EOT, 6MO, and 12MO of each abstinence outcome stratified by genotype (Supplementary Tables 2–5), we observed significant association of (a) treatment with point prevalence abstinence in individuals with a VNTR L+ genotype at EOT (OR = 2.95, 95% CI: 1.21–7.21, p = .0.018) and 6MO (OR = 2.96, 95% CI: 1.08–8.08, p = .035), but not at 12MO (OR = 1.57, 95% CI: 0.51–4.86, p = .433), and with continuous abstinence at EOT (OR = 3.25, 95% CI: 1.15–9.16, p = .026) and 6MO (OR = 3.42, 95% CI: 1.01–11.50, p = .047), but not at 12MO (OR = 1.47, 95% CI: 0.33–6.60, p = .616); (b) gender at EOT with point prevalence and at EOT and 6MO with continuous abstinence, in individuals with a VNTR SS genotype; (c) marital status at 6MO and 12MO with point prevalence abstinence in individuals with a VNTR SS genotype; (d) CES-D score at 12MO with continuous abstinence in individuals with a VNTR L+ genotype; (e) age (age squared) at 6MO with point prevalence abstinence and at EOT with continuous abstinence in individuals with a L+ genotype; and (f) the interaction term CPD by gender at 12MO with both abstinence outcomes in individuals with a L+ genotype. We also observed two principal components of population genetic variation significantly associated with continuous abstinence in individuals with a SS genotype (ps < .024).

In longitudinal analyses of each abstinence outcome stratified by genotype (Supplementary Tables 6 and 7), we observed significant association of (a) treatment in individuals with a VNTR L+ genotype for both abstinence outcomes (point prevalence abstinence [OR = 2.74, 95% CI: 1.14–6.59, p = .025] and continuous abstinence [OR = 3.15, 95% CI: 1.12–8.88, p = .030] respectively); (b) time in individuals with a VNTR SS genotype at 6MO with point prevalence abstinence and at 6MO and 12MO with continuous abstinence; (c) gender in individuals with a VNTR SS genotype with continuous abstinence; and (d) age (age squared) in individuals with a VNTR L+ genotype with continuous abstinence. We also observed three principal components of population genetic variation significantly associated with continuous abstinence in individuals with a SS genotype (ps < .033).

The effect sizes of treatment in individuals with a VNTR SS genotype in multivariate (EOT, 6MO, and 12MO) and longitudinal analyses of point prevalence and continuous abstinence outcomes were nonsignificant: OR = 1.39, 95% CI: 0.78–2.48, p = .262; OR = 1.29, 95% CI: 0.69–2.41, p = .428; OR = .96, 95% CI: 0.48–1.90, p = .896; OR = 1.48, 95% CI: 0.80–2.77, p = .215; OR = 1.92, 95% CI: 0.91–4.06, p = .087; OR = 1.42, 95% CI: 0.58–3.47, p = .441; OR = 1.38, 95% CI: 0.78–2.44, p = .27; and OR = 1.47, 95% CI: 0.78–2.75, p = .23, respectively.

The power to detect the gene by environment effect reported by Leventhal et al. (2012) with the abstinent (case) and nonabstinent (control) sample sizes, dominantly coded genotype prevalence, and treatment prevalence of the Lerman et al. (2003) sample, and the average placebo abstinence rate of 13.8% from 80 placebo arms (Fiore et al., 2008), was 11.5%. Under the same assumptions, a sample size of 3,362 individuals would be required to detect the gene by treatment interaction effect reported by Leventhal et al. (2012) with 80% power.

DISCUSSION

In analyses of the relations between bupropion treatment and VNTR genotype in N = 416 self-identified White treatment-seeking smokers, we observed statistically significant effects of treatment in multivariate analyses of both abstinence outcomes at EOT and at 6MO, and in longitudinal analyses of both abstinence outcomes, but only in individuals with a VNTR L+ genotype. We did not observe statistically significant associations of genotype or genotype by treatment interaction. Time was observed to be significantly associated with both abstinence outcomes, as expected. There were a few covariate associations with both abstinence outcomes, including principal components of population genetic variation. The magnitude of the statistically significant association of active treatment with both abstinence outcomes was not significantly different from the magnitude of effects previously observed in samples not stratified by DRD4 VNTR genotype (Brown et al., 2007; Hurt et al., 1997), and in those stratified by DRD4 VNTR genotype (Leventhal et al., 2012).

