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Progress and perspectives in plant sterol and plant stanol research
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Current evidence indicates that foods with added plant sterols or stanols can
lower serum levels of low-density lipoprotein cholesterol. This review summarizes
the recent findings and deliberations of 31 experts in the field who participated
in a scientific meeting in Winnipeg, Canada, on the health effects of plant sterols
and stanols. Participants discussed issues including, but not limited to, the
health benefits of plant sterols and stanols beyond cholesterol lowering, the role
of plant sterols and stanols as adjuncts to diet and drugs, and the challenges in-
volved in measuring plant sterols and stanols in biological samples. Variations
in interindividual responses to plant sterols and stanols, as well as the personali-
zation of lipid-lowering therapies, were addressed. Finally, the clinical aspects
and treatment of sitosterolemia were reviewed. Although plant sterols and
stanols continue to offer an efficacious and convenient dietary approach to
cholesterol management, long-term clinical trials investigating the endpoints of
cardiovascular disease are still lacking.
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INTRODUCTION

A meeting of experts in the field of plant sterols and sta-
nols (plant sterols/stanols) was convened September 30

to October 2, 2016, in Winnipeg, Manitoba, to discuss
developments and controversies in this active area of

functional food science. The first day’s sessions were
oriented toward understanding contemporary topics

surrounding metabolic aspects of dietary supplementa-
tion with plant sterols/stanols, while the second day

focused on clinical aspects, including the physiology of
disorders pertaining to plant sterol/stanol absorption.

Case reports of families with sitosterolemia were also
presented on the second day. Overall, most of the

experts considered plant sterols/stanols to be effective
cholesterol-lowering agents that continue to have an

important role as functional foods and supplements. It
was also apparent, from the data presented, that the

understanding of mechanisms through which the
cholesterol-lowering actions of plant sterols/stanols

occur has improved since the state of the art in 2011.1

The purpose of this review is to identify the salient

points arising from the presentations and ensuing dis-
cussions that capture recent developments in the field.

EFFICACY OF PLANT STEROLS/STANOLS IN LOWERING
LOW-DENSITY LIPOPROTEIN CHOLESTEROL

Factors that influence the cholesterol-lowering
efficacy of plant sterols/stanols

Hundreds of studies have investigated several aspects of

the clinical efficacy of plant sterols/stanols for lowering
low-density lipoprotein cholesterol (LDL-C), including

chemical form (sterol vs stanol), food matrix, and other
factors associated with delivery of these compounds.2–6

First, when plant sterols are compared with plant sta-
nols, consistent evidence demonstrates that both plant

sterols and plant stanols lower LDL-C levels by 7.5% to
12% at intakes of 1.5 to 3 g/d.7 At intakes of up to 3 g/d,
which is the current recommended range of intake in

most countries, plant sterols and plant stanols produce
equal LDL-C–lowering effects. A systematic review of

14 studies showed a nonsignificant weighted mean dif-
ference in LDL-C lowering between plant sterols and

plant stanols.8 Moreover, data compiled from 124 stud-
ies revealed a clear dose-dependent reduction in LDL-C

at plant sterol or plant stanol intakes of up to 4 g/d. In
that meta-analysis, an average plant sterol/stanol intake

of 2.1 g/d resulted in an 8.4% reduction in LDL-C,
while an average intake of 3.3 g/d resulted in a 12.4% re-

duction.7 It appeared that, at an intake of 2.1 g/d, there
was about a 2% difference between LDL-C lowering

with plant sterols and LDL-C lowering with plant

stanols. Plant stanols achieved a more pronounced

LDL-C lowering, while at higher average intakes of 2.6
and 3.3 g/d, lowering of LDL-C was comparable.1 These

findings persisted in several additional analyses.9 The
consistency of the food format, either solid/edible or

liquid/drinkable, is critical for comparing the effects of
plant sterols/stanols. Ras et al7 reported that, in the dose
category ranging from 2.0 g/d or more to less than

2.5 g/d, at an average intake of 2.1 g/d, 15 of 40 plant
sterol studies used liquid food formats, whereas only 4

of 18 plant stanol studies used this type of food format.
Irrespective of the type of plant sterols or stanols used,

liquid foods lowered LDL-C concentrations by an aver-
age of 6.5%, whereas solid foods lowered LDL-C con-

centrations by an average of 9.2%.7 The limited sample
size of studies that used the liquid food format as the

plant stanol carrier warrants caution in drawing sweep-
ing conclusions. Additional research with head-to-head

comparisons between plant sterols and plant stanols is
needed.

A second factor influencing the cholesterol-
lowering efficacy of plant sterols/stanols is the food ma-

trix. The fat content of the food, the type of fat in the
food, the supplement form (capsules or tablet), the use

of free or esterified plant sterols/stanols, and the fatty
acid used for esterification all may affect cholesterol

lowering. In addition, the frequency of administration
(eg, single vs multiple daily intakes), intake with vs

without a meal, and the time of administration (eg,
morning vs later in the day) are all factors contributing

to the degree of plant sterol/stanol efficacy. A systematic
review of dietary plant sterols/stanols consumed from

food vs from tablets showed a similar mean difference
in LDL-C lowering.10 However, most studies that deliv-

ered plant sterols/stanols as tablets are missing data on
particle size and dissolution activity. Tablet characteris-

tics represent a critical aspect of future research using
supplements.

Plant sterols/stanols have been examined across
multiple food formats, and there is no apparent differ-
ence in their cholesterol-lowering efficacy in high-fat vs

lowfat or nonfat foods.11,12 In terms of the type of car-
rier fat, a recent study found no difference between dif-

ferent types of carrier fats in the relative reduction in
LDL-C levels.13 Two meta-analyses reported higher effi-

cacy with solid foods (eg, spreads and margarines) than
with liquid foods (milk and juices).7,12 There are no dif-

ferences between the efficacy of free vs esterified plant
sterols,12,14,15 although the particle size of plant sterols

should be considered. Nor does the fatty acid used for
esterification affect the cholesterol-lowering efficacy of

plant sterols/stanols.16–18 However, data from meta-
analyses show that the frequency of intake matters, and

once a day seems suboptimal.7,12 Lowering of LDL-C
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was greater when a yogurt drink was consumed to-

gether with a lunch meal than when consumed before
breakfast (lowering of 9.4% vs 6.0%).19 Another study

with plant stanol–enriched biscuits also found that bis-
cuits consumed with a meal resulted in a greater

cholesterol-lowering effect than biscuits consumed be-
tween meals.20 In a 2000 review of published plant ste-
rol/stanol intervention studies, Law21 found that the

absolute decrease in LDL-C increased with age, al-
though relative changes were comparable across age

ranges.
The design of clinical studies is also of interest. In

the earliest published research with plant sterols, 9 male
study participants consumed 5 to 6 g of b-sitosterol per

day, showing mean serum total cholesterol decreases as
great as 15% to 20% over 6 weeks.22 Another early study

in which 15 young men, all with previous myocardial
infarctions, consumed 12 to 18 g of b-sitosterol per day

also showed large declines in serum total cholesterol
levels.23 Neither of these studies, however, was a ran-

domized trial, and the results focused on changes in to-
tal cholesterol. Since these initial publications, there

have been important advances in trial design and ana-
lytical methods. Miettinen et al24 conducted a landmark

1-year-long study of 153 participants in a double-blind,
randomized controlled trial and observed a 14.1% de-

crease in circulating LDL-C with a plant stanol dosage
of 2.6 g/d compared with placebo, without a decrease in

high-density lipoprotein-cholesterol (HDL-C).
Overall, data summarized from meta-analyses pub-

lished from 2000 through 2016 show that most studies
reported an LDL-C reduction between 0.3 and

0.4 mmol/L.7,10–13,21,25 As LDL-C is recognized as an
important causal risk factor for coronary heart disease,

such a reduction in LDL-C would correspond to a 7%
reduction in the risk of heart disease.26 However, to

date, direct evidence of an effect on cardiovascular dis-
ease (CVD) is not available, as studies exploring hard

endpoints such as CVD events and mortality are lack-
ing, likely because they are expensive and challenging
with respect to long-term compliance.

