The ability of environmental factors to shape health and disease involves epigenetic mechanisms that mediate gene-environment interactions. Epigenetic gene regulation comprises the heritable changes in gene expression that occur in the absence of changes to the DNA sequence itself. Epigenetic mechanisms include chromatin folding and attachment to the nuclear matrix, packaging of DNA around nucleosomes, covalent modifications of histone tails (e.g. acetylation, methylation, phosphorylation), and DNA methylation. The influence of regulatory small RNAs and micro RNAs on gene transcription is also increasingly recognized as a key mechanism of epigenetic gene regulation.

Conventional gene-environment interaction studies strive to understand how individuals with different genotypes respond to various environmental factors and how these responses change over time. Such research efforts have highlighted the important contribution of both genetic and environmental variability in human diseases. However, it has been argued that a full understanding of gene-environment interactions...

Article PDF first page preview

Article PDF first page preview
Article PDF first page preview
You do not currently have access to this article.