The most parsimonious explanation for the lack of a statistically significant genotype by treatment interaction effect is insufficient sample size, as indicated by our power analyses. Effective increases in sample size due to longitudinal modeling may have improved statistical power, but the sample size estimated by the power analysis required to observe the genotype by treatment interaction is almost three-fold larger in size than the effective sample size in the longitudinal analysis performed by Leventhal et al. (2012) and here in the Lerman et al. (2003) sample. We did observe nonsignificant effects of treatment, genotype, and their interaction in the directions observed by Leventhal et al. (2012) suggesting that the concordance between studies could reflect similar interactions between VNTR genotype, treatment, and abstinence, but with the reduced effect size typically observed in studies conducted after the initial discovery is reported (Ioannidis, 2008; Kraft, 2008). If the concordance in the directionality of effects between the studies is not due to chance or to the typical reduction in effect size observed, what participant, trial, or analytic methodology characteristics might account for the observed differences in VNTR by treatment effect sizes?

We note that Brown et al. (2007) excluded individuals with current DSM-IV substance abuse diagnoses (other than nicotine dependence), major depression, or other Axis I disorder, while Lerman et al. (2003) excluded individuals with DSM-IV drug or alcohol dependence, and a current diagnosis or lifetime history of an Axis I disorder. Given the exclusions in both trials, effects of current psychiatric disorders are very unlikely to have influenced the differences in treatment by genotype association observed between the trials.

Major depression has negative effects on cessation and positive effects on relapse status among current smokers and former smokers in large population-based samples (Weinberger, Pilver, Desai, Mazure, & McKee, 2012). Depressive symptoms do not always have negative effects on abstinence in clinical trials (Hall et al., 2006; Niaura et al., 2001), and where there is a relation, the relations between depressive symptoms and abstinence may be influenced by additional covariates, for example, ethnicity and social status in longitudinal series of patients undergoing smoking cessation treatments (Castro et al., 2011; Reitzel et al., 2010). Major depression and/or depressive symptoms do not have effects on abstinence in randomized clinical trials of bupropion versus placebo (Brown et al., 2007; Lerman et al., 2003).

A history of major depression, which was modestly prevalent in the Brown et al. (2007) trial participants, and absent in the Lerman et al. (2003) trial participants, might contribute to observed gene by treatment interaction association differences, if individuals with a history of depression and with the VNTR long allele were more responsive to bupropion treatment than individuals without a history of depression and with the VNTR long allele. The VNTR has previously been associated with mood disorders in a meta-analysis (Lopez Leon et al., 2005), although the association described was with the two repeat VNTR allele and unipolar mood disorders. Individuals with long VNTR alleles are more likely to smoke more puffs of a cigarette after negative affect induction (Perkins et al., 2008), and to respond to smoking cues (Hutchison, LaChance, Niaura, Bryan, & Smolen, 2002; Munafo & Johnstone, 2008), suggesting that individuals with a depression history and long VNTR alleles may benefit more from bupropion than individuals without both characteristics.

The Brown et al. (2007) trial sample and the Lerman et al. (2003) trial sample differ in the prevalence of individuals with a substance dependence diagnosis in the same fashion as with depression history. McGeary reviewed the VNTR association with substance dependence literature and concluded that there was some evidence for association with intermediate phenotypes, but a failure to consistently identify associations with substance dependence diagnostic measures (McGeary, 2009). This suggests that drug dependence prevalence differences have not contributed to the VNTR by treatment association differences observed by Leventhal et al. (2012) and in the current analysis of the Lerman et al. (2003) sample.

The most robust associations of the VNTR with a psychiatric diagnosis assessed in a meta-analysis are with a diagnosis of attention deficit hyperactivity disorder (ADHD) (Gizer, Ficks, & Waldman, 2009). A meta-analyses of five placebo-controlled trials showed that bupropion is significantly more effective than placebo for treatment of ADHD (Maneeton, Maneeton, Srisurapanont, & Martin, 2011). Self-reported inattentive and hyperactive/impulsive symptoms have been associated with increased prevalence of regular smoking in a large adolescent sample (Kollins, McClernon, & Fuemmeler, 2005), childhood ADHD diagnosis has been associated with reduced abstinence in a clinical trial (Humfleet et al., 2005), and highly nicotine-dependent individuals with a combined inattentive and hyperactive/impulsive ADHD subtype diagnosis responded to pharmacological treatment for smoking cessation with increased abstinence (Covey et al., 2011). This suggests that inattentive and hyperactive/impulsive symptom severity differences in the absence of a history of an ADHD diagnosis may account for some of the VNTR by treatment association differences observed.