Diversity of natural plant sterols/stanols

Experts agree that a minimum intake of 1 g of plant

sterols/stanols per day is necessary to significantly lower
circulating LDL-C levels.27 However, naturally occur-

ring plant sterols in fruits and vegetables range from
about 38 to 439 mg/kg of fresh weight, and those in

grain range from 329 to 1780 mg/kg. Thus, to consume
1 g of plant sterols, one would need to eat about 2 kg of

fruits/vegetables or about 1 kg of grain per day.28 Plant
oils contain higher levels of plant sterols/stanols, but

one would need to eat about 100 g of oil per day to

reach a daily intake of 1 g. Therefore, fruits/vegetables,

grains, and plant oils are not practical sources of dietary
plant sterols/stanols, so other approaches need to be

considered. Tall oil and vegetable oil deodorizer distil-
lates continue to be major feedstocks for the production

of plant sterols/stanols added to functional foods, but
other sources are under investigation. For example,
corn fiber oil and rice bran oil contain 10% to 15% and

2% total plant sterols, respectively, but have not been
used as a commercial feedstock for the production of

plant sterols/stanols.28 In plants, most sterols/stanols
are either present in their free unesterified form or are

esterified to fatty acids. However, plant sterols/stanols
also occur as steryl glucosides and acylated steryl gluco-

sides, with the steryl glucoside esterified to a fatty acid.
Unlike sterol esters, steryl glucosides can inhibit choles-

terol absorption in their intact form, without being hy-
drolyzed by digestive enzymes such as pancreatin.29,30

A future therapeutic option, therefore, could be to clone
the gene to produce steryl glucosides, which may be

useful if future clinical studies indicate additional bene-
fits of dietary steryl glucosides when compared with

common forms of free and esterified plant sterols.31

Lecithin has been reported to be a valuable organogela-

tor. An organogel is defined as an organic liquid
entrapped within a thermoreversible, 3-dimensional

gel. Some of the other main organogelators include
plant waxes and sitosterol plus oryzanol.32,33 Hence,

further research on organogels is warranted.

EFFECTS OF PLANT STEROLS/STANOLS BEYOND
CHOLESTEROL LOWERING

Immune-modulating properties of plant sterols/
stanols

Nutrition, whether supplied as whole diets, specific
nutrients, or bioactive phytochemicals, is a powerful

modulator of the immune system, regulating both de-
fense against pathogens and the chronic inflammatory
response that underlies many disease states.34 Previous

in vitro,35 animal,35 and human36 studies suggest that
plant sterols/stanols affect the immune response. Calpe-

Berdiel et al35 reported that, independent of cholesterol-
lowering effects, 2% dietary plant sterol supplementa-

tion in apolipoprotein E–deficient mice treated with
turpentine showed increased interleukin 2 and inter-

feron-c secretion (T-helper type 1 lymphocyte cyto-
kines). An effective biological response to an immune

challenge involves a balanced production of specific
types of pro- and anti-inflammatory cytokines by Th1

and Th2 helper T cells, respectively.37 Nashed et al38

demonstrated that, in addition to lowering cholesterol,

2% dietary plant sterol supplementation in
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apolipoprotein E–deficient mice for 14 weeks decreased

plasma interleukin 12 concentrations. Brull et al39 pre-
viously reported evidence that physiological concentra-

tions of both sitosterol and sitostanol increased the
production of interferon-c in human peripheral blood

mononuclear cells. More recently, the same group
addressed whether these in vitro plant sterol/stanol-
induced changes could be applied clinically to enhance

immune function in patients with asthma.40 In a ran-
domized, double-blind clinical trial, patients with

asthma who consumed a plant stanol–enriched soy-
based yogurt (4.0 g of plant stanols daily) vs a control

yogurt demonstrated higher antibody titers against
hepatitis A virus vaccination and reductions in plasma

concentrations of total immunoglobulin E,
interleukin 1b, and tumor necrosis factor-a. Although

these results are promising, further studies designed to
explore clinical benefits in immune-compromised pop-

ulations are required.

Triglyceride-lowering properties of plant sterols/
stanols

The rising global obesity epidemic is associated with a
characteristic dyslipidemic phenotype that includes ele-

vated concentrations of serum/plasma cholesterol and
triglycerides. Previous work suggests that approximately

80% of overweight and obese individuals have serum
triglyceride concentrations of more than 150 mg/dL

(1.7 mmol/L). Although plant sterols/stanols have a
long history as effective cholesterol-lowering com-

pounds, their benefit in reducing hypertriglyceridemia
is a relatively recent discovery. Results of previous ran-

domized controlled studies conducted in normotrigly-
ceridemic individuals suggest that daily

supplementation with plant sterols/stanols (1.6–9 g/d)
for 1 to 2 months reduces triglycerides by 0.8% to

7%.15,41–43 However, in individuals with elevated serum
triglyceride concentrations (> 1.7 mmol/L), random-
ized control trials results suggest that plant sterol/stanol

supplementation (1.8–4 g/d) may lower circulating tri-
glyceride concentrations by 11% to 28%.44–50

Previous animal studies indicate that the
triglyceride-lowering effects of plant sterols may be re-

lated to altered intestinal fat metabolism, as indicated
by increased fecal fatty acid excretion in plant sterol–

supplemented mice51 and reduced postprandial lym-
phatic transport of triglycerides in thoracic duct–

cannulated rats.52 However, clinical studies investigat-
ing postprandial fat handling in normotriglyceridemic

individuals failed to support data from animal studies,
suggesting that plant sterols can interfere with intestinal

fat digestion/absorption.53,54

Plant sterol supplementation also may reduce he-

patic de novo lipogenesis in golden Syrian hamsters,55

although results in other species have differed.51 In sup-

port of a triglyceride-lowering mechanism of hepatic
origin, Plat and Mensink47 reported a reduction in large

and medium very low-density lipoprotein particles in
the plasma of dyslipidemic individuals with metabolic
syndrome who consumed 2 g of plant stanols per day.

This finding was also confirmed in an animal study that
investigated hepatic production of very low-density

lipoprotein.56

Future research priorities with respect to plant ster-

ols/stanols and triglyceride metabolism include human
intervention studies specifically powered to detect tri-

glyceride responses in hypertriglyceridemic individuals,
a direct examination of fatty acid absorption, and

whole-body lipogenesis in response to plant sterol/sta-
nol supplementation. Additionally, research is needed

to identify both metabolic and genetic factors that de-
termine the magnitude of plant sterol/stanol–induced

triglyceride reductions.

Plant sterols/stanols and the central nervous system

Consumption of plant sterol–enriched foods increases
circulating plant sterol levels and may enhance the ac-

cumulation of plant sterols not only in tissues such as
aortic valves and liver but also in the central nervous

system (CNS).57–60 In a study by Simonen et al,61 how-
ever, consumption of plant sterols/stanols did not en-

hance the accumulation of plant sterols/stanols in
stenotic aortic values. The mean duration of this inter-

vention was 2.6 6 0.2 months (range, 0.6–5.0 months).61

Although plant sterols are poorly transported

across the blood–brain barrier, those with side chains of
lower complexity, such as cholesterol and campesterol,

cross the blood–brain barrier more easily than other
plant sterols with more complex side chains, such as si-

tosterol and stigmasterol.62–64 The exact mechanism by
which plant sterols are delivered to the endothelial
monolayer of the blood–brain barrier remains specula-

tive. As adenosine triphosphate (ATP)–binding cassette
(ABC) subfamily G members 5 and 8 (Abcg5, Abcg8)

transporter proteins are not expressed within the brain
or at the blood–brain barrier,65 this transporter com-

plex would not be expected to modulate plant sterol
transport at the level of the blood–brain barrier. An

HDL-C–mediated plant sterol transport pathway across
the blood–brain barrier has been suggested, given that

plant sterols are predominantly transported via HDL-C
in wild-type and ABCG5�/�mice and that scavenger re-

ceptor class B member 1, the major HDL-C receptor, is
highly expressed on the apical membrane of endothelial

cells of the blood–brain barrier.66 Regardless of the
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uptake mechanism, animal studies of plant sterol feeding

and depletion suggest that accumulation of plant sterols
in the CNS is virtually irreversible.63 Although the con-

version of cholesterol to 24(S)-hydroxysterol in neurons
accounts for over 60% of the cholesterol efflux from the

CNS,67–71 once plant sterols enter the CNS, they are not
metabolized by the CYP46A1 gene into 24(S)-hydroxys-
terol,63,72 likely because of steric hindrance caused by

the ethyl or methyl group at the C-24 position.
Although quantitative data on spatiotemporal accu-

mulation of plant sterols in the human CNS are limited,
the total content of plant sterols in the CNS of elderly

individuals without neurological disease is estimated to
be approximately 75 ng/mg of dry tissue, representing

about 0.5% of the total amount of body sterols.59 The
rate of cholesterol turnover (percentage of cholesterol

pool) in pyramidal cells of the cortex and Purkinje cells
of the cerebellum exceeds 20% per day.68,73–75 The high

flux of sterols in these metabolically active cells allows
fast incorporation into detergent-resistant parts of neu-

ronal membranes, thereby actively modulating choles-
terol metabolism in the CNS.63,76 A mechanistic study

from Burg et al77 shows that cleavages of the amyloid
precursor protein were beneficially modified by incor-

poration of plant sterols into neuronal membranes. To
date, it is largely unclear whether accumulation of plant

sterols in the CNS has functional implications. Long-
term exposure to increased levels of plant sterols in

transgenic mice did not lead to an overt cognitive phe-
notype with respect to memory or anxiety.78 Similarly, a

randomized double-blind placebo-controlled dietary in-
tervention study showed no negative influence of long-

term plant sterol or stanol consumption on neurocogni-
tive function or mood in hypercholesterolemic patients

receiving statin treatment.79 On the other hand, previ-
ous studies found that plant sterol extracts have

anxiolytic-like effects after intraperitoneal administra-
tion in mice.80,81 Together, the data suggest that plant

sterols do not enhance cognition in normocognitive set-
tings. However, cumulating in vitro and in vivo findings
support a therapeutic potential for plant sterols in

disease-related cognitive impairment.

RESPONSIVENESS OF LDL-C TO PLANT STEROLS/
STANOLS

Increased cholesterol excretion as an alternative
measure of plant sterol/stanol efficacy

The ability of plant sterols/stanols to reduce cholesterol
absorption is clearly an important factor in the LDL-C–

lowering action of these compounds, but it may not be
the only mechanism. Plant sterols/stanols also may af-

fect reverse cholesterol transport and whole-body

cholesterol metabolism,82 which are emerging areas of

interest in studies analyzing cardiovascular risk. Plant
sterols/stanols exert their principal effects most likely

through disruption of the intraluminal solubilization
step.83 In a controlled feeding study with 20 participants

in which dietary intakes of nutrients and plant sterols
were measured and carefully controlled, fecal choles-
terol excretion rose by 36% when the plant sterol con-

tent of the diet was increased from 59 to 459 mg/d and
by a total of 74% when the plant sterol dose was further

increased to 2059 mg/d.82 In contrast, these 2 increases
in dose resulted in a 5% and a 9% reduction in LDL-C

level, respectively. Additionally, in many studies, plant
sterol consumption reduces cholesterol absorption by

30% to 45%,84–88 yet circulating levels of plant sterols
are not affected to such a large extent. Taken together,

these data emphasize that the effects of plant sterols/sta-
nols on whole-body cholesterol metabolism are broad

and not limited to LDL-C lowering but may involve ad-
ditional pathways. More studies demonstrating en-

hanced reverse cholesterol transport and reductions in
hard cardiovascular endpoints following plant sterol/

stanol intake should improve the ability of public health
agencies to make recommendations. More studies are

also needed to evaluate new biomarkers of plant sterols/
stanols consumption, biomarkers that better correlate

with hard CVD endpoints. Indeed, because of the large
inter-individual variations in non-cholesterol sterol

handling, the measurement of plasma plant sterols/
stanols alone provides only an inaccurate estimate of

dietary intake. Studies in which the dietary intake of
plant sterols was controlled have demonstrated a strong

correlation between dietary plant sterol intake and the
ratio of plasma campesterol (the most avidly absorbed

plant sterol) to 5a-cholestanol (an endogenous choles-
terol metabolite) (R2¼ 0.79, P< 0.000189). Such ratio

should thus be evaluated as a new biomarker of plant
sterol intake in future studies assessing the impact of

dietary plant sterol intervention on CVD endpoints.

Genetic basis of plant sterol/stanol responsiveness

Several clinical studies have investigated the genetics be-

hind plant sterol/stanol responsiveness. Miettinen and
Vanhanen90 studied the effects of small amounts of

sitosterol, sitostanol, and sitostanol esters (< 1 g of free
sterols per day) dissolved in rapeseed oil on serum lip-

ids and cholesterol metabolism in patients with primary
hypercholesterolemia but different apolipoprotein E

phenotypes who were given a rapeseed oil diet.
Low-density lipoprotein cholesterol reduction was re-

duced by 8% in individuals with the apolipoprotein E4
allele and was insignificant in those with the

apolipoprotein E3/3 phenotype.90
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In another study, the relationship between genetic

variations in genes encoding apolipoprotein A-IV, scav-
enger receptor class B type I, 3-hydroxy-3-methylglu-

taryl coenzyme A reductase, cholesteryl ester transfer
protein, and apolipoprotein E and the response of cho-

lesterol metabolism to consumption of plant stanol
esters was examined in 112 nonhypercholesterolemic
individuals, 70 of whom consumed 3.8 to 4.0 g of plant

stanols (in the form of plant stanol esters) per day for
8 weeks.91 None of the polymorphisms were associated

with the responsiveness of LDL-C concentrations to
plant stanol consumption, with the authors concluding

that the polymorphisms analyzed were unlikely to be a
major factor in explaining the variation in serum LDL-

C responses to plant stanols.91 In another study that
investigated changes in serum plant sterol concentra-

tions relative to ABCG5/G8 polymorphisms after
consumption of plant stanol esters, concentrations of

cholesterol-standardized serum campesterol and sitos-
terol were associated with the ABCG8 T400K genotype.

However, despite the shifts in circulating plant sterol
concentrations, no associations with serum LDL-C lev-

els were found.92 Gylling et al93 also looked at the rela-
tionship between ABCG5/G8 polymorphisms and the

responses of serum cholesterol concentrations and vas-
cular function during a longer-term study in which 282

participants consumed plant stanol or sterol esters (2 g
of plant stanols or sterols per day) or a control spread

for 1 year. Neither serum cholesterol lowering nor inhi-
bition of cholesterol absorption was associated with

ABCG5/G8 polymorphisms.
Clinical trials, as shown in Figure 1,94 reveal sub-

stantial interindividual variability in LDL-C reduction
in response to plant sterol consumption,45,95 with

responses ranging from above-average response to non-
response or even adverse response.1,96,97 Distinct inter-

individual responses to plant sterol consumption have
been shown to be reproducible in individuals across re-

peated plant sterol interventions,98 indicating other po-
tential determinants of responsiveness. Factors thought
to be responsible for this variability have been investi-

gated. One explanation has focused on individual differ-
ences in the rates of cholesterol synthesis as determined

by the ratio of lathosterol to cholesterol. This ratio was
shown to be a biomarker predictive of an individual’s

response to plant sterol intervention.99 Both the rate of
cholesterol synthesis and the plasma cholesterol levels

were found subsequently to be influenced by APOE
polymorphisms and the single-nucleotide polymor-

phism (SNP) rs38038607 in CYP7A1.100 In particular,
the CYP7A1-rs3808607 and APOE isoforms were corre-

lated with the extent of reduction in circulating LDL-C
levels in response to plant sterol consumption. Thus,

predictive genetic markers can possibly identify

individuals who would derive maximum LDL-C lower-

ing from plant sterol consumption.100 The study by
Mackay et al100 confirmed results reported by De

Castro-Oros et al,101 who assessed whether a common
A>C substitution at position 204 of the promoter of

CYP7A1-rs3808607 was related to variability in plasma
sterol responses to plant sterol supplementation.
Compared with carriers of the A allele, individuals bear-

ing the 204C variant had significantly higher adjusted
mean reductions in total cholesterol and significantly

higher increases in lathosterol to cholesterol ratios.101

In another study, a 3.9-fold greater reduction in se-

rum LDL-C levels was observed in hypercholesterol-
emic men carrying the SNP rs4148217-Ain of the

ABCG8 gene when intake of plant sterols was 2.0 g/d for
4 weeks.102 However, this association was not replicated

by MacKay et al.100 These findings could represent a
first step in evaluating the use of common genetic varia-

tions to predict an individual’s response to plant sterol/
stanol intervention, which would potentially lead to en-

hanced plant sterol/stanol efficacy in reducing CVD
risk.

Taken together, the data suggesting that genetic ar-
chitecture influences the response of sterol metabolism

to plant sterols/stanols are provocative, but such mecha-
nisms need further study. A number of cholesterol-

related gene–diet interactions have been associated with
plant sterol or stanol response. Further study of such

interactions should lead to greater understanding of the
interindividual variability in response to plant sterols

and stanols.

CHALLENGES IN MEASURING PLANT STEROLS/
STANOLS AS MARKERS OF CHOLESTEROL

METABOLISM

Measuring plant sterols/stanols

Plant sterols/stanols fall broadly into the category of
noncholesterol sterols, which encompasses both non-
cholesterol and nonsteroid hormone sterols.