Genetic differences between the samples or genetically based analytic differences could play a role in differences observed between the analysis of Leventhal et al. (2012) and the current analysis. In addition to analytic confirmation of self-identified European ancestry (Conti et al., 2008), we included principal components of population genetic variation as covariates in the analyses reported here. We did observe several principal components significantly associated with abstinence. Gizer et al. noted significant heterogeneity in association of the VNTR with ADHD diagnosis, including differences in the association direction and strength due to genetic ancestry differences (Gizer et al., 2009). Inclusion of covariates of genetic ancestry will correct for continental and some subcontinental population genetic ancestry differences, but will not address genetic differences due to rare variation that have arisen in the recent expansion of the human population (Keinan & Clark, 2012). Rare-linked variants have been associated with ADHD diagnosis (Grady et al., 2003, 2005; Tovo-Rodrigues et al., 2012). CYP2B6 exhibits extensive coding and noncoding variation within and between continental population groups that influence CYP2B6 expression and function (Lang et al., 2001). Sampling effects within analysis categories may result in differences in relevant pharmacogenetic variation (Lee et al., 2007).

Differences in treatment between the trials encompass the different behavioral treatments, with the Brown et al. (2007) trial focused on evaluating differences between effects of cognitive–behavioral treatment for depression added to standard cognitive–behavioral smoking cessation treatment (CBTD) versus standard cognitive–behavioral smoking cessation treatment (CBT), while the behavioral treatment in the Lerman et al. (2003) trial consisted of cognitive–behavioral therapy in a group counseling setting. While no differences were observed between CBTD and CBT on point prevalence abstinence in the Brown et al. (2007) trial (Brown et al., 2007), both behavioral treatments in the Brown et al. (2007) trial were more intensive (in the number and length of counseling sessions) than the treatments in the Lerman et al. (2003) trial. The Lerman et al. (2003) sample, as reported in this analysis, reports lower abstinence (point prevalence and continuous abstinence) prevalence than the Brown et al. (2007) sample reported in Leventhal et al. (2012) for approximately 75% of the 24 comparisons (four genotype by pharmacotherapy treatment categories, three timepoints, two abstinence outcomes). Differences in behavioral treatment intensity between the trials might account for some of these differences. Differences in the efficacy of behavioral treatment might also influence relative efficacy by pharmacotherapy and genotype, and account for some of the treatment by genotype interaction association differences observed between the trials.

Differences in the values of some behavioral or genetic characteristics, genetically based covariates, or relative treatment efficacy by genotype, might explain a portion of the differences in association results observed between the results of Leventhal et al. (2012) and our analyses, although the role of chance, in either previously reported findings or in differences between analysis results, cannot be ignored. The analysis of multiple randomized clinical trials in an integrated data analysis framework that considers these different behavioral and genetic variables will be necessary to resolve whether VNTR by treatment interaction in association with abstinence occurs in treatment-seeking smokers (Ioannidis, 2009). The sample sizes that power analyses suggest will be necessary to detect the previously reported finding are available within randomized clinical trials curated by the Pharmacogenetics of Nicotine Addiction Treatment consortium (http://pgrn.org/display/pgrnwebsite/PNAT+Profile), although additional trials would be required to focus exclusively on trials randomizing individuals to active bupropion and placebo treatment. Analysis of a double-blind, randomized, placebo-controlled trial of transdermal nicotine replacement therapy has reported a main effect of the VNTR on abstinence at one timepoint (David et al., 2008), suggesting that nicotine replacement therapy trials should be included in further analyses. Multiple treatment meta-analyses of a sufficient number of trials to test main and interactive effects of the VNTR and response to multiple treatments may improve our knowledge of the influence of the DRD4 Exon III VNTR on prospective abstinence, and potentially, guide therapeutic strategies (McDonagh, Whirl-Carrillo, Garten, Altman, & Klein, 2011).

SUPPLEMENTARY MATERIAL

Supplementary Tables 17 can be found online at http://www.ntr.oxfordjournals.org

FUNDING

This work was supported by the National Institutes of Health of the U.S. Department of Health and Human Services (U01 DA020830 to RFT and CL, and P50 CA143187 to CL). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Department of Health and Human Services.