Noncholesterol sterols share the same steroid skeleton
with cholesterol and are comprised of sterols/stanols of

plant origin, certain cholesterol derivatives. and precur-
sors in the cholesterol synthesis pathway.103 Serum or

plasma concentrations of the cholesterol precursors,
such as lanosterol, lathosterol, and desmosterol, are

widely used as surrogate markers of endogenous choles-
terol synthesis.104,105 Reciprocally, plant sterols, such as

campesterol or sitosterol and the cholesterol metabolite
5a-cholestanol, have been used as markers of choles-

terol absorption.106–108

These noncholesterol sterols are often so similar in

structure to cholesterol that enzymatic methods to
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quantify cholesterol will actually measure the noncho-
lesterol sterol species as well, artificially inflating the

cholesterol concentrations.109 Conceptually, very little
in the quantitation of noncholesterol sterols has

changed since Bhattacharyya and Connor110 measured
levels of plant sterols in the first sitosterolemic children

identified. The various species of sterols must first be
separated chromatographically, often by gas or liquid

chromatography, and then measured, typically by using
either flame ionization detection or mass spectrome-

try.111 Even with precise chromatographic techniques, it
can still be impossible to separate certain species of ster-

ols; therefore, these species must be separated using
mass-selective detection during mass spectrometry.112

Noncholesterol sterols are found in biological fluids in
concentrations that are profoundly different, ranging

from millimole per liter for cholesterol, to micromole
per liter for plant sterols/stanols and cholesterol precur-

sors, to picomole per liter or lower for oxidized deriva-
tives of noncholesterol sterols.113 This wide range of

concentrations renders it difficult to capture all concen-
trations using a single analytical method. As a result,
numerous methods for measuring noncholesterol ster-

ols have been specifically developed and compared,111

but they often use different techniques for chromato-

graphic separation and detection.112 This variability in
methodology is a substantial challenge to the use of

noncholesterol sterol concentrations as surrogate meas-
ures of cholesterol metabolism because it hinders the

comparison of noncholesterol sterol values reported
from different laboratories. In fact, variation in mea-

surement methodology has been identified as the great-
est contributor to the variability in plant sterol

concentrations reported in the scientific literature.114 In
summary, comparing plant sterol or stanol concentra-

tions reported from different laboratories must be done

with caution, realizing that measurement methodology,
rather than diet or other biological mechanisms, may be

the biggest single contributor to differences in results.

Plant sterols/stanols as surrogate markers of
cholesterol metabolism

As mentioned in the section Measuring Plant Sterols/

Stanols, circulating plant sterol/stanol levels are often
used as surrogate measures of cholesterol absorption.107

Compared with direct and indirect methods of measur-
ing whole-body cholesterol absorption or synthesis, the

measurement of noncholesterol sterols is faster, more
affordable, and less invasive. However, in some circum-

stances, the measurement of plant sterols or stanols as
surrogate markers of cholesterol absorption is not ap-

propriate and may not accurately reflect intestinal sterol
absorption, even in the absence of supplemental intake

of plant sterols/stanols. When intakes of plant sterols or
stanols are changing, as in a trial of plant sterol/stanol

supplementation, the use of plant sterol/stanol concen-
trations as surrogate measures of cholesterol absorption
is invalidated.115

When plant sterols or other noncholesterol sterols
are to be used as surrogate measures, they should be

expressed as ratios relative to the total cholesterol level,
which standardizes for variations in concentrations of

sterol transport proteins.106 Such ratios show even
stronger correlations with cholesterol absorption and

synthesis. Concentrations of plant sterols and other
noncholesterol sterols, as surrogate markers of choles-

terol absorption, have been associated with CVD
risk.116,117 Levels of noncholesterol sterols have also

been used to differentiate between different types of
dyslipidemia103,118,119 and to predict response to statin

therapy120,121 and might be useful to guide lipid-

Figure 1 Percent change in low-density lipoprotein cholesterol (LDL-C) from baseline in response to consumption of a low-fat soy
beverage enriched with plant sterols (plant sterol intake, 1.95 g/d).94
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lowering therapy.122–124 Beyond the use of plant sterol

or other noncholesterol sterol levels individually as sur-
rogate markers of cholesterol absorption or synthesis,

the ratios of cholesterol synthesis to cholesterol absorp-
tion of these sterols, such as the ratio of lathosterol syn-

thesis to campesterol absorption, are also utilized to
assess overall cholesterol metabolism, with higher values
representing greater synthesis and less absorption.125

However, owing to the inherent nature of ratios, the use
of the ratio of synthesis to absorption markers does not

take into account the absolute values of each marker.
This hypothetically means that an individual with the

unlikely scenario of high concentrations of both synthe-
sis and absorption surrogate markers could have the

same ratio as someone with very low values, which
likely does not accurately reflect the actual biological

impact of these different values. To overcome this limi-
tation, the synthesis and absorption markers can be ar-

ranged in a Cartesian plane and related to an outcome
in a third plane, as was done by Qi et al,126 who pro-

posed a new approach of using both absorption and
synthesis markers together (Figure 2). By taking the

length of the hypotenuse of a triangle created by graph-
ing cholesterol absorption surrogates against cholesterol

synthesis surrogates, a potential overall measure of cho-
lesterol metabolism is obtained.

Since concentrations of plant sterols or other non-
cholesterol sterols are easy to measure, they are likely to

remain in common use as surrogate markers of choles-
terol metabolism. Their usefulness will be enhanced by

improving and standardizing the measurement of non-
cholesterol sterols.

PLANT STEROLS/STANOLS AS ADJUNCTS TO DIET AND
DRUGS

Lipid-lowering drugs and plant sterols/stanols:
ezetimibe

Ezetimibe (Zetia, Ezetrol) is a selective cholesterol ab-
sorption inhibitor that potently inhibits the uptake and

absorption of biliary and dietary cholesterol and non-
cholesterol sterols from the intestinal lumen without af-

fecting the absorption of other nutrients. Clinically,
ezetimibe reduced fractional cholesterol absorption,

which was accompanied by a 20.4% reduction in LDL-
C in 18 patients with mild hypercholesterolemia.127

Ezetimibe alone reduces plasma total cholesterol and
LDL-C levels by 18% in patients with primary hyper-

cholesterolemia and, when added to ongoing statin
treatment, reduces LDL-C by an additional 25%.128 On

the other hand, it also blocks plant sterol absorption. In
clinical studies, plasma sitosterol and campesterol were

reduced 41% and 48%, respectively, after just 2 weeks of

ezetimibe at a dosage of 10 mg/d. Ezetimibe also re-
duced serum plant sterol levels by about 50% when

used in combination with the statins simvastatin and
atorvastatin.129

Sitosterolemia is caused by mutations in the ATP-
binding cassette (ABC) cotransporters, either ABCG5

and/or ABCG8, leading to an accumulation of plant
sterols in plasma and tissues that, in turn, results in ac-

celerated development of CVD, anemia, platelet defects,
and other disorders. Ezetimibe treatment of sitosterole-

mia has been examined in case studies, and in some
instances it resulted in resolution of xanthomas, in-

creased platelet counts, and improved cardiovascular
symptoms.130 It also reduced the serum levels of the

atherogenic sterols campesterol and sitosterol in 37
patients with sitosterolemia.131

The intestinal transporter for cholesterol and plant
sterols is Niemann-Pick C1-Like 1 (NPC1L1) pro-

tein.132 Ezetimibe works by inhibiting the NCP1L1-
mediated uptake of sterols into the enterocyte and by
blocking the re-uptake of sterols from the bile back into

hepatocytes in humans.133 This blockage results in en-
hanced excretion of fecal neutral sterols and a reduction

in levels of plasma and tissue cholesterol and plant
sterols.

In preclinical studies, ezetimibe treatment or the
lack of NPC1L1 in mice has been shown to reduce ath-

erosclerosis.134 The Myocardial Infarction Genetics
Consortium135 sequenced the exons of NPC1L1 in more

than 22 000 individuals and found 15 inactivating
mutations of NPC1L1. They subsequently screened

more than 100 000 individuals for these inactivating
NPC1L1 mutations as well as for CVD risk and found

that being heterozygous for an inactivating mutation of

Figure 2 Proposed surrogate measure of cholesterol metabo-
lism that could overcome issues related to the use of ratios of
markers of surrogate synthesis to markers of absorption.126
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NPC1L1 was associated with an average plasma LDL-C

reduction of about 12 mg/dL and a decline in the risk of
coronary heart disease by 53%. Since these individuals

are heterozygotes, they have a lifelong 50% inhibition of
NPC1L1. Whether the use of ezetimibe to inhibit

NPC1L1 function causes a similar large decrease in cor-
onary heart disease needs to be addressed in a trial in-
vestigating hard cardiovascular endpoints.

The IMPROVE-IT (IMProved Reduction of
Outcomes: Vytorin Efficacy International Trial) investi-

gated the prevention of secondary outcomes following
acute coronary syndrome in over 18 000 patients.136

The objective was to reduce LDL-C levels to either
70 mg/dL with simvastatin alone or to 55 mg/dL by

combination treatment with simvastatin and ezetimibe
and to see if LDL-C levels even lower than the recom-

mended 70 mg/dL can be reached with the combina-
tion. The mean baseline LDL-C level was 94 mg/dL at

the start of this trial. In contrast to previous data,137

there was about a 16- or 17-mg/dL difference between

the treatment groups: LDL-C levels were 70 mg/dL with
simvastatin alone vs 53 mg/dL with the combination of

simvastatin plus ezetimibe. Weing€artner et al123

reported a significant LDL-C reduction of 6.4% when

ezetimibe was added to simvastatin for the primary
CVD outcomes in the intention-to-treat population. In

another study, the addition of plant sterols to ezetimibe
improved the effects of ezetimibe on plasma LDL-C, as

shown by Lin et al.138 Recently, Gomes et al139 reported
that combination therapy with plant sterols and ezeti-

mibe was associated with lower LDL-C levels. Similarly,
long-term use of sitostanol ester margarine as a substi-

tute for part of normal dietary fat had a favorable effect
of lowering serum total cholesterol and LDL-C levels

in individuals with mild hypercholesterolemia.24

Therefore, this indicates that LDL-C lowering with eze-

timibe probably caused the reduction in cardiovascular
events. These data help emphasize the primacy of

LDL-C lowering as a strategy to prevent coronary heart
disease.140

Lowering serum cholesterol levels: potential role of
plant sterols/stanols

There has been a long-standing argument over the so-

called statin hypothesis—the idea that statins have
unique efficacy in atherosclerotic vascular disease not

shared by other lipid-modifying agents, and that reduc-
tions in LDL-C levels are not the only basis for the ben-

eficial effect of statins. The efficacy and safety of statin
therapy was explored in a prospective meta-analysis of

data from over 90 000 individuals in 14 randomized tri-
als. The study concluded that, on average, a reduction

of 1 mmol/L (38.7 mg/dL) in LDL-C levels by statin

therapy yields a consistent 23% reduction in the risk of

major coronary events over 5 years.141

In this regard, the recent development of PCSK9

(proprotein convertase subtilsin/kexin type 9) inhibitors
is also of note. These agents reduce the degradation of

LDL receptor, thereby enhancing LDL-C clearance
from the circulation and reducing LDL-C levels by as
much as 60%.142 Definitive clinical outcomes trials with

these agents are ongoing. While the data are still too
preliminary to be conclusive, it appears that plant ste-

rol/stanol supplements efficiently decrease plasma
LDL-C levels and intestinal cholesterol absorption by

influencing PCSK9 expression.143 Sabatine et al144

found that the PCSK9 inhibitor evolocumab, when ad-

ministered in combination with background statin ther-
apy, reduced LDL-C levels by a median of 30 mg/dL

and lowered the risk of cardiovascular events.144

Plant sterols/stanols and other dietary agents

Like fiber intake, plant sterol intake appears to have
contracted substantially in modern diets. It has been es-

timated from studies of early ancestral diets that, 4 to
5 million years ago, when humans split genealogically

from gorillas and chimpanzees, they would have con-
sumed approximately 1 g of plant sterols per day.

When this early diet was recreated and fed to
healthy volunteers, major increases in fecal output

(1 kg/d) and marked reductions in circulating LDL-C
levels of 30% to 35% were observed.145 This decline in

cholesterol was attributed to increased dietary intakes
of fiber, vegetables, vegetable proteins, nuts, and plant

sterols and very low intakes of saturated fat and choles-
terol. It can be reasoned that the lack of these compo-

nents in the current diet, together with the
consumption of significant amounts of animal products

that are high in saturated fat, cholesterol, and animal
proteins, is responsible for the current elevated LDL-C

levels seen in humans consuming Western-type diets.
This current intake pattern has led to many patients
taking statin drugs instead of employing diet modifica-

tion to improve cholesterol levels.
The key elements of ancestral dishes, which were

individually approved by the US Food and Drug
Administration (FDA) for cholesterol reduction claims,

were used to create a new diet that required consump-
tion of a very large volume of plant foods. Elements in-

cluded vegetable protein (soy), nuts, viscous fibers
(oats, barley, and psyllium), and plant sterols, all incor-

porated at standardized amounts into a single diet
termed the dietary portfolio. This portfolio diet lowered

LDL-C and C-reactive protein levels by 20% to 35% in
hyperlipidemic participants on metabolic diets.146 In an

ad libitum cross-Canada multicenter trial conducted

Nutrition ReviewsVR Vol. 76(10):725–746 733

D
ow

nloaded from
 https://academ

ic.oup.com
/nutritionreview

s/article/76/10/725/5067941 by guest on 24 April 2024



over 6 months in 335 participants on a self-selected die-

tary portfolio, LDL-C levels decreased by 13% to 14%
overall, and by approximately 20% on the West

Coast!146 It is believed that plant sterols were a major
reason for the dietary portfolio’s LDL-C–reducing ef-

fect, since a reduction of 10% to 15% can be seen with a
plant sterol intake of 2 g/d. Therefore, when combined
with other dietary factors, plant sterols appear to have a

very useful role in maintaining healthy cholesterol
levels.

PLANT STEROLS/STANOLS AND CVD RISK

Effect of plant sterols/stanols on vascular function

The LDL-C–lowering effect of plant sterols/stanols is

well established.7,12,88 Nevertheless, direct evidence
linking the intake of foods containing added plant ster-

ols/stanols to CVD risk is still lacking. Cardiovascular
disease endpoint trials with plant sterols/stanols are

prohibitively expensive and exceedingly challenging to
perform. Depending on the length of follow-up and the

annual risk level, 36 000 to 636 000 individuals would
be needed to have enough statistical power to show a

beneficial effect on CVD risk. As a result, a typical CVD
endpoint study investigating the intake of foods with

added plant sterols/stanols could be deemed not feasible
because of the large sample size required, the concerns

about compliance, and the costs. Therefore, surrogate
endpoint markers will continue to serve as alternatives

for studying the direct effect of plant sterols/stanols on
CVD risk. Since atherosclerosis progresses from an

early age, the function and structure of the arterial wall
is influenced. Endothelial function may be impaired, ar-

teries may become stiffer, arterial wall thickness may in-
crease, and low-grade inflammation may ensue.

Plant sterols/stanols and endothelial function

Evidence supports a link between LDL-C and endothe-
lial function in children with familial hypercholesterol-

emia147 and in patients treated with LDL apheresis148

and other LDL-C–lowering therapies such as sta-

tins149,150 and ezetimibe.151,152 Furthermore, there
seems to be a significant inverse association between

flow-mediated dilation and CVD risk, so people with a
higher flow-mediated dilation have a lower risk of

CVD.153

After plant sterols are consumed, their concentra-

tions in plasma and tissues increase. This raises the
question of whether surrogate endpoint markers are af-

fected beneficially or, perhaps, detrimentally. The
change in plasma concentrations of plant sterols after

intake of plant sterol–enriched foods was investigated

in a meta-analysis of 41 studies.154 On an absolute scale,

increases in sitosterol and campesterol levels were mod-
est, on average 2.2 to 5.0 mmol/L, especially compared

with the average change in LDL-C (�0.33 mmol/L).
However, on a relative scale, increases were consider-

able, on average 31% to 37%. Plasma plant sterol con-
centrations have been linked to increased CVD risk in
homozygous sitosterolemic patients155 and in some, but

not all, observational studies.156 However, controversial
findings have also been reported, as demonstrated by a

study in 5 sitosterolemic individuals. Despite severe hy-
percholesterolemia and high plant sterol/stanol levels,

none of these individuals had symptoms of CVD or
positive clinical markers of atherosclerosis.157 It should

be noted that intake of foods with added plant stanols
increases plasma concentrations of stanols despite sta-

nols having a lower absorption rate than plant sterols. A
randomized trial of plant stanol intake of 3 g/d for

4 weeks showed that plasma plant stanol concentrations
increased by about 400%.158 On an absolute scale, how-

ever, these increases were minor, being far less than
those observed with plant sterols when their intake was

increased.
The effects of plant sterols/stanols on endothelial

function have been investigated in several animal and
human studies. In wild-type mice fed extremely high

doses of plant sterol esters (2%; � 100 times higher
than the dosage of 2 g/d recommended for lowering

LDL-C in humans) for 4 weeks, intake of plant sterols
increased plasma concentrations of plant sterols and

impaired endothelial-dependent vasodilatation as mea-
sured by vascular relaxation of aortic rings.58

Furthermore, cerebral lesion size increased after plant
sterol intake. However, plasma cholesterol concentra-

tions in these mice were not affected, which raises
doubt about whether these wild-type mice were suitable

for studying the effects of plant sterols. In another ani-
mal study in an atherogenic apoE�/� mouse model,

plant sterol and plant stanol supplementation reduced
serum cholesterol and increased plant sterol and plant
stanol concentrations, as expected.159 Elevated levels of

plant sterols/stanols were associated with impaired en-
dothelial function. Dietary supplementation with plant

sterols and ezetimibe, individually and in combination,
reduced atherosclerotic lesions compared with the con-

trol diet, although the reduction was significantly
greater in the ezetimibe group than in the group fed

plant sterols.58 Contrary to the findings in mouse stud-
ies, a 6-week intake of sitosterol and stigmasterol in

hamsters improved aortic functioning as measured by
acetylcholine-induced endothelium-dependent relaxa-

tion.160 Taken together, animal studies of the effects of
plant sterol/stanol intake on endothelial function show

conflicting results.
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A few human studies have investigated the effect of

plant sterol/stanol intake on flow-mediated dilation, as
summarized by Plat et al.1 Despite showing significant

reductions in LDL-C, none of these studies showed sta-
tistically significant effects on flow-mediated dilation.