DECLARATION OF INTERESTS

Dr. Bergen has received research support, in the past, through institutional collaboration agreements between Medco Health Solutions, Affymetrix, and SRI International, and between Perlegen Sciences and SRI International. Dr. Benowitz has been a consultant for several pharmaceutical companies that market smoking cessation medications.

ACKNOWLEDGMENTS

We gratefully acknowledge the bupropion versus placebo clinical trial participants for their contributions to research. We thank Faith Allen (UCSF), Chris Jepson (University of Pennsylvania), Ruth Krasnow, Martha Michel, Huaiyu Mi, and Denise Nishita (SRI International) for curation and management of clinical and genotype data, and for management of biospecimens and generation and management of genotyping data, respectively.

REFERENCES

Ambler
G.
Omar
R. Z.
Royston
P
.
2007
.
A comparison of imputation techniques for handling missing predictor values in a risk model with a binary outcome
.
Statistical Methods in Medical Research
 ,
16
,
277
298
. doi:10.1177/0962280206074466
Asghari
V.
Sanyal
S.
Buchwaldt
S.
Paterson
A.
Jovanovic
V.
Van Tol
H. H
.
1995
.
Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants
.
Journal of Neurochemistry
 ,
65
,
1157
1165
. doi:10.1046/j.1471-4159.1995.65031157.x
Brown
R. A.
Niaura
R.
Lloyd-Richardson
E. E.
Strong
D. R.
Kahler
C. W.
Abrantes
A. M.
, …
Miller
I. W
.
2007
.
Bupropion and cognitive-behavioral treatment for depression in smoking cessation
.
Nicotine & Tobacco Research
 ,
9
,
721
730
.
Castro
Y.
Costello
T. J.
Correa-Fernandez
V.
Heppner
W. L.
Reitzel
L. R.
Cofta-Woerpel
L.
, …
Wetter
D. W
.
2011
.
Differential effects of depression on smoking cessation in a diverse sample of smokers in treatment
.
American Journal of Preventive Medicine
 ,
41
,
84
87
. doi:10.1016/j.amepre.2011.03.003
Chang
F. M.
Kidd
J. R.
Livak
K. J.
Pakstis
A. J.
Kidd
K. K
.
1996
.
The world-wide distribution of allele frequencies at the human dopamine D4 receptor locus
.
Human Genetics
 ,
98
,
91
101
. doi:10.1007/s004390050166
Conti
D. V.
Lee
W.
Li
D.
Liu
J.
Van Den Berg
D.
Thomas
P. D.
Bergen
A. W.
Swan
G. E.
Tyndale
R. F.
Benowitz
N. L.
Lerman
C
.
2008
.
Nicotinic acetylcholine receptor beta2 subunit gene implicated in a systems-based candidate gene study of smoking cessation
.
Human Molecular Genetics
 ,
17
,
2834
2848
.
Covey
L. S.
Hu
M. C.
Weissman
J.
Croghan
I.
Adler
L.
Winhusen
T
.
2011
.
Divergence by ADHD subtype in smoking cessation response to OROS-methylphenidate
.
Nicotine & Tobacco Research
 ,
13
,
1003
1008
. doi:10.1093/ntr/ntr087
Damaj
M. I.
Carroll
F. I.
Eaton
J. B.
Navarro
H. A.
Blough
B. E.
Mirza
S.
, …
Martin
B. R
.
2004
.
Enantioselective effects of hydroxy metabolites of bupropion on behavior and on function of monoamine transporters and nicotinic receptors
.
Molecular Pharmacology
 ,
66
,
675
682
.
David
S. P.
Munafo
M. R.
Murphy
M. F.
Proctor
M.
Walton
R. T.
Johnstone
E. C
.
2008
.
Genetic variation in the dopamine D4 receptor (DRD4) gene and smoking cessation: Follow-up of a randomised clinical trial of transdermal nicotine patch
.
The Pharmacogenomics Journal
 ,
8
,
122
128
.
Ding
Y. C.
Chi
H. C.
Grady
D. L.
Morishima
A.
Kidd
J. R.
Kidd
K. K.
, …
Moyzis
R. K
.
2002
.