However, when data from 5 of these studies were com-
bined, a modest improvement in flow-mediated dilation
was demonstrated.93,137,161–163

Recently, a large randomized trial investigating the
effects of plant sterols on vascular function (INVEST

[INternational VErapamil SR Trandolapril Study]) ex-
amined the influence of plant sterol intake on flow-

mediated dilation as a primary outcome measure, to-
gether with other markers of vascular function.164 The

study included 240 participants who consumed
enriched margarine (3 g of plant sterols per day) for

3 months. Plant sterol intake had a neutral effect on en-
dothelial function as assessed by a placebo-corrected

change in flow-mediated dilation of 0.01 percentage
point (95%CI, 20.73–20.75). Arterial stiffness, as mea-

sured by pulse wave velocity and augmentation index,
was also unaffected. It should be noted that the reduc-

tion in LDL-C was only �0.26 mmol/L (95%CI, �0.46
to �0.07) or �7% compared with control, which was

less than anticipated for a plant sterol intake of 3 g/d. In
general, it is estimated that a plant sterol intake of 3 g/d

would lower LDL-C by approximately 12%, so the
implications of these results for vascular function are

difficult to assess. Table 194,162–165,167,168 summarizes
studies that investigated the effect of plant sterol/stanol

intake on endothelial function. Overall, there was no
statistically significant improvement in flow-mediated

dilation, despite a significant effect on cholesterol
lowering.

In the INVEST study, plasma plant sterol concen-
trations were significantly increased in the plant sterol

group, as expected, but the increases were not related to
changes in flow-mediated dilation (Figure 3164). On the

other hand, a larger reduction in LDL-C was signifi-
cantly correlated with an increase in flow-mediated di-
lation, suggesting that lowering LDL-C could lead to

improvements in endothelial function. In addition, sev-
eral plasma biomarkers of endothelial dysfunction, ie,

E-selectin, soluble vascular cell adhesion molecule 1
(sVCAM-1), and soluble intercellular adhesion

molecule-1 (sICAM-1), also measured in INVEST, were
not significantly affected by intake of plant sterols vs

control.168 Taken together, plant sterols/stanols have
not been shown to consistently improve endothelial

function, despite producing significant reductions in
LDL-C. This could be because the plant sterol/stanol

doses used were below the threshold needed to trigger
measurable differences in endothelial function.

Furthermore, populations used in studies thus far may
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have been too healthy. Improvements in endothelial
function may only be detectable in individuals with im-

pairment. A longer intervention period might also be
needed to detect effects on the endothelium.

Importantly, as the evidence shows, plant sterol intake
does not compromise endothelial function even though

it increases concentrations of plasma plant sterols.

Plant sterols/stanols and other surrogate markers of
arterial health

Recently, a few other studies with plant sterols/stanols

investigated surrogate endpoint markers, including arte-
rial stiffness, intima media thickness, and inflammation.

Gylling et al169 investigated the effects of plant stanols
on arterial stiffness in a randomized controlled study.

They found that lowering LDL-C by approximately 10%
with plant stanol esters reduced arterial stiffness in small

arteries, with some indications of a beneficial effect in
large arteries only in men. It should be noted, however,

that these effects were driven mainly by increases in ar-
terial stiffness in the control group. Endothelial function,

as measured by the reactive hyperemia index, overall
was not improved with plant stanol intake. However,
changes in LDL-C correlated significantly with changes

in the reactive hyperemia index in the plant stanol
group, which is consistent with the findings of INVEST.

In an observational study with Old Order Amish
people who are prone to be heterozygous for sitosterole-

mia,170 carriers of a specific ABCG8 variant had higher
plasma sitosterol concentrations compared with non-

carriers of this variant, whereas LDL-C levels did not
differ between groups. Compared with noncarriers, car-

riers had decreased carotid intima-media thickness,
suggesting less plaque formation in their vessels with in-

creased concentrations of plasma plant sterols.
Inflammation is also involved in the process of ath-

erosclerosis. Recently, a meta-analysis summarized the

effects of plant sterol/stanol intake on markers of in-
flammation, particularly C-reactive protein.171 No ben-

eficial effect on this marker was observed.
Evidence regarding effects on surrogate markers of

CVD risk, such as endothelial function, is still inconclu-
sive. Notably, no worsening of endothelial function

with elevated concentrations of plasma plant sterols has
been shown thus far.

Personalizing and optimizing lipid-lowering therapies

Statins reduce cardiovascular morbidity and mortality in

primary and secondary prevention trials.172–174

However, studies have shown that statin efficacy can

vary between individuals, which can be attributable to
variations in cholesterol metabolism,141,175–177 with

some individuals demonstrating genetically determined
high cholesterol synthesis and others showing patterns

of higher cholesterol absorption.123 In individuals with
high cholesterol synthesis, statins are potent cholesterol-

lowering drugs, but in those who are high absorbers, sta-
tins are less effective than cholesterol absorption inhibi-

tors in lowering LDL-C.178–180 This contrasts, however,
with the findings of some studies. For instance, Lakoski
et al181 reported that combination therapy using ezeti-

mibe and simvastatin lowered LDL-C by 15% or greater
in more than 95% of participants. Moreover, inhibition

of cholesterol synthesis results in increased cholesterol
absorption, along with increased uptake of plant ster-

ols.182 As a consequence, in patients with high choles-
terol absorption, statins have been shown to increase

rates of cardiovascular events.183 These findings suggest
that individuals with low synthesis and high absorption

of cholesterol should be treated with a combination of
cholesterol-lowering agents, ie, a statin and a cholesterol

absorption inhibitor such as plant sterols/stanols.183

Genetic studies have shown that lifelong lower cho-

lesterol levels are associated with lower CVD risk.184 In
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individuals with inactivating mutations of NPC1L1, a

reduction in cholesterol of 12 mg/dL lowered CVD risk
dramatically, by 53%.135 Moreover, it has been shown

that defects in the sterol transporter gene ABCG8 are as-
sociated with higher plant sterol levels and increased

cardiovascular risk in the general population.117,155

Other studies have demonstrated that high cholesterol
absorption is associated with increased severity of coro-

nary artery disease185 and higher cardiovascular mortal-
ity.186 Interestingly, the ratio of cholesterol absorption

to cholesterol synthesis has been shown to be associated
with severity of coronary artery disease.187 These results

have been verified in the Framingham Offspring Study,
with the ratio of cholesterol absorption to cholesterol

synthesis shown to be the best lipid parameter to pre-
dict cardiovascular risk.188 New studies using intravas-

cular optical devices show the same finding. In patients
with stable or unstable angina pectoris, those with high

cholesterol absorption markers and low cholesterol syn-
thesis demonstrated thinner fibrous caps and larger

lipid cores.189 In another study, the effect of atorvastatin
treatment on lesion progression in patients with coro-

nary heart disease was assessed with intravascular ultra-
sound. Atherosclerotic plaque progression was most

pronounced in patients with an inadequate response to
statin treatment.190 In the PRECISE-IVUS trial (Plaque

REgression with Cholesterol absorption Inhibition or
Synthesis inhibition Evaluated by IntraVascular

UltraSound), statin monotherapy was compared with a
combination of the lipid-lowering drugs statin and eze-

timibe in patients with suspected coronary heart dis-
ease.191 After 9 to 12 months, the reduction in LDL-C

was greater in patients who received the combination
treatment than in those who received statin monother-

apy (63 mg/dL vs 73 mg/dL). Moreover, intravascular
ultrasound demonstrated a more pronounced regres-

sion of atherosclerotic plaques in patients who received
the combination treatment. In the GLAGOV (GLobal

Assessment of Plaque reGression With a PCSK9
antibOdy as Measured by intraVascular Ultrasound)
study, an ezetimibe/statin combination had a more pro-

nounced effect on lesion regression than a statin/
PSCK9 inhibitor combination.192

Statins showed no effect on cardiovascular mortal-
ity in patients on dialysis.193,194 A possible explanation

is that patients on dialysis are characterized by high
cholesterol absorption and low cholesterol synthesis,

with high cholesterol absorption being associated with
greater mortality.195 This may also explain why, in the

SHARP (Study of Heart And Renal Protection), a com-
parably smaller decrease in LDL-C resulted in a signifi-

cant reduction of cardiovascular events in patients
treated with a combination of lipid-lowering drugs.196

A post hoc analysis of the AURORA study (A study to

evaluate the Use of Rosuvastatin in subjects On Regular

haemodialysis: an Assessment of survival and cardiovas-
cular events) points in the same direction: only patients

on dialysis who were known to be high cholesterol syn-
thesizers showed a reduction in cardiovascular mortal-

ity with statin treatment.197 Since the publication of
IMPROVE-IT, additional evidence has shown that a
combination of lipid-lowering drugs in high-risk

patients can reduce cardiovascular mortality.136 With
these risk calculations in mind, one can speculate that

the use of combined lipid-lowering approaches—
assessed on an individual basis to account for differen-

ces in cholesterol metabolism—can further reduce car-
diovascular risk.124,198

SITOSTEROLEMIA: CLINICAL PERSPECTIVE, DIAGNOSIS,
TREATMENT, AND SCREENING

Microbiota therapeutics: perspectives on
management of sitosterolemia

The gut microbiome is “the ecological community of

commensal, symbiotic, and pathogenic microorganisms
that share our body space.”199 Many studies have shown

that nutrition can affect gut microbiota.200,201 Some
studies show associations between the microbiome and

serum lipid levels.202 The composition of the micro-
biome was recently evaluated during the early stages of

sitosterolemia. Animals that developed severe forms of
the disease had an overall different composition of the

microbiome compared with those that either did not
develop the disease or had only a mild form of it.

Furthermore, differences in the microbial population
across groups were identified.203 Specifically, levels of

lactobacilli were found to be downregulated in those
with severe experimental autoimmune encephalomyeli-

tis.203 Lactobacillus is a major component of all com-
mercially available probiotics. Could a probiotic be used

to treat something so specific such as sitosterolemia?
Some studies show that plant sterols can affect the
microbiome. As an example, dietary supplementation

with 5% plant sterol esters induced alterations in the fe-
cal microbiota of hamsters.204 However, a recent study

could not confirm this finding in human volunteers.205

Ezetimibe is the standard treatment for sitosterole-

mia management. Although it has been shown to re-
duce plasma sitosterol levels by about 30% to 40%, that

may not be sufficient to treat severe symptoms of sitos-
terolemia. Could the diversity and the function of the

microbiome be modified in order to treat sitosterole-
mia? Or, could a genetically modified vector be used as

a delivery system? Can a probiotic that proliferates in
the gut and is able to carry a gene that might be trans-

ferable into the epithelial cells of the gut be delivered?
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Bacterial vectors have been used in the past to induce

protective peripheral immunity. For example,
Salmonella has been successfully adapted for live-vector

vaccine delivery.206,207 Perhaps a genetically modified
probiotic that can target the ABCG5 and ABCG8 genes

in enterocytes could be developed. Many issues require
consideration, including the pathogenic factors of po-
tential vectors; however, these are provocative concepts

to explore as potential adjunctive treatment options for
sitosterolemia.

Clinical perspective: when to consider sitosterolemia
within the differential diagnosis

In 1974, William Connor and Ashim Bhattacharyya110

reported the first cases of sitosterolemia. Two sisters
who had onset of tendon xanthomas at the ages of 7

and 8 years, with progression of the condition at 13 to
14 years, were medically evaluated as young adults.

They otherwise had normal development, including
normal plasma cholesterol concentrations. Total circu-

lating cholesterol levels in both sisters were around
200 mg/dL,110 which, at the time, was considered an

oddity in the context of prominent tendon xanthomas
because that level was much lower than what would be

expected with a disorder such as familial hypercholes-
terolemia. Familial hypercholesterolemia is an autoso-

mal dominant disorder that affects about 1 in 250
individuals in the general population, is associated with

severe hypercholesterolemia, and is the most common
cause of tendon xanthomas. Roughly one-third of

patients with a clinical diagnosis of familial hypercho-
lesterolemia do not have an identifiable mutation, even

when all of the known genes are sequenced, suggesting
the involvement of other genes.208 At the time these sis-

ters were evaluated, a total cholesterol concentration of
350 to 400 mg/dL or higher would have been expected

in a patient with familial hypercholesterolemia.
Furthermore, at the time, the presence of tendon xan-
thomas was usually consistent with a diagnosis of famil-

ial hypercholesterolemia or, rarely, cerebrotendinous
xanthomatosis caused by mutations in the CYP27A1

gene, which encodes sterol 27-hydroxylase, a key en-
zyme in the bile acid synthesis pathway.209 However, it

has been suggested that some individuals could have
undiagnosed sitosterolemia masquerading as pseudo–

familial hypercholesterolemia as a consequence of the
marked diet-induced hypercholesterolemia sometimes

seen in patients with sitosterolemia in response to high
intakes of dietary cholesterol and plant sterols.210 The

proportion of patients with a clinical diagnosis of pre-
sumed familial hypercholesterolemia who actually have

sitosterolemia is unknown.

Sitosterolemia is caused by mutations in the sterol

transporter genes ABCG5 and/or ABCG8, resulting in
intestinal hyperabsorption of all dietary sterols, im-

paired hepatic excretion of sterols into bile, increased
content of plant sterols in tissue, and development of

extensor tendon xanthomas and atherosclerosis.
An important question in clinical practice is when

to consider a diagnosis of sitosterolemia. As sitsterole-

mia is a rare disorder, random screening of patients is
not indicated or useful. There are, however, several sit-

uations in which it is reasonable to consider the diagno-
sis of sitosterolemia. In line with the clinical

presentation of the index patients described by Connor
and Bhattacharyya,110 sitosterolemia should be consid-

ered when tendon xanthomas are present in the absence
of severe hypercholesterolemia. Another possible sign

of occult sitosterolemia is the development of extreme
hypercholesterolemia after consumption of diets high in

cholesterol or saturated fat. As a consequence of muta-
tions in ABCG5 or ABCG8, patients with sitosterolemia

hyperabsorb dietary cholesterol and plant sterols/sta-
nols, resulting in exaggerated diet-induced hypercholes-

terolemia. Other conditions that may suggest
sitosterolemia include paradoxical hypercholesterolemia

in response to pharmacological treatment with plant
sterols. In normocholesterolemic individuals, plasma

LDL-C may decrease as much as 8% to 10% because of
plant sterol–mediated inhibition of micelle formation,

resulting in inhibition of cholesterol absorption. In con-
trast, patients with sitosterolemia will hyperabsorb the

plant sterols and may actually have a hypercholesterol-
emic response. Hyporesponsiveness to the LDL-C–low-

ering effect of statins is another potential indicator of
sitosterolemia, but this finding may be confounded by

noncompliance with statin treatment, loss-of-function
mutations in PCSK9, or other factors unrelated to sitos-

terolemia. Hence, the vast majority of patients who are
hyporesponsive to the LDL-C–lowering effect of statins

are unlikely to have sitosterolemia.
A key step in the diagnosis of sitosterolemia is mea-

surement of plant sterols in serum or plasma using gas

chromatography–mass spectrometry. Some patient
populations have plasma sitosterol levels that exceed the

cutoff for sitosterolemia, such as babies and patients
with severe liver disease who are treated with soy-based

parenteral nutrition high in plant sterols. In these indi-
viduals, the sitosterolemia is completely reversible after

parenteral administration of plant sterols is ceased.
Clinical features that may facilitate the diagnosis of

sitosterolemia include extensor tendon xanthomas
(rarely, tuberous xanthomas), normal to elevated

plasma cholesterol, thrombocytopenia, chronic hemo-
lytic anemia and stomatocytosis, and, occasionally, ele-

vated liver enzymes and acute liver failure. However,
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the absence of these features does not exclude the diag-

nosis.211 Management of sitosterolemia includes de-
creasing the dietary intake of plant sterols and

cholesterol, treatment with ezetimibe and, possibly, bile
acid sequestrants, and treatment of hypercholesterol-

emia with statins, as indicated.
In summary, a diagnosis of sitosterolemia should

be considered in individuals presenting with hyper-

responsiveness to dietary sterol intake, paradoxical
responses to treatment with plant sterols, the presence

of tendon xanthomas in the absence of hypercholester-
olemia, hyporesponsiveness to statin treatment, platelet

and red blood cell abnormalities, or early-onset coro-
nary artery disease without significant

hypercholesterolemia.

Sterol metabolism in sitosterolemia

Abnormal sterol homeostasis is a consistent feature in

individuals with sitosterolemia.212 It is characterized by
both increased retention and reduced elimination of

plant sterols and cholesterol, as well as expanded whole-
body cholesterol pools that compensate for the reduced

cholesterol synthesis in sitosterolemia.212 Using in vivo
radiolabeled isotopic techniques, Salen et al212 observed

that the turnover rates of plasma cholesterol and sitos-
terol in patients with sitosterolemia were similar and

significantly slower than those in a control individual.
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA)

reductase and synthase, as well as other key enzymes in-
volved in cholesterol synthesis, are downregulated in

patients with sitosterolemia.213–215

Accumulation of plant sterols may account for the

low rates of cholesterol synthesis observed in sitostero-
lemia.216 Strategies such as feeding either the cholesterol
precursor mevalonic acid or a low-cholesterol diet215

failed to stimulate de novo cholesterol synthesis in
patients with sitosterolemia. While ezetimibe is cur-

rently the standard therapy for sitosterolemia, its effects
on cholesterol synthesis and sterol turnover in sitostero-

lemic patients are undefined and need further
investigation.