Evidence of positive selection acting at the human dopamine receptor D4 gene locus
.
Proceedings of the National Academy of Sciences of the United States of America
 ,
99
,
309
314
.
Fiore
M.
Jaén
C. R.
Baker
T. B.
Bailey
W. C.
Bennett
G.
Benowitz
N. L.
, …
Williams
C
.
2008
.
A clinical practice guideline for treating tobacco use and dependence: 2008 update. A U.S. Public Health Service report
.
American Journal of Preventitive Medicine
 ,
35
,
158
176
.
Gauderman
W.
Morrison
J
.
2006
.
QUANTO 1.1: A computer program for power and sample size calculations for genetic- epidemiology studies
. Retrieved from http://hydra.usc.edu/gxe
George
S. R.
Cheng
R.
Nguyen
T.
Israel
Y.
O’Dowd
B. F
.
1993
.
Polymorphisms of the D4 dopamine receptor alleles in chronic alcoholism
.
Biochemical and Biophysical Research Communications
 ,
196
,
107
114
.
Gizer
I. R.
Ficks
C.
Waldman
I. D
.
2009
.
Candidate gene studies of ADHD: A meta-analytic review
.
Human Genetics
 ,
126
,
51
90
.
Grady
D. L.
Chi
H. C.
Ding
Y. C.
Smith
M.
Wang
E.
Schuck
S.
, …
Moyzis
R. K
.
2003
.
High prevalence of rare dopamine receptor D4 alleles in children diagnosed with attention-deficit hyperactivity disorder
.
Molecular Psychiatry
 ,
8
,
536
545
. doi:10.1038/sj.mp.4001350
Grady
D. L.
Harxhi
A.
Smith
M.
Flodman
P.
Spence
M. A.
Swanson
J. M.
Moyzis
R. K
.
2005
.
Sequence variants of the DRD4 gene in autism: Further evidence that rare DRD4 7R haplotypes are ADHD specific
.
American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics
 ,
136B
,
33
35
. doi:10.1002/ajmg.b.30182
Hall
S. M.
Tsoh
J. Y.
Prochaska
J. J.
Eisendrath
S.
Rossi
J. S.
Redding
C. A.
, …
Gorecki
J. A
.
2006
.
Treatment for cigarette smoking among depressed mental health outpatients: A randomized clinical trial
.
American Journal of Public Health
 ,
96
,
1808
1814
. doi:10.2105/ajph.2005.080382
Heatherton
T. F.
Kozlowski
L. T.
Frecker
R. C.
Fagerstrom
K. O
.
1991
.
The Fagerstrom Test for Nicotine Dependence: A revision of the Fagerstrom Tolerance Questionnaire
.
British Journal of Addiction
 ,
86
,
1119
1127
. doi:10.1111/ j.1360-0443.1991.tb01879.x
Humfleet
G. L.
Prochaska
J. J.
Mengis
M.
Cullen
J.
Munoz
R.
Reus
V.
Hall
S. M
.
2005
.
Preliminary evidence of the association between the history of childhood attention-deficit/hyperactivity disorder and smoking treatment failure
.
Nicotine & Tobacco Research
 ,
7
,
453
460
. doi:10.1080/14622200500125310
Hurt
R. D.
Sachs
D. P.
Glover
E. D.
Offord
K. P.
Johnston
J. A.
Dale
L. C.
Sullivan
P. M
.
1997
.
A comparison of sustained-release bupropion and placebo for smoking cessation
.
The New England Journal of Medicine
 ,
337
,
1195
1202
.
Hutchison
K. E.
LaChance
H.
Niaura
R.
Bryan
A.
Smolen
A
.
2002
.
The DRD4 VNTR polymorphism influences reactivity to smoking cues
.
Journal of Abnormal Psychology
 ,
111
,
134
143
.
Ioannidis
J. P
.
2008
.
Why most discovered true associations are inflated
.
Epidemiology
 ,
19
,
640
648
. doi:10.1097/EDE.0b013e31818131e7
Ioannidis
J. P
.
2009
.
Integration of evidence from multiple meta-analyses: A primer on umbrella reviews, treatment networks and multiple treatments meta-analyses
.
Canadian Medical Association Journal
 ,
181
,
488
493
.
Keinan
A.
Clark
A. G
.
2012
.