Sisterolemia: the challenge of researching rare
diseases

The National Institutes of Health has defined a rare dis-

ease as one that affects fewer than 200 000 people in the
US population, which corresponds to a prevalence

ranging from 1 in 16 000 to fewer than 1 in 500 000
individuals, depending on the disease. However, the

prevalence of various rare diseases is highly variable,
with some diseases being very infrequent. Currently,

7000 separate diseases have been identified as rare, with

many of these being hereditary. The study of rare dis-

eases presents multiple challenges, including limited
numbers of patients available for recruitment, the un-

known natural history of a rare disease, and the consid-
erable phenotypic variability in these diseases. This

adds to the complications of investigating not only the
disease itself but also the therapeutic approaches. Most
physicians fail to recognize rare diseases in clinical

practice because they have never seen a case of a disease
that occurs in 1 in 100 000 individuals. The National

Institutes of Health recognizes the challenges in diag-
nosing and treating the very large constellation of rare

diseases, as demonstrated by its establishment of the
Rare Disease Clinical Research Network, which now

specifically targets 22 diseases. The Sterol and
Isoprenoid Research Consortium, 1 of the 22 in the

Rare Disease Clinical Research Network, is a consor-
tium focused on sterol metabolism disorders. The idea

behind Rare Disease Clinical Research Network is that
no center alone will encounter enough patients with a

rare disease to be able to conduct a valid clinical study,
and therefore efforts should be pooled in carrying out

multicenter studies.

Clinical aspects and treatment of sitosterolemia:
observations from the Manitoba Sitosterolemia
Cohort

The Manitoba Sitosterolemia Cohort is a kindred of
Hutterite patients living mostly in Manitoba, Canada.

They are a religious isolate based in rural communities.
Within this cohort was a 5-year-old girl who died sud-

denly and was found at autopsy to have extensive aortic
and coronary atheroma.217 Her medical history in-

cluded anemia and recurring abdominal pain.218 This
led to a search for a diagnosis and, eventually, a deter-

mination of sitosterolemia before the specific mutation
was identified.217,218 Subsequent cascade screening over

a period of some 16 years has identified a cohort of 21
patients, all having the ABCG8 S107X mutation. All 20

survivors have responded very favorably to ezetimibe
therapy.219,220

INTRAVENOUS PLANT STEROLS/STANOLS AND
PEDIATRIC INTESTINAL FAILURE–ASSOCIATED LIVER

DISEASE

When enteral nutrition is limited because of insufficient
intestinal length and/or poor intestinal function, intesti-

nal failure develops. In order to prevent dehydration
and malnutrition, patients with intestinal failure are

prescribed parenteral (intravenous) nutrition.
Parenteral nutrition serves as an important source of

water, electrolytes, and macro- and micronutrients.
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While parenteral nutrition is life sustaining for patients

with intestinal failure, it can lead to intestinal failure–
associated liver disease (IFALD), a potentially fatal liver

disorder. Intestinal failure–associated liver disease is de-
fined by the presence of intestinal failure or prolonged

use of parenteral nutrition in conjunction with liver
dysfunction, characterized by elevated serum transami-
nases and/or conjugated hyperbilirubinemia. On liver

biopsy, IFALD is characterized by cholestasis, inflam-
mation, and steatosis. Liver fibrosis can develop after a

short course of parenteral nutrition. In some patients,
IFALD culminates in cirrhosis, liver failure, and death.

Once liver failure develops, a liver transplant is the only
life-saving option.

Intestinal failure–associated liver disease and sepsis
are the top 2 causes of mortality in children with intesti-

nal failure.221,222 For several reasons, IFALD is more
common in children than in adults. Gestational age,

birth weight, underlying gastrointestinal disorders, and
duration of parenteral nutrition are important risk fac-

tors for IFALD. Seventy percent of infants who have re-
ceived more than 60 days of parenteral nutrition will

develop IFALD.221 Moreover, gestational age and birth
weight are inversely correlated with the incidence of

IFALD. Premature neonates and low-birth-weight neo-
nates are at high risk of IFALD.221 Lastly, children with

gastroschisis, volvulus, distal intestinal atresias, and
short bowel syndrome commonly develop IFALD.221

Intravenous lipids are prescribed with parenteral
nutrition as a source of nonprotein calories and essen-

tial fatty acids. In the United States, the only FDA-
approved intravenous lipid emulsion for children is

entirely soy based (Intralipid, Fresenius Kabi, Uppsala,
Sweden). Soy oil–based lipid emulsions have a long-

standing association with IFALD.221–227 Intravenous
soybean oil contains high concentrations of plant sterols

(> 350–400 mg/L).222 In contrast to intravenous soy-
bean oil, a non–FDA-approved fish oil–based lipid

emulsion (Omegaven, Fresenius Kabi, Bad Homburg,
Germany) contains a negligible amount of plant sterols.
Fish oil–based lipid emulsions are prescribed in the

United States under compassionate-use protocols to
treat pediatric IFALD.222–224 Intravenous fish oil is a

safe, effective treatment for IFALD; studies have dem-
onstrated that IFALD resolves in approximately 75% of

children treated with fish oil and is associated with a de-
crease in both the incidence of liver failure and the need

for liver transplantation.222–224

Levels of plant sterols in soybean oil and fish oil

differ substantially. When infants with IFALD are com-
pared with children with IFALD, the infants have

higher plant sterol concentrations.225,226 Furthermore,
plasma sterol concentrations correlate with hepatic ste-

rol concentrations and histological changes in liver

biopsy.227 In addition, when intravenous soybean oil

was replaced with intravenous fish oil in children with
IFALD, not only did plasma sterol concentrations de-

crease dramatically, but early changes in plasma stig-
masterol predicted later changes in conjugated

bilirubin.223 This suggests that stigmasterol levels may
serve as surrogate marker of disease severity and treat-
ment response.

Animal experiments provide mechanistic evidence
that stigmasterol may be one of the main culprits driv-

ing IFALD. Mice infused with parenteral nutrition and
intravenous soybean oil have decreased expression of

hepatic nuclear transcription factors, liver X receptor,
and farnesoid X receptor as well as decreased mRNA

expression of bilirubin, bile acid, and sterol liver trans-
porters. In addition, mice exposed to parenteral nutri-

tion plus intravenous soybean oil developed cholestasis
and showed elevated liver function tests, mimicking pe-

diatric IFALD.228 In contrast, mice infused with paren-
teral nutrition plus intravenous fish oil showed

expression of farnesoid X receptor, liver X receptor, and
sterol transporters similar to that observed in control

mice, and they were protected against IFALD.228

These studies demonstrate that the type of intrave-

nous lipid emulsion and, more specifically, the type of
intravenous plant sterols, are important players in the

pathogenesis of IFALD. With the advent of new lipid
formulations, it is important to consider sterol content.

It is unknown whether specific sterols are safer than
others or whether there is a safe sterol content for lipid

emulsions. Further research is needed to resolve these
uncertainties.

CONCLUSION

The present review provides an overview of past and re-

cent developments in the basic biology of plant sterols
and stanols, largely within the context of therapy and

management of dyslipidemia in the general population.
Also presented is guidance for the clinical management
of rare disorders that result from mutations in regula-

tors of sterol metabolism that lead to the retention of
cholesterol, plant sterols and stanols, and other types of

noncholesterol sterols in serum and tissues. Particularly
novel in the area of plant sterol/stanol physiology is the

recognition that even low levels of intake of plant sterols
or stanols can influence both the efficiency of choles-

terol absorption and the circulating cholesterol pool in
both adults and infants. Furthermore, the reciprocity

between cholesterol synthesis and absorption and the
impact of the ratio of cholesterol synthesis to cholesterol

absorption on the efficacy of plant sterols/stanols in
lowering LDL-C is being increasingly recognized.

Recent studies provide better understanding about how
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polymorphisms within genes coding for enzymes active

in lipid pathways affect LDL-C lowering. In addition,
the advantages of combining plant sterols/stanols with

other dietary elements such as fiber, soy protein, and
nuts are becoming more widely recognized. The overall

importance of LDL-C lowering in reducing CVD risk
has been further established in trials investigating com-
binations of drugs, such as IMPROVE-IT136 and the

FOURIER trial.144 Additionally, a clear association be-
tween LDL-C and atherosclerotic CVD has been identi-

fied recently from multiple clinical and genetic
studies.229 In best approaches to clinical management of

sitosterolemia, ezetimibe continues to prevail as the
drug of choice. The disparity in the degree of sitostero-

lemia severity across patients was emphasized, as was
the importance of proper screening using as diagnostic

criteria both the levels of circulating plant sterols and
confirmation of the specific gene mutation. It is impor-

tant to rely on these tools for correct identification of
patients with sitosterolemia to avoid confusing them

with patients with familial hypercholesterolemia. In
summary, plant sterols and stanols continue to offer an

efficacious and convenient dietary approach to choles-
terol management and serve as important natural health

products as well as ingredients of functional foods.
Their clinical benefits to vascular function, however,

have not yet been established in long-term studies with
predefined CVD endpoints.
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123. Weing€artner O, Lütjohann D, Böhm M, et al. Relationship between cholesterol
synthesis and intestinal absorption is associated with cardiovascular risk.
Atherosclerosis. 2010;210:362–365.
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