Recent explosive human population growth has resulted in an excess of rare genetic variants
.
Science
 ,
336
,
740
743
. doi:10.1126/science.1217283
Kollins
S. H.
McClernon
F. J.
Fuemmeler
B. F
.
2005
.
Association between smoking and attention-deficit/hyperactivity disorder symptoms in a population-based sample of young adults
.
Archives of General Psychiatry
 ,
62
,
1142
1147
. doi:10.1001/archpsyc.62.10.1142
Kraft
P
.
2008
.
Curses--winner’s and otherwise--in genetic epidemiology
.
Epidemiology
 ,
19
,
649
651
; discussion
657
648
. doi:10.1097/EDE.0b013e318181b865
Lang
T.
Klein
K.
Fischer
J.
Nussler
A. K.
Neuhaus
P.
Hofmann
U.
, …
Zanger
U. M
.
2001
.
Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver
.
Pharmacogenetics
 ,
11
,
399
415
. doi:10.1097/00008571-200107000-00004
Learned-Coughlin
S. M.
Bergstrom
M.
Savitcheva
I.
Ascher
J.
Schmith
V. D.
Langstrom
B
.
2003
.
In vivo activity of bupropion at the human dopamine transporter as measured by positron emission tomography
.
Biological Psychiatry
 ,
54
,
800
805
.
Lee
A. M.
Jepson
C.
Hoffmann
E.
Epstein
L.
Hawk
L. W.
Lerman
C.
Tyndale
R. F
.
2007
.
CYP2B6 genotype alters abstinence rates in a bupropion smoking cessation trial
.
Biological Psychiatry
 ,
62
,
635
641
.
Lerman
C.
Niaura
R
.
2002
.
Applying genetic approaches to the treatment of nicotine dependence
.
Oncogene
 ,
21
,
7412
7420
.
Lerman
C.
Shields
P. G.
Wileyto
E. P.
Audrain
J.
Hawk
L. H.
Jr.
Pinto
, …
Epstein
L. H
.
2003
.
Effects of dopamine transporter and receptor polymorphisms on smoking cessation in a bupropion clinical trial
.
Health Psychology
 ,
22
,
541
548
.
Leventhal
A. M.
David
S. P.
Brightman
M.
Strong
D.
McGeary
J. E.
Brown
R. A.
, …
Niaura
R
.
2012
.
Dopamine D4 receptor gene variation moderates the efficacy of bupropion for smoking cessation
.
The Pharmacogenomics Journal
 ,
12
,
86
92
.
Lichter
J. B.
Barr
C. L.
Kennedy
J. L.
Van Tol
H. H.
Kidd
K. K.
Livak
K. J
.
1993
.
A hypervariable segment in the human dopamine receptor D4 (DRD4) gene
.
Human Molecular Genetics
 ,
2
,
767
773
. doi:10.1093/hmg/2.6.767
Lopez Leon
S.
Croes
E. A.
Sayed-Tabatabaei
F. A.
Claes
S.
Van Broeckhoven
C.
van Duijn
C. M
.
2005
.
The dopamine D4 receptor gene 48-base-pair-repeat polymorphism and mood disorders: A meta-analysis
.
Biological Psychiatry
 ,
57
,
999
1003
. doi:10.1016/j.biopsych.2005.01.030
Maneeton
N.
Maneeton
B.
Srisurapanont
M.
Martin
S. D
.
2011
.
Bupropion for adults with attention-deficit hyperactivity disorder: Meta-analysis of randomized, placebo-controlled trials
.
Psychiatry and Clinical Neurosciences
 ,
65
,
611
617
.
McDonagh
E. M.
Whirl-Carrillo
M.
Garten
Y.
Altman
R. B.
Klein
T. E
.
2011
.
From pharmacogenomic knowledge acquisition to clinical applications: The PharmGKB as a clinical pharmacogenomic biomarker resource
.
Biomarkers in Medicine
 ,
5
,
795
806
. doi:10.2217/bmm.11.94
McGeary
J
.
2009
.
The DRD4 exon 3 VNTR polymorphism and addiction-related phenotypes: A review
.
Pharmacology, Biochemistry, and Behavior
 ,
93
,
222
229
.
Munafo
M. R.
Johnstone
E. C
.
2008
.
Smoking status moderates the association of the dopamine D4 receptor (DRD4) gene VNTR polymorphism with selective processing of smoking-related cues
.
Addiction Biology
 ,
13
,
435
439
. doi:10.1111/j.1369-1600.2008.00098.x
Niaura
R.
Britt
D. M.
Shadel
W. G.
Goldstein
M.
Abrams
D.
Brown
R
.
2001
.
Symptoms of depression and survival experience among three samples of smokers trying to quit
.
Psychology of Addictive Behaviors
 ,
15
,
13
17
. doi:10.1037/0893-164X.15.1.13
Perkins
K. A.
Lerman
C.
Grottenthaler
A.
Ciccocioppo
M. M.
Milanak
M.
Conklin
, …
Benowitz
N. L
.
2008
.
Dopamine and opioid gene variants are associated with increased smoking reward and reinforcement owing to negative mood
.
Behavioural Pharmacology
 ,
19
,
641
649
.
Price
A. L.
Patterson
N. J.
Plenge
R. M.
Weinblatt
M. E.
Shadick
N. A.
Reich
D
.
2006
.
Principal components analysis corrects for stratification in genome-wide association studies
.
Nature Genetics
 ,
38
,
904
909
. doi:10.1038/ng1847
Pritchard
J. K.
Rosenberg
N. A
.
1999
.
Use of unlinked genetic markers to detect population stratification in association studies
.
American Journal of Human Genetics
 ,
65
,
220
228
. doi:10.1086/302449
Radloff
L. S
.
1977
.
The CES-D scale
.
Applied Psychological Measurement
 ,
1
,
385
401
. doi:10.1177/014662167700100306
Reitzel
L. R.
Mazas
C. A.
Cofta-Woerpel
L.
Li
Y.
Cao
Y.
Businelle
M. S.
, …
Wetter
D. W
.
2010
.
Subjective social status affects smoking abstinence during acute withdrawal through affective mediators
.
Addiction
 ,
105
,
928
936
. doi:10.1111/j.1360-0443.2009.02875.x
Rubin
D. B
.
1987
.
Multiple imputation for nonresponse in surveys
 ,
New York, NY
:
John Wiley & Sons
.
Schoots
O.
Van Tol
H. H
.
2003
.
The human dopamine D4 receptor repeat sequences modulate expression
.
The Pharmacogenomics Journal
 ,
3
,
343
348
.
Simpson
J.
Vetuz
G.
Wilson
M.
Brookes
K. J.
Kent
L
.
2010
.
The DRD4 receptor Exon 3 VNTR and 5’ SNP variants and mRNA expression in human post-mortem brain tissue
.
American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics
 ,
153B
,
1228
1233
. doi:10.1002/ajmg.b.31084
Thomas
P. D.
Mi
H.
Swan
G. E.
Lerman
C.
Benowitz
N.
Tyndale
R. F.
, …
Conti
D. V
.
2009
.
A systems biology network model for genetic association studies of nicotine addiction and treatment
.
Pharmacogenetics and Genomics
 ,
19
,
538
551
.
Tovo-Rodrigues
L.
Rohde
L. A.
Roman
T.
Schmitz
M.
Polanczyk
G.
Zeni
C.
, …
Hutz
M. H
.
2012
.
Is there a role for rare variants in DRD4 gene in the susceptibility for ADHD? Searching for an effect of allelic heterogeneity
.
Molecular Psychiatry
 ,
17
,
520
526
. doi:10.1038/mp.2011.12
Van Tol
H. H.
Wu
C. M.
Guan
H. C.
Ohara
K.
Bunzow
J. R.
Civelli
O.
, …
Jovanovic
V
.
1992
.
Multiple dopamine D4 receptor variants in the human population
.
Nature
 ,
358
,
149
152
.
Wang
E.
Ding
Y. C.
Flodman
P.
Kidd
J. R.
Kidd
K. K.
Grady
D. L.
, …
Moyzis
R. K
.
2004
.
The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus
.
American Journal of Human Genetics
 ,
74
,
931
944
.
Weinberger
A. H.
Pilver
C. E.
Desai
R. A.
Mazure
C. M.
McKee
S. A
.
2012
.
The relationship of major depressive disorder and gender to changes in smoking for current and former smokers: Longitudinal evaluation in the US population
.
Addiction
 ,
107
,
1847
1856
. doi:10.1111/j.1360-0443.2012.03889.x
Zeger
S. L.
Liang
K. Y
.
1986
.
Longitudinal data analysis for discrete and continuous outcomes
.
Biometrics
 ,
42
,
121
130